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Abstract

The roll-out of the high speed train (HST) in China during the past decade o�ers travelers

a realistic choice of rail versus air on overlapping routes. While the HST competes for tra�c

it also feeds tra�c to the non-overlapping air routes that are connected to the HST network.

To analyze the e�ects of the roll-out of the high speed train on the airline industry, I use a

unique hand-collected dataset on airline networks and the timing of the HST roll-out. I exploit

the variation in the timing of the HST roll-out across di�erent regions to present descriptive

evidence that suggests that the HST may have positive spillover e�ects on the airline industry.

I then estimate a structural dynamic oligopoly model of air route entry and exit over time. The

model allows me to quantify the negative and positive spillovers of the HST network roll-out on

the airlines' route networks and to understand how airlines respond strategically to the roll-out

of the HST by re-positioning themselves (in this case, through new network con�gurations). I

�nd evidence of heterogeneous spillover e�ects of HST on air route networks which depend on

the routes' characteristics and on their interaction with the HST network. Conditional on the

airlines' decisions, the overall contribution of the positive spillovers from HST exceeds that of the

negative spillovers, suggesting that airlines reposition their networks to avoid direct competition

while taking advantage of the complementarity in routes.
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tarity, network competition
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1 Introduction

China has the fastest growing high speed train (HST) network in the world. During the past decade,

China has built (or upgraded) over 20,000 km (12,500 miles) of high speed railways, more than the

rest of the world combined . According to the Chinese government's plan, by 2030, the HST network

is expected to expand to 45,000 km (30,000 miles) of railroad tracks, connecting most of the major

cities in the country (see Figure 1).1

The roll-out of the HST, which is government-owned and operated, o�ers challenges to domes-

tic air carriers' operations. HST service and air travel are often acknowledged to be reasonable

substitutes and, by the end of 2015, almost 50% of air routes in China were also served by HST.

At the same time, the HST service might o�er an opportunity for air carriers. Similar to

the historical evidence on inter-modal e�ects between truck and rail freight tra�c in the U.S.,

air carriers and HST might feed tra�c to each other, thus increasing the attractiveness of both

operations. Consistent with this, China's 13th �ve-year plan emphasizes the need to improve the

connectivity between di�erent modes to transportation. Also, online travel brokers often o�er online

bookings that combine �ight and HST segments. Notwithstanding these examples of e�orts aimed

at exploiting inter-modal complementarities, there is no empirical evidence about the relative size

of the substitution and/or complementarity e�ects between HST and �ight services.

In this paper I study the e�ects of the roll-out of the HST on the airline industry in China. I

empirically assess and quantify the impact of negative (substitution) and positive (complementary)

spillovers of HST on air carrier pro�ts and, in particular, the implications of these spillovers for the

air carriers' route networks.

I use a unique hand-collected dataset on airline networks and on the timing of the HST roll-out

from 2006 to 2016 to empirically test whether and how the presence of HST a�ects airlines' route

con�gurations and pro�ts. I use both descriptive and structural methods to analyze this issue and

�nd evidence of both negative and positive spillovers from HST to airlines.

My research contributes to the ongoing policy debate as to whether HST acts solely as a substi-

tute to existing modes of transportation (in this case air) or whether it can act as a complementary

mode of transportation. By studying the roll-out of the HST in China, we can better understand

what would be the consequences in terms of airlines' response to the HST in other locations which

are considering the introduction of HST. More importantly, quantifying the negative and potential

positive spillovers from HST to air travel (and their net e�ect) allows us to understand whether the

resistance of the airline industry regarding the introduction of HST in some regions (such as Cali-

fornia) is warranted. More generally, my approach contributes to the study of market entry and to

the analysis of product assortment decisions in which there are substitution and complementarities

in demand across �rms and product categories.

Previous work has studied �rm's entry and location choice in settings in which there are positive

1Source: http://www.economist.com/news/china/21714383-and-theres-lot-more-come-it-waste-money-china-has-
built-worlds-largest
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and negative spillovers between �rms.2 I extend this work by considering spillovers in settings

in which it is important to consider inter-connected markets comprising a network. For example,

the entry of Walmart has been shown to help small retailers while having large negative e�ects

on regional and national chains (Arcidiacono et al. 2016). Didi, a Chinese �ride-hailing� service is

generally considered an alternative to the traditional taxi service, but it is possible that this platform

may feed tra�c to traditional taxi carriers for certain routes within their overall network.3 Also,

traditional brick-and-mortar stores seem to be adapting to reap the positive spillovers associated

with online commerce as more consumers today are �webrooming� (browsing online before making an

in-store purchase) than �showrooming� (going to a store to make their selection and then searching

online for the best price) across a variety of retail categories.4

If we consider that an air carrier's network is an �assortment of routes,� this paper also informs

the literature on product assortment. Most of the extant work on product assortment treats the

individual products o�ered by a �rm as substitutes, so �rms' (re)positioning of products is driven

mostly by incentives to soften competition and to avoid cannibalization within their assortments.5

In the case of �rms that o�er complementary products (such as the case of airlines with naturally in-

terconnected routes), �rms should also consider the positive spillovers in demand that are generated

among theirs and their competitors' products.

To analyze the net e�ect of the roll-out of the HST on the airline industry, I hand-collect daily

�ight information for the four major passenger airlines and their subsidiaries in China. I use this

data together with detailed information on the timing of the HST roll-out.6 The data covers over

two thousand city-pairs (i.e., routes) for a period of ten years. I exploit the variation in the number

of �ights o�ered and in the airlines' route choices over time and across regions, together with the

evolution of the HST's route network to identify how airlines' route choices respond to the presence

of the HST.

I present descriptive evidence that suggests that the HST may have both negative and positive

spillover e�ects on the airline industry. Then, I build and estimate a structural dynamic oligopoly

model of airlines' route entry and exit decisions over time that allows me to estimate the magnitude

of the spillover e�ects.

First, descriptive panel-data regressions that model the presence or absence of air service in a

given route, and which control extensively for route and airline characteristics, are consistent with

HST acting as a substitute to air travel in overlapping routes while being complementary to air travel

2For example, Vitorino (2012) studies the negative and positive spillovers among stores of di�erent formats in
the context of shopping centers, Yang (2012) studies the channel (�xed costs versus variable pro�ts) through which
spillovers a�ect �rms' decisions in the fast-food industry, and Datta and Sudhir (2011) look at the trade-o� between
co-location and spatial di�erentiation in the context of big-box grocery stores.

3The main di�erence between Didi and Uber is that the Didi platform allows one not only to request the services
of drivers that have signed up with Didi, but also to book traditional taxi-cabs.

4http://www.chainstoreage.com/article/how-smart-digital-strategy-can-make-physical-retail-store-prime-asset
5Examples include Draganska, Mazzeo, and Seim (2009), Eizenberg (2014), Jeziorski (2014a), Jeziorski (2014b),

Sweeting (2010), and Sweeting (2013).
6The four major airlines in China (including their subsidiaries) account for almost 90% of the domestic air

passenger tra�c in China.
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in connected routes. Further, the results from these regressions suggest that there are heterogeneous

spillover e�ects of HST on air route networks which depend on the routes' characteristics, including

the length of the route and whether a route is government regulated. A matching algorithm, that

looks at a route as being �treated� or �not treated� depending on its level of connectivity to the HST,

and which alleviates potential functional form concerns associated with the panel-data regressions,

provides similar insights.

Second, in order to account for possible unobservable di�erences across routes, such as demand

or cost shocks, which the panel-data regressions and the matching approach cannot account for, I

use a di�erence-in-di�erences regression.7 I exploit the presence of HST on a focal route and create

�control� routes that are connected with the two airports at the ends of the focal route, but which

do not overlap with HST. Here, the identi�cation assumption is that both demand side and supply

side shocks in the focal route are captured by one of the control routes. Thus, by comparing air

service on the control routes against the focal route before and after the treatment (controlling for

other observable di�erences), we can identify the impact of HST. The results from the di�erence-

in-di�erences analysis are consistent with the presence of both positive and negative HST e�ects on

air service, and provide additional insights. While the presence of HST seems to have a negative

impact on shorter air routes that overlap with HST service, for longer routes, the e�ect of HST

seems to be positive, thus suggesting the existence of market expansion e�ects.

Finally, and because the descriptive evidence does not explicitly model airlines' entry and exit

decisions, I construct and estimate a structural dynamic oligopoly model of airlines network con�g-

urations. This approach allows me to account for the endogeneity of �rms' entry end exit decisions

while contributing to the understanding of the underlying mechanism through which spillovers oc-

cur. Also, by linking airlines observed decisions to unobserved latent pro�ts I can quantify the

negative and positive spillover e�ects from the HST to airlines and among the di�erent airlines.

A structural model of airlines' network decisions poses several challenges. First, in this setting,

there are multiple players and each �rm's route decisions are dependent on their own and other �rms'

networks. Second, airlines' decisions are inherently dynamic (i.e., �rms are forward-looking) because

there is a cost associated with entry in each route. Further, the market conditions (demographics

and train network) change over time leading airlines to have to reassess their network often, which

results in frequent airline entry and exit from the numerous city-pair routes. Allowing for the

forward-looking behavior of �rms with a very large state space invalidates the use of traditional

approaches to estimate dynamic games of entry and exit (e.g., Ericson and Pakes 1995, Bajari,

Benkard, and Levin 2007, and Aguirregabiria and Mira 2007). To overcome these challenges I use a

new framework (Arcidiacono et al. 2016) for estimating and solving dynamic discrete choice models

in continuous time (as opposed to the most commonly used discrete-time framework) that can be

applied to dynamic games.

I �nd strong evidence of both negative and positive spillover e�ects from the HST on air carrier

7Goolsbee and Syverson (2008) use a similar methodology in their study of how incumbents respond to the threat
of entry by a competitor in their study of entry of Southwest Airlines.
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routes. The e�ects depend on the routes' characteristics and on their interaction with the HST net-

work. Speci�cally, I conclude that the HST is a strong competitor of air travel, especially in shorter

routes. The substitution e�ects of HST relatively to air travel dissipate for longer routes, however.

More connections to HST lines bring positive spillovers to air travel; these e�ects amount to roughly

one �fth of the negative spillovers associated with the overlap with short routes. Interestingly, the

interaction of HST presence and connectivity to HST train lines is negative, suggesting a negative

moderating e�ect of HST presence on the spillovers associated with a higher HST connectivity.

Further, a pro�t decomposition analysis shows that airlines enjoy more positive spillovers from

HST and less negative spillovers in newly entered routes than in well-established ones. At the

same time, airlines tend to exit routes where the negative spillovers from HST are very large. On

average, conditional on the observed airlines' route decisions, the HST substitution e�ects (i.e.,

negative spillovers) amount to approximately 6.7% of airlines' pro�ts, while the complementarity

tra�c e�ects (i.e., positive spillovers) represent about 8.5% of airlines' pro�ts.

Taken together, the evidence found is consistent with a positive net impact of the HST on

the airline industry over the sample period and suggests that airlines strategically reposition their

networks to avoid direct competition while taking advantage of the complementarity in routes.

The rest of the paper is organized as follows: Section 2 reviews the literature. Section 3 describes

the industry background. Information on the data, and descriptive evidence are provided in Sections

4 and, 5 respectively. Section 6 presents the structural model, while Section 7 describes the structural

model's empirical speci�cation. The estimation strategy and results for the structural model are

described in Sections 8 and 9. Section 10 concludes.

2 Literature

This paper is related to several streams of literature. First, this paper contributes to the trans-

portation economics literature that studies intermodal competition. The earlier literature generally

views di�erent modes of transportation as substitutes, and has focused mostly on the competition

between trains and trucks. For example, Oum (1979a) and Oum (1979b) derive a demand model

for freight transportation and study the substitution patterns between trains and trucks in terms

of price, quality and distance. Other papers look at the supply side and study how truck and train

prices change in response to competition or other policies that a�ect competition (MacDonald 1987,

Wilson, Wilson, and Koo 1988). Most of these papers, however, take the train or truck routes as

given and abstract away from the possibility of positive spillovers between modes of transportation.

More similar to this paper, Viton (1981) studies price and quality competition between trains and

buses in the San Francisco Bay Area. Using demand and cost data, the author numerically solves

for the market equilibrium and �nds that both modes of transportation can survive as di�erentiated

services.

The only two papers that study the bene�ts of intermodal transportation coordination are

Roberts (1969) and Friedlaender and Harrington (1979). Roberts (1969) uses an analytical model to
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demonstrate that gains from coordination between train and truck transportation are best achieved

through market-free prices and not through the use of regulation. Using both theory and empirics,

Friedlaender and Harrington (1979) show that the lack of intermodal coordination in the U.S. during

the 1970s was caused by restrictions on intermodal ownership. Neither of the previous two papers

address the question of whether coordination a�ects the transportation networks.

Some recent literature on transportation policy has looked at the competition between high speed

trains and airlines, but this literature tends to look at these two modes of transportation strictly

as substitutes (e.g. Dobruszkes 2011, Behrens and Pels 2012, Clewlow, Sussman, and Balakrishnan

2014). Most papers that discuss the coordination between airline and railway systems do so based

on anecdotal evidence (e.g. Givoni and Banister 2006 and Clewlow, Sussman, and Balakrishnan

2012) or theory models (e.g. Jiang and Zhang 2014 and Xia and Zhang 2016). Empirical studies

on the positive spillovers between airlines and HST are sparse. Albalate et al (2014) is the only

paper that empirically studies this question. Speci�cally, this paper focuses on the HST networks

in European countries and studies the impact of the introduction of HST on service frequency and

number of seats o�ered by airlines. They �nd that airports with an on-site HST station are less

negatively a�ected by the introduction of HST, which is suggestive of positive spillovers from HST

to airlines. However, this paper is mostly descriptive and does not study how airlines reposition

their route services from a network perspective in response to the introduction of HST.

This paper also contributes to the empirical industrial organization literature on �rm entry, by

studying �rms' entry decisions in a setting where markets are interconnected. Earlier literature on

the airline industry has explored the in�uence of airline hubs on �rms' entry decisions (e.g., Berry

1992, Ciliberto and Tamer 2009), but the possible positive spillovers from competitors are less

studied. The coexistence of both negative and positive spillovers from competitors is similar to the

idea of the agglomeration-competition phenomenon in the retail industry, which has been discussed

in Vitorino (2012), Datta and Sudhir (2011) and Yang (2012), for example.8 Vitorino (2012) studies

stores' entry decisions in shopping centers and �nds strong evidence of both positive and negative

spillovers among stores of di�erent formats. Datta and Sudhir (2011) develop a model of entry and

location choice games among stores and use detailed store level data and spatial zoning data to

disentangle the trade-o� between co-location and spatial di�erentiation. Yang (2012) studies the

fast food industry and explores the channel (i.e., variable pro�ts versus �xed costs) through which

the spillovers a�ect �rms' entry decisions.9 This paper contributes to this stream of literature by

extending the entry game to a network setting, where negative and positive spillovers may exist

across markets and industries.

As location matters in an industry with interconnected markets, this paper is also related to the

empirical entry literature on spatial competition.One stream of literature on this topic focuses on the

spatial di�erentiation among stores (e.g., Seim 2006, Zhu and Singh 2009, Datta and Sudhir 2011,

8For papers that have a similar question but that use non-structural methods, see Clapp, Ross, and Zhou (2016)
and Shen and Xiao (2014).

9Some other papers explore the spillovers from a demand perspective, e.g., Sen, Shin, and Sudhir (2011) and
Murry and Zhou (2016).
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Orhun 2013). For example, Seim (2006)'s pioneer work uses an incomplete information framework

to study �rms' location choices in the video rental industry. Her framework is extended by Zhu and

Singh (2009) and Orhun (2013) to allow for �rm heterogeneity and location speci�c unobservables

respectively. Another stream of the literature focuses on the �chain e�ect� of �rms with multiple

stores (e.g., Jia 2008, Holmes 2011, Aguirregabiria and Ho 2012, Nishida 2014). For example, Jia

(2008) studies a location choice game between Walmart and Kmart and allows for positive spillovers

among nearby stores of the same company. Nishida (2014) extends Jia (2008)'s framework to allow

for multiple stores in the same market and applies it to the convenience store industry in Japan.

These two papers use a static oligopoly model with two players. Holmes (2011) studies the dynamic

network decisions of Walmart, but abstracts away from the competition between the �rm and other

chain stores. Aguirregabiria and Ho (2012) study the airline industry in the U.S. and account for

the dynamic decisions of �rms and interconnectedness of markets, which is closer to this paper.

There are two key di�erences though. First, while their focus is to explore the sources of bene�ts

from the hub and spoke business model, this paper emphasizes the spillovers from di�erent modes

of transportation. Second, the structural model in this paper allows for direct strategic interactions

among airlines in the same route, while their model does not.

To the extent that airlines can be regarded as multi-product �rms that di�erentiate themselves

through their route network con�gurations, this paper is also related to the literature on prod-

uct assortment decisions (e.g., Draganska, Mazzeo, and Seim 2009, Sweeting 2010, Sweeting 2013,

Jeziorski 2014a, Jeziorski 2014b and Eizenberg 2014). For example, Draganska, Mazzeo, and Seim

(2009) study the competition between �rms in both product choices and prices and �nd that in-

corporating product assortment decision as a strategic variable is important for policy simulations.

Eizenberg (2014) estimates a model of supply and demand in the PC industry in which both price

and PC types are endogenously determined, and then uses the model to assess the welfare implica-

tions of the introduction of new upstream components. Other papers focus on the �repositioning�

aspect of product assortment decisions and employ structural models to assess �rms' product strate-

gies in response to some change in the market structure. For example, Sweeting (2013) studies the

impact of fees for musical-performance rights on radio station formats and �nds that the impact of

such a policy change is larger in the long run than in the short run. Jeziorski (2014b) develops a

dynamic model to estimate the cost e�ciency of mergers in the U.S. radio industry while accounting

for the repositioning of the products (radio station) and merger choices. In these previous papers,

the major motivation behind the product (re)positioning is either to avoid competition or to reduce

cannibalization. My setting is di�erent in that there could be complementarity among products

of di�erent �rms. This di�erence may play a key role in determining �rms' product assortment

decisions.
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3 Industry Background

3.1 The Airline Industry in China

Figure 2 shows the major airline companies in China as well as their parent �rms. Although there

are more than 30 airline companies in the industry, the majority of them are subsidiaries of the

top four airline companies in China, namely Air China (CA), China Southern Airlines (CZ), China

Eastern Airlines (MU) and Hainan Airlines (HU). All four companies are publicly traded �rms.

Including the subsidiaries, from 2006 to 2016, the top four airlines together have a market share of

about 90% in terms of total number of �ights, and cover more than 94% of the existing air routes

in China.

=========================

Insert Figure 2 about here

=========================

The airline industry is growing at a steady rate. From 2006 to 2016, the total number of �ights

increased by about 87%, and the total number of city-pairs served by the industry10 has increased

by 57%. This corresponds to an annual growth rate of 8.1% in the total number of �ights and 5.7%

in the total number of routes provided.

Until 2006, the airline industry in China was heavily regulated by the Civil Aviation Admin-

istration of China (CAAC). An airline's �ight decisions (i.e. adding or dropping �ights) need to

be examined and approved by the administration before taking e�ect. The process takes about 60

days and has many restrictions on airlines' performance such as seat occupancy rate, on-time rate

and customer satisfaction.

In 2006, the central government issued a new policy, with the intent of reducing the regulatory

oversight in the airline industry. Since then, airline routes can be classi�ed into two types: regulated

and nonregulated. For the nonregulated routes, airlines are not required to request a permit to op-

erate on (only registration is needed). Regulated routes involve the airports of Shanghai, Beijing

and Guangzhou as one of the end points. These airports are very crowded airports, and the govern-

ment keeps these routes regulated mainly for tra�c-control purposes. As a result, airlines still need

to apply for permits to add �ights on these routes.11 Procedure is greatly simpli�ed though. For

example, the government's response time for the application has reduced from 60 days to 30 days,

and there is no longer a constraint on seat occupancy rate for increasing �ights. There are some

important exceptions regarding the regulations with these main airports. If an airline is headquar-

tered in one of the three cities mentioned above, then for the airline, the routes that connects its

headquarter city and other cities (except for Beijing, Shanghai and Guangzhou) are exempt from

the regulation.

10Henceforth, I will use routes, markets and city-pairs interchangeably.
11The decision to drop a �ight does not require any permits.
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3.2 The Railway Industry in China

The railway industry in China is operated by a monopoly government-owned enterprise called

China Railway. Unlike the �rms in the airline industry, this company peruses social-welfare related

objectives and is not a pro�t maximizing �rm.12 In 2004, the government issued a long-term network

plan for railways, aiming at building a widespread network of HST in China. The government has

detailed plans regarding the railway network that should be completed by 2020. Speci�cally for the

HST, there are two major plans: one is to build about 12,000 km (about 7500 miles) of HST rails.

Another plan is to upgrade about 16,000 km (about 10,000 miles) of existing rails so that they can

accommodate trains of higher speed.

There are two types of HST. The �fast train� achieves a maximum speed of 250 km/h (about 155

mph). The �bullet train� can achieve a speed of 350 km/h (about 215 mph). Although the networks

for these two types of HST overlap, the trains operate on di�erent rails. In terms of pricing, for the

same route, a bullet train ticket is about 60% more expensive than a fast train ticket.13

The �rst bullet train route was established in 2008, connecting Beijing and Tianjin. Ever since,

the network has expanded rapidly. By 2016, about 20,000 km (about 12,400 miles) of high speed

train rails has been built or upgraded, more than the rest of the world combined.

Unlike the airline industry, where companies can modify their routes relatively frequently, the

expansion of route network of HST is for the most part predetermined.14 Because of the social

welfare objectives of the railway industry, the operation of di�erent routes is not exclusively based

on pro�t maximization motives. For example, until 2016, the high speed rail between Shanghai and

Beijing was the only high speed train line that was able to break even.15

3.3 Competition between Airlines and High Speed Trains

The introduction of high speed trains has brought some disruption to the airline industry. Many

news articles report that airlines reduce the number of �ights or even exit the market to avoid

competition with HST.16 Also, there has been an increasing overlap in the route network between

HST and airlines. As Figure 3 shows, from 2007 to 2015, despite the growth in the number of routes

served by the airline industry, the proportion of routes which face direct competition from HST has

increased. By the end of 2015, more than 50% of the airline routes are also served by fast trains,

and more than 25% are also served by bullet trains.

12To see a complete description of the company's goals, please refer to http://www.china-
railway.com.cn/en/aboutus.

13This number is calculated based on the price data (for a seat in the economy class) collected on November 15th
2016 for routes where both fast train and bullet train operate.

14However, there is some uncertainty associated with when each speci�c HST route will be �nished and regarding
whether a speci�c route will be served by HST.

15Source: http://view.163.com/special/resound/chinahsr20160721.html (in Chinese).
16For example, see http://news.xinhuanet.com/fortune/2011-04/12/c_121293247.htm (in Chinese).
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=========================

Insert Figure 3 about here

=========================

According to Civil Aviation Big Data, a Chinese based consulting company, consumers' prefer-

ences for a mode of transportation is a function of travel time. Figure 4 shows the relation between

door-to-door travel time and travel distance for each mode of transportation. As we can see from

the �gure, for short routes (<600 km), the door-to-door time of HST is in fact shorter than that

of airplanes. This is because, although airplanes are faster than HST, airports are usually located

far away from the downtown area of the city. What's more, high-speed trains require less security

check and are more punctual. All above add to the attractiveness of HST. Together with the fact

that the ticket prices of HST are in general lower than those of �ights, we can infer that HST has

more strategic advantage in shorter routes.

=========================

Insert Figure 4 about here

=========================

3.4 Anecdotal Evidence of Demand for Intermodal Transportation

While much attention has been devoted to discussing the competition between HST and airlines,

there is some anecdotal evidence of positive spillovers between these two modes of transportation.

Such spillovers are explored not only by airlines by also by other �rms. For example, since the in-

troduction of the HST, both airports in Shijiazhuang and Tianjin began to provide various services

to facilitate the transportation between airports and railway stations, such as free shuttle bus and

lounge rooms for commuting passengers. In 2016, the Shijiazhuang airport reported 40,000 passen-

gers utilized intermodal transportation,17 which accounted for about 5.5% of the total passenger

volume of the airport in that year.18,19

Travel agencies also bene�t from the introduction of HST because they can now use the network

of both modes of transportation to o�er travel packages with more variety. For example, in 2013, �ve

cities in the north eastern part of China, (Dalian, Shenyang, Changchun, Haerbin and Changchun)

jointly introduced a travel package which combines the tourism resources of the �ve cities. Their

slogan reads ��y to Dalian, and take a HST to tour around the North Eastern China�. The HST

makes the travel between the �ve cities more convenient and increases the attractiveness of the

combined package, which in turn brings more passenger tra�c to the �ights. In 2015, Ctrip, one

of the largest online travel platforms in China (the equivalent of Priceline in the U.S.), launched a

17Source: http://news.ifeng.com/a/20161227/50482206_0.shtml (in Chinese).
18Source: http://www.caac.gov.cn/XXGK/XXGK/TJSJ/201702/t20170224_42760.html (in Chinese).
19The surge in the volume of passengers with intermodal transportation at Shijiazhuang Airport is largely due to

the collaboration between the airport and Spring Airlines, a local privately owned airline company.
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service called �air-rail combo�, which allows consumers to mix and match �ights and HST to make

more convenient travel arrangements.

There are also examples that illustrate how the airline and train industry also attempt to ex-

plicitly bene�t from intermodality. For example, in April 2012, China Eastern Airlines signed a

contract with the Shanghai Railway Bureau and started o�ering tickets that cover routes for both

�ights and trains often at a lower bundled price. This practice was soon followed by Hainan Airlines

(July 2012) and Air China (Dec 2012) that started o�ering a similar service in Shanghai and Haikou,

respectively.

Despite their attempts, the impact of such collaboration seems quite limited. For example,

in 2015, the China Eastern Airlines sold about 12,000 tickets for the intermodal services.20 This

accounts for only about 0.6% of total passenger tra�c of the China Estern Airlines in the HongQiao

airport.21 The lack of success of this program may be due to multiple factors such as inadequate

advertising, di�culty in purchasing the intermodal tickets and poor customer services. The fact that

in the Frankford Airport in Germany, 17.5% of passengers utilize both airplane and long distance

trains22 is also suggestive of the importance of intermodal transportation.

4 Data

4.1 Data Sources

I create an original dataset of �ight schedule and the relevant market characteristics (presence of

HST, city population, route length) from multiple sources. The dataset spans a 11-year period from

January 1st 2006 to Dec 31st 2016. The �ight schedule information was collected from a website

that provides historical �ight data. A record in the dataset includes the date, airline, �ight number,

departure and destination cities. The information about the HST network comes from government

websites and news reports, from which I collect the exact dates when cities were connected with

HST.23 I further refer to the China City Statistical Yearbook to collect population and GDP data for

cities in China.24 Finally, data for city coordinates come from Google Maps and is used to calculate

the air distance between cities.

4.2 Data Cleaning and Sample Selection

Selection of Airlines: I look at the airlines on a parent-company level so that an airline and its

subsidiary airlines are regarded as one company. I focus on the competition between the top four

airlines only, as together they account for about 90% of market share in number of �ights.

20Source: http://�nance.sina.com.cn/hy/20160219/150024312707.shtml (in Chinese).
21Source: https://www.cybersource.com/content/dam/cybersource/zh-APAC/documents/China_Eastern_Air

lines_Case_Study_SC.pdf (in Chinese).
22Source: https://static.fraport.de/ONLINE/zdf/zadafa_e_2015/.
23I supplement the HST dataset with data scraped from www.12306.com, the o�cial website for purchasing train

tickets in China. I use the data to double check whether a route is served by HST.
24Unlike the �rst two data sources, the GDP and population data is at a yearly level. I therefore treat the GDP

and population as constant within a year.
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Selection of Markets: I de�ne a route to be a non-directional city pair. I focus on the routes

that connect the top 68 cities in China in terms of airport passenger volume.25 In case that two

airports belong to the same city, I aggregate the airports together. The major reason of doing so is

to avoid the complication arisen from the competition between two airports from the same city.

Selection of Flights: I de�ne a �ght on a round-trip level such that if an airline company

provides a �ight from city A to city B, the same �ight is provided from city B to city A.26 I focus on

�ights that are provided regularly, so that seasonal �ights only provided for occasions such as Chinese

Festival, Christmas are not included. I also exclude infrequent �ights, as these �ights are mostly

between non-popular cities and �rms might provide such �ights simply for the local government

subsidies.27 Speci�cally, I use two criteria to select �ights: 1. The �ight must be provided for more

than one year and 2. The frequency of the �ight must be at least once every two days.

A potential issue of the �rst criteria is that some �ights might last for more than one year, but

still be excluded because of the limitation in the time span of the data. For example, if a �ight

(operated on daily basis) starts from April 2005 and ends on May 2006, then it has lasted for 13

months and should be included in my data. However, since I only have data starting from 2006,

I don't have enough information to decide whether to include this �ight. Similarly for �ights that

were introduced less than one year before the end date of my dataset. This creates some data

selection problems because some important �ights might be dropped. To deal with this issue, I

exclude the �rst and last year of the observations in my dataset, so that each �ight in the remaining

dataset satis�es the two criteria for sure.

4.3 Summary Statistics

For clearer illustration, I aggregate data from the daily level to the yearly level. After the aggre-

gation, I have 82008 observations of �ight decisions across four airlines, 2278 routes and nine years

(4*2278*9=82008). Table 1 provides the summary statistics of the data. On average, there are

0.5 airlines that provide one �ight in each route. However, the medians of these two variables are

both zero, indicating that the airlines and �ights are not evenly spread across routes, but tend to

concentrate on a smaller set of city-pairs.

For each airline, I distinguish between two types of decisions: one is the adjustment without

entering or leaving the route, and the other is the decisions which involve entering a new route or

exiting an existing route. There are adjustments on both levels. On average, about 0.05 (0.03)

airlines enter (exit) a route within a year, and 0.06 (0.08) �ights are added (dropped) to a route in

a year. For HST, on average, fast trains are present in 11% of the routes while the corresponding

number for bullet trains is 3% in a year. These numbers are quite comparable to the average

presence of airlines and demonstrate that there is a fair share of airline routes that have HST

25This rank is based on the airport passenger volume in year 2015. Altogether, the cities have 70 airports, which
account for more than 95% of passenger volume in the airline industry in 2015.

26This is usually re�ected in the closeness in the �ight number for the two trips. For example, the �ight number
from city A to city B is 1231, then the return �ight number is 1232.

27Source: http://news.sohu.com/20151201/n429001116.shtml (in Chinese).
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services (especially given the fact that there were no HST until 2007).

=========================

Insert Table 1 about here

=========================

For the city-pairs and years studied, population grew at an average rate of 1% per year and

GDP has grown at a more accelerated rate of 16% per year. The average length of routes is about

1500 km.

Figure 2 summarizes how the HST presence changes over time. Special attention needs to be

paid to year 2013 through 2015, when there was a large increase in the stock of the HST network.

Speci�cally, in 2013, the average presence of bullet train increased from 2% to 7% of the markets.

There is also a spike in the presence of fast train in 2014, in which the average presence went from

11% to 19% of the markets. Starting from the same year, despite the increase in the average number

of airlines/�ights in each route, the average number of exits as well as decrease in number of �ights

has gone up since 2013. This is suggestive that airlines adjust their capacity in response to the

introduction of HST.

=========================

Insert Table 2 about here

=========================

5 Descriptive Evidence

In this section I provide some descriptive evidence regarding the entry patterns of airlines and HST,

and explore how the HST network structure in�uences airlines' entry decisions.

5.1 Factors In�uencing Flight Decisions

I �rst explore the factors that could potentially a�ect airlines' �ight decisions. I am especially

interested in the following variables: the average number of �ights provided by an airline, entry

probability, exit probability, probability of increasing �ights, and probability of reducing �ights.

The measure of the �rst variable is straightforward. To calculate the entry probability for a group

of routes, I �rst count the total number of entries, de�ned by the case where an airline provides

�ight services in a route in the current but not previous year. I then divide this number by the total

number of observations where entry is possible. Exit probability, probability of increasing �ights,

and probability of decreasing �ights are similarly de�ned. One thing to note is that entry and �ight

increase are de�ned as mutually exclusive decisions in the sense that if the number of �ights of a

given airline in a route changes from 0 to a positive number, it is regarded as an entry, but not a

�ight increase. On the other hand, �ight increase is only conditional on an airline having �ights

12



in the previous period. There is a similar distinction between exit and decrease in the number of

�ights.

Market Characteristics

Table 3 reports the break down of airlines' �ight decisions by average gross domestic production

(GDP) of city-pairs across years. Speci�cally, all observations are divided into �ve quantiles by the

city-pair's average GDP. Perhaps not surprisingly, the higher the city pair average GDP, the more

�ights are provided and the higher the likelihood of entry and increase in number of �ights. However,

airlines' exit and �ight decrease decisions also follow a similar pattern, with higher probability being

associated with routes with larger average GDP in a year. This is probably due to some other factors

such as competition, as the more attractive is the route, the more airlines will choose to enter.

Similar patterns can be found for the number of �ights as we break down routes by population

and income per capita, as shown in tables 4 and 5.

=========================

Insert Table 3, 4 and 5 about here

=========================

Table 6 explores the relation between route length and the number of �ights. Routes of small

and median length are associated with a higher number of �ights and a higher probability of entry

and increase in the number of �ights. There is also a higher probability of exit and number of �ights

reduction for shorter routes. Note however that, while the largest number of �ights and probability

of entry/�ight increase is found at the second quantile, the highest probabilities of exit and decrease

in number of �ights are for routes with the shortest length. This could be because airlines face more

competition from HST in shorter routes.

=========================

Insert Table 6 about here

=========================

Airlines' Network Structure

A typical feature of the airline industry is that markets/routes are interdependent. The decision

of an airline to enter or exit a given route is a�ected by its operations in other routes, especially

those ones that are connected to that route. I explore how the presence of an airline in both ends

of a city-pair a�ects the probability that the airline enters that route. I run a probit regression

in which I regress an airline's decision to enter a given route in year t on the categorical variable

�airport presence�, which captures the number of end points of the route which the airline operates

in year t− 1, while controlling for year and airline �xed e�ects.

Table 7 presents the marginal e�ects of airport presence on airlines' entry probabilities. Con-

sistent with the results from Goolsbee and Syverson (2008), having operated in the end points of

a route in the previous year is associated with a higher probability of entering that route, and the
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marginal e�ect of operating in both airports on the entry decision is almost ten times larger than

that of operating in only one of the airports.

=========================

Insert Table 7 about here

=========================

5.2 Entry Patterns of HST

I next explore the patterns associated with the introduction of the HST. Table 8 shows the average

presence of fast trains and bullet trains at groups of routes with di�erent average GDP. A clear

pattern is that the presence of both types of HST increases with the level of a route's GDP. Tables

9 and 10 report the presence of HST for di�erent route groups broken down by population and

income per capita, respectively. The pattern observed in these tables is similar to that on Table

8 for GDP. This implies that the introduction of HST is not random, as larger markets are more

likely to be served by HST. This also shows the importance of taking these market variables into

consideration when studying �rms' entry decisions in this setting, because both airlines and HST

tend to enter markets with higher GDP and population.

=========================

Insert Table 8, 9 and 10 about here

=========================

Table 11 reports the routes by distance. The HST tends to serve more short-distance routes

than long-distance ones. This contrasts with the airlines, which tend to provide more �ight services

on median-length routes and is consistent with the di�erences in the competitive advantage between

the two modes of transportation.

=========================

Insert Table 11 about here

=========================

5.3 How Do Airlines Respond to the Introduction of HST?

Here I analyze how airlines respond to the introduction of HST. I �rst focus on airline routes that

overlap with the HST routes and then look at airline routes that do not overlap with but connect

the HST routes.

Airline Routes that Overlap with HST

Motivated by the previous discussion regarding the di�erences in the competitive advantage of

airlines and HST, I divide all routes into three categories depending on their length. Speci�cally, a
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route is de�ned as short if its length is below 600 km, median if its length is between 600 km and 1200

km, and long if the length is above 1200 km.28 For each length category, I further divide routes

into two groups: one is the treatment group-the routes that face or will face direct competition

from HST,29 and the other is the control group, which consists the routes that have not yet faced

competition from HST during the period of the data. By comparing the number of �ights across

categories, I examine how the presence of HST a�ect airlines �ight choices and how such e�ects

di�er by the length of the route.

The results are shown in Figure 5 through 7. For each �gure, the dashed line represents the

average number of �ights provided by each airline in the treatment group, while the dotted line

represents the corresponding metric for the control group routes. For each group, I look at the

changes in the number of �ights relative to their initial values to facilitate comparison between

groups. Also, because the treatment (i.e., the presence of HST) occurs at di�erent periods, I

use a bar graph to represent the proportion of routes that face competition from HST in the

treatment group.30 These �gures are suggestive of HST presence having an heterogeneous e�ect

on �ights depending on the length of the route: airlines seem to reduce their �ights when faced

with competition from HST in short routes, but less so for median and long routes. These graphs

demonstrate the importance of controlling for the moderating e�ect of route length when studying

the impact of HST.

=========================

Insert Figures 5, 6, 7 about here

=========================

Airline Routes that Connect but Don't Overlap with HST

The introduction of HST may also potentially bring opportunities to the airline industry, as

airlines can utilize the non-overlapping network from the HST to feed tra�c to its own routes. If

such positive spillover e�ects exist, then we should expect airlines to o�er more �ights on non-

overlapping routes with a higher level of HST connectivity (de�ned as the number of HST lines

that are connected to the two end-cities of the route) than in routes with a lower level of HST

connectivity.

There is a selection problem, though, as cities with higher HST connectivity also tend to have

larger population and larger number of �ights. Directly comparing the average number of �ights for

routes with di�erent levels of HST connectivity would then not be correct. To alleviate such con-

cerns, I attempt to control for other factors that could a�ect airlines' �ight decisions. As discussed

above, airlines' route decisions are likely to be a�ected by factors such as population, the number of

own connecting routes and route length. I therefore compare the number of �ights provided by an

28The choices of the cuto� values are motivated by an industry report such that HST has more advan-
tage for routes shorter than 600 km and Airlines has more advantage for routes longer than 1200 km. Source:
http://www.pinchain.com/article/95181 (in Chinese).

29Here I don't distinguish between fast trains and bullet trains.
30The range is therefore from 0 to 1.

15



airline between two routes that are similar in all aspects (population, the number of own connecting

routes and route length) and only di�er regarding the level of HST connectivity to see whether the

higher the level of HST connectivity in a given route the larger the number of �ights o�ered.

To do so, I focus the city of Kunming. I choose this city because this is the only city which is a

major hub of an airline but not connected to HST during the period of the study. Being a hub city

ensures that there are enough �ight connections to other cities, which secures enough variation in

levels of HST connectivity (all variation comes from other cities) and not connected to HST helps

avoid the cases where the route faces direct competition from HST, which would further complicate

the analysis. The analysis here is at the airline-route-year level, as the same route may have di�erent

numbers of connecting HST lines over the two years. I �rst divide all routes that connect the city of

Kunming into two groups. Speci�cally, I assign a route into the treatment group if it is connected

to at least to three HST lines. The control group therefore consists of routes with less than three

connections. I develop a matching algorithm which compares routes in the two groups along several

dimensions. Two routes from di�erent groups are matched as long as i) They are provided by the

same airline, ii) They exist in the same year, iii) They belong to the same length group (i.e., short,

median or long), iv) The routes are either both regulated or nonregulated and v) The population

and number of own connecting airline routes di�er by less than 10%. Table 12 shows the results.

I have tried the matching algorithm both with and without replacement, and the results are very

similar. On average, the routes in the treatment group have about 0.2 more �ights than the control

group. A T-test shows that the di�erence is signi�cant at 5% level.

=========================

Insert Table 12 about here

=========================

To further explore the spillovers from HST on airlines, I conduct a regression analysis and

control for other factors that could possibly a�ect airlines' �ight decisions. Here I focus on airlines'

decisions regarding whether to operate �ights in a route and how many �ights to provide in a route

at a yearly level. The unit of analysis is therefore a combination of airline, route and year. There

are two dependent variables I explore: one is the number of �ights o�ered and the other is whether

the airline operates at all in a given route. A linear regression and a logistic regression are used for

the two dependent variables respectively.

Columns 1 through 4 of Table 13 present the results for the linear regressions, in which the

dependent variable is the number of direct �ights an airline provides in a route in a given year. For

all speci�cations, I distinguish between fast trains and bullet trains. In Speci�cation 1, I regress

the dependent variable on the characteristics of HST, including the presence of HST, number of

HST lines connected as well as the interactions between these variables. I �nd that the coe�cient

for the presence of bullet train is negative and signi�cant, while that for the fast train presence is

signi�cantly positive. This suggests that there might be some endogeneity issues, as both airlines
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and HST tend to enter markets with high demand. Speci�cation 2 therefore controls for the market

characteristics such as the average city-pair population, length of the route as well as whether the

route is regulated by the government. Motivated by the descriptive evidence from before, I interact

the presence of HST with the length of route to allow the spillovers to depend on the route length.

The coe�cients for both the presence of fast train and bullet train are negative and signi�cant,

which is consistent with what we observed before that airlines tend to decrease the number of

�ights o�ered for short routes that overlap with HST. As in Speci�cation 1, the coe�cient for the

number of connections to HST are both positive and signi�cant for both bullet trains and fast trains.

This suggests that there are positive spillovers in airline routes that connect to HST routes.

=========================

Insert Table 13 about here

=========================

In Speci�cation 3, I include the characteristics of airlines as additional controls. The estimation

results show that an airline tends to have more �ights in routes that are connected to its base city

(where it headquartered). Also, having more connecting routes is associated with a larger number

of �ights in the focal routes, while having an indirect �ight connection for the same route reduces

the number of direct �ights. However, the number of �ights provided by competitors in the same

route increases the number of �ights provided by the focal airline, which does not sound reasonable.

This indicates that there might be some unobserved market characteristics that Speci�cation 3 does

not control for.

To alleviate this concern, in speci�cation 4, I further include city-pair dummies in the regression.

The results now look more reasonable, namely the coe�cient on the number of competitors' �ights

is now negative. Also, the coe�cient on the interaction between the presence of bullet train and

number of connections to bullet train rail now becomes negative, which indicates that the positive

spillovers from connecting HST lines go away when there is an overlap between the airline and HST

in the focal route. The coe�cient for the corresponding interaction for fast trains is not signi�cantly

di�erent from zero.

The estimation results are qualitatively similar for the logistic regression reported in Columns

5 and 6, where the dependent variable is a dummy which equals to one if �ights are provided by an

airline in a route in a given year and zero otherwise. This shows that there is enough variation in

an airline's entry/exit decisions to identify the major spillovers from HST to the airline industry.

One potential concern regarding the previous regression results is that, although the city-pair

dummies control for all unobserved characteristics of the routes that do not change over time,

there may exist some additional shocks over time which drive the airlines' route decisions. If the

introduction of HST correlates with such shocks, this may lead to spurious correlation between the

number of airline �ights and the presence HST.

To address this concern, I follow Goolsbee and Syverson (2008)'s insight and exploit the pres-

ence/absence of treatment (i.e. overlap with HST) between the focal route and other routes involve
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the same airports for one of the cities in the city-pair but which do not overlap with the HST routes.

I illustrate the principles behind the selection of the control routes in Figure 8.

=========================

Insert Figure 8 about here

=========================

Suppose the focal route is city pair AB, which overlaps with HST. I use routes AC and BD as

control routes. To be included in the di�erence-in-di�erences regression, the routes must satisfy the

following criteria:

1. The �rm must have provided �ight services in all three routes at some point in the data.

2. Each control route must share one of the end cities with the focal route.

3. The distance between city B and C must be less than 600 km (375 miles). Same for the

distance between A and D.

4. Both routes AC and BD do not overlap with HST.

Criterion 1 makes sure that providing �ight services is feasible for the airline in all three routes.

Criterion 2 establishes that airport-speci�c operating cost shocks are embodied in either of the

control routes. Criterion 3 makes sure that the control routes are reasonably close to the focal route

so that they can also absorb potential demand shocks. Criterion 4 helps to determine whether there

is no treatment in the control routes.

The identi�cation assumption underlying this analysis is that both demand side and supply side

shocks in the focal route should be captured by either one of the control routes. Thus, by comparing

the number of �ights o�ered in the control routes with those o�ered in the focal route over time

(while controlling for other observable di�erences), we can identify the impact of the presence of

HST.

In practice, I proceed by assigning a group ID that is the same for the focal route and its two

corresponding control routes. I regress the dependent variable (number of �ights) on the treatment

(the presence of HST), market characteristics, airline characteristics, and city-pair dummies, airline

dummies and group dummies interacted with year dummies. Therefore, while the city-pair dummies

control for the time invariant di�erences across routes, the group-year dummies allow each group to

have its own �exible trend in terms of the number of �ights thus capturing any unobserved shocks

to the focal route. I combine fast train and bullet train and de�ne treatment as a dummy variable

that is equal to 1 if either fast train or bullet train is present in the route. Thus, what is measured

here is the average treatment e�ect of the presence of fast trains and bullet trains on the number

of airline �ights o�ered.

Table 14 reports the regression results. The dependent variable is the number �ights an airline

provides in a route for each year. I present the results from four di�erent speci�cations in the table.
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The �rst speci�cation uses all observations, while the rest of the three breaks them down into three

groups depending on the length of the route. Speci�cation 2 is for short routes, while Speci�cations

3 and 4 are for median length routes and long routes, respectively.

=========================

Insert Table 14 about here

=========================

The results show that, the presence of HST (either fast train or bullet train) has a negative impact

on the number of �ights, but only for short routes.31 For median length and long routes, there is a

positive e�ect for the HST overlap, which suggests there may be market expansion e�ects associated

with the introduction of HST.

6 Structural Model

So far I have demonstrated the existence of spillovers from HST to the airline industry using reduced

form evidence. Such evidence is however not su�cient to explore the pro�t implications for the

industry and to carry out policy experiments. In this section, I present a structural model that

studies dynamically the entry decisions of airlines. I model airlines' decisions to enter a route or

not. Since the purpose of this paper is to evaluate the implications of spillovers from HST on

airlines' con�guration of networks, the intensity of entry (i.e. the number of �ights provided in a

route) is less relevant. It also comes at a cost of considerably increasing the dimension of the state

space, adding burden to the computation. Moreover, conditional on entry, about 60% of the routes

only have one �ight per airline, therefore the quantity change should be re�ected in the airlines'

entry/exit decisions. Also, as is shown in the previous regression analysis, there is enough variation

of entries and exits in the data to help identify parameters of key interest. Further, I model the �ow

payo� of an airline in a reduced form in the same manner as Arcidiacono et al. (2016) and Igami

and Yang (2016).

6.1 Setup

There are N airlines in the industry that provide �ight services between di�erent cities. Denote the

total number of cities in the industry by C. A route r ∈ {1, ..., R} is de�ned as a non-directional

city pair, with R denoting the total number of possible routes between the cities. Let xirt ∈ {0, 1}
be an indicator variable where xirt = 1 if airline i provides direct �ights in route r at time t and

xirt = 0 otherwise.32 The network of an airline i at t is therefore de�ned by the collection of xirt
31The coe�cient for the population for short routes is signi�cantly negative. This could be because, conditional on

other characteristics, there is more variation in the number of �ights for routes with larger population. For example,
airlines may provide more �ights in routes with more population, and when HST appears, the reduction in the �ights
is also larger for more populated routes. This e�ect is to some extent captured by the coe�cient on population.

32As routes are non-directional, I assume that if an airline provides �ights from one city to the other, it also
provides �ights in the opposite direction.
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for all routes, i.e. xit ≡ {xirt : r = 1, ..., R}. Further denote xt = {xit : i = 1, ..., N} as the network
for the whole industry at time t.

Time is continuous, indexed by t ∈ [0,∞). I assume that the �ow payo� airline i gets from route

r at time t is a function of both the network of the industry and some exogenous characteristics of

the route, zrt. Denote that payo� by firt(xt, zrt).

A stochastic process governs when and which airline can move. When it is airline i's turn to

move, it decides whether to make changes to its existing network, xit. Speci�cally, for each route,

airline i can choose to do nothing, to provide direct �ights if the route is not being served (that is,

to enter), or to stop providing direct �ights (i.e. exit). Denote j ∈A = {0, ..., J − 1} as the action
airline i takes in route r. Each action is associated with an additive separable instantaneous payo�,

φirt(j).

Airlines are forward looking and discount future payo�s at rate ρ ∈ (0,∞). When an airline

i gets a chance to move, the airline examines xt and zt ≡ {zrt : r = 1, ..., R}, which together

composes the industry state, and choses actions for all routes to maximize its overall discounted

expected payo� given by

E

[
R∑
r=1

(∫ ∞
0

e−ρtfirt(xt, zrt) +
∞∑

nr=1

e−ρTnrφirt(j)

)]
, (1)

where Tnr is the random time of the nth state change due to action of airline i at a given route r.

6.2 Assumptions

One complication of the model arises from the dimension of the state space and action space. Given

the number of routes and airlines in the data, the total number of states for xt alone is about 2NR ≈
102743, making it extremely challenging to tackle the model empirically. Estimating and computing

dynamic games with very large state spaces has not been solved in general. To accommodate this

issue, I follow Aguirregabiria and Ho (2012) and make the following two assumptions:

Assumption 1: Decentralized Decisions Each airline decides its network in a decentralized

manner. That is, an airline makes decisions for one route at a time, taking the situation in other

routes as given.

Assumption 1 says that, instead of making decisions for all routes simultaneously, an airline only

considers one route at a time. This helps to reduce the action space from 2R to 2, which greatly

eases the computational burden.33,34

Assumption 2: Su�cient Statistics Let xrt ≡ {xirt : i = 1, ..., N} denote the states for all
airlines in route r. Let wrct ≡ {wirct : i = 1, ..., N} denote the vector that summarizes the state

33Note that, as will be discussed later, this assumption does not imply that airlines don't make decisions considering
their entire network.

34A similar assumption has been made in studies of spatial competition (e.g., Schiraldi, Smith, and Takahashi
2012), product category management (e.g., Cachon and Kök 2007, Gajanan, Basuroy, and Beldona 2007, Basuroy,
Mantrala, and Walters 2001), and international trade (e.g., Gopinath and Neiman 2014, Halpern, Koren, and Szeidl
2015, Blaum, Lelarge, and Peters 2016, Monarch 2016).
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variables for each airline in all routes other than r. Each airline's entry decision for each route relies

only on (xrt, wrct, zrt).

Assumption 2 implies that, things that happen in other routes a�ect �ight choices through

wrct.35,36 This helps to reduces the state space as an airline no longer needs to track the states for

all other routes when making decisions for a route.

6.3 Decisions and Payo�s

For each airline at each route, there is an independent Poisson arrival process that governs when

each player can move. In the context of airline competition, a random move arrival process might

re�ect the stochastic timing of �rms' sta� recruiting, �ight capacity arrangement, negotiation with

airports for gate occupancy, delays in permitting processes, and so on. I assume a common rate

parameter, λ, for these processes. In each route, there is also a Poisson process that a�ects the

exogenous state zrt, which I refer to as the move of nature.

Although I assume that airlines make route decisions in a decentralized manner, I acknowl-

edge the fact that an airline may not just care about the �ow payo�s from the focal route. In-

stead, the airline may also consider the impact of its decision for one route on the pro�ts of

the other routes. Consistent with this, I assume that such motivations are incorporated in the

�ow pro�ts uirt(xrt, wrct, zrt), with |uirt < ∞|. Note that, as in Aguirregabiria and Ho (2012),

uirt(xrt, wrct, zrt) 6= firt(xt, zt).

Conditional on a move, airline i chooses an action j ∈A for route r that maximizes its expected

net present value for that route, given by

E

[(∫ ∞
0

e−ρtuirt(xrt, wrct, zrt) +
∞∑

nr=1

e−ρTnrφirt(j)

)]
. (2)

6.4 Value Function and Equilibrium

For notational simplicity, I summarize (xrt, wrct, zrt) for any route r at any time t into an element

k of some �nite state space χ = {1, ...,K}. I assume that the nature's move at each route can be

represented with a �nite state Markov jump process on χ with a K ×K intensity matrix Q0r. The

elements of Q0r, denoted by qkl, are the rates at which a particular state transitions occur and are

nonnegative and bounded.

35Several other papers use a similar idea to tackle the space dimensionality problem (e.g., Gowrisankaran and
Rysman 2012, Weintraub, Benkard, and Van Roy 2006).

36This is one of the key distinctions my model have with Aguirregabiria and Ho (2012). While in their model each
local manager is faced with a single dynamic decision problem and the strategic interaction between them are only
realized indirectly through time, my model speci�cally accounts for the strategic interaction between airlines in the
same route. I believe such extension is natural and more reasonable because it is likely that when an airline makes
decision on �ight numbers in a given route, it pays more attention to the actions of other players in the same route,
where the pro�ts are more directly a�ected.
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The instantaneous payo� φirk(j) consists of two components and is given by ψijk + εij . ψijk
is the mean payo� (or cost) associated with action j in state k for airline i, with |ψijk| < ∞, and

εij is a payo� shock, which is assumed to follow the type I extreme value distribution and is i.i.d.

distributed across airlines, routes, actions and time.37

Let σijkr denote the probability that airline i optimally chooses action j in state k for route r.

This action may result in a deterministic state change. Let l(i, j, k) denote the continuation state

that arises after the focal airline makes decision j in state k. Following convention, I de�ne j = 0

to be a costless continuation choice with ψi0k = 0 and l(i, 0, k) = k ∀k.
Apart from nature's and the airline's decisions, the state k may also change as a result of the

evolution of wirck which, as mentioned above, summarizes the states of airline i for all routes other

than r. I assume that, at the moment of decision for route r, airline i does not have perfect foresight

of what decisions it will make for other routes in the future. The evolution of this aggregate state

variable thus can be regarded as stochastic. The change of state k due to wirck can be interpreted

as the result of the action of an �aggregate player�, which I denote as ic ∈ {N + 1, ..., 2N}.38 As

wirck is a function of airline i's decisions on the other routes, this cumulative process still follows

a Poisson arrival process.39 Denote the rate of that process as λc. We can similarly de�ne σicjkr
as the probability ic �chooses� action j in state k in route r, and let l(ic, j, k) be the corresponding

continuation state.

De�ne ζir as airline i's beliefs regarding the actions of all other decision makers in route r

(including nature and the �aggregate player�), given by a collection of (2N−1)×J×K probabilities

ζirmjk for each m 6= i, state k and choice j. Finally, let Virk(ζir) denote the expected present value for

airline i being in state k at route r and behaving optimally at all points in the future given beliefs

ζir. For small increments h, under the Poisson assumption, the probability of an event with rate λ

occurring is λh. Given the discount rate ρ, the discount factor for such increments is 1/(1 + ρh).

Thus, for small time increments h the present discounted value of being in state k for airline i at

route r (suppressing dependence on ζir for brevity) is given by

Virk =
1

1 + ρh

[
uirk +

∑
l 6=k

qklVirl +
N∑

m=1,m6=i
λh

J−1∑
j=0

ζirmjkVir,l(m,j,k) +

2N∑
ic=N+1

λch
J−1∑
j=0

ζiricjkVir,l(ic,j,k)

λhEmaxj
[
ψijk + εijrk + Vir,l(i,j,k)

]
+

(
1−N(λ+ λc)h−

∑
l 6=k

qkl

)
Virk

]
.

Rearranging and letting h→ 0, Virk can be de�ned recursively as

Virk =
uirk+

∑
l 6=k qklVirl+

∑N
m=1,m 6=i λh

∑J−1
j=0 ζ

ir
mjkVir,l(m,j,k)+

∑2N
ic=N+1 λch

∑J−1
j=0 ζ

ir
icjkVir,l(ic,j,k)+Emaxj[ψijk+εijrk+Vir,l(i,j,k)]

ρ+
∑

l 6=k qkl+N(λ+λc)
. (3)

37I suppress the dependency of ε on r and t for simplicity.
38I use N + 1 through 2N to distinguish the identities of aggregate players and those of airlines in a given route.
39I have done some Monte Carlo experiments to show that this holds, but may need some formal proof.

22



I focus on Markov perfect equilibria in pure strategies, as is standard in empirical literature of

dynamic games. A markov strategy for i in route r is a mapping which assigns an action from A to

each state (k, εirk) ∈ χ×RJ . Given beliefs {ζir : i = 1, ...N ; r = 1, ..., R}, and a collection of model

primitives, a Markov strategy for �rm i in route r is a best response if

δir(k, εirk; ζ
ir) = j ⇐⇒ ψijk + εijrk + Vir,l(i,j,k) ≥ ψij′k + εij′rk + Vir,l(i,j′,k) ∀j′ ∈A. (4)

Given the distribution of choice-speci�c shocks, each Markov strategy δir implies the following

response probabilities for each choice in each state

σijrk = Pr[δir(k, εirk; ζ
ir) = j|k]. (5)

A Markov perfect equilibrium is thus de�ned as a collection of stationary policy rules {δir :

i = 1, ..., N ; r = 1, ..., R} such that (4) holds for all i, r, k and εirk given beliefs ζir = (σir : i =

1, ..., N ; r = 1, ..., R) generated by (5).40

7 Empirical Speci�cation

7.1 State Variables and Action Variables

I focus on the top four airlines in China in terms of market share by number of �ights, so N = 4.

I focus on the top 68 cities in terms of �ight frequency. In total, there are R = 68 × 67/2 = 2278

possible routes. In a given route r, the state variables for airline i are xrk, wrck and zrk, where

xrk = {xirk ∈ {0, 1} : i = 1, ...4} denotes the identities of the airlines that operate �ights in route

r. I assume that i's decisions are a�ected by its network position only through its connecting

routes.41 Let cirk denote the number of connecting routes for airline i in route r in state k.42 Then

wrck = {cirk : i = 1, ...4}.
The state variable zrk contains the exogenous characteristics of route r, namely, the average

population for endpoint cities poprk, indicator variables for the presence of fast train (Fastrk) and

bullet train (Bulletrk), the number of fast train lines and bullet train lines connecting either of the

endpoint cities (cFast,rk and cBullet,rk, respectively), and the length of the route, drk. Also, I assume

that each route is characterized by a time-invariant unobserved type s, which is observed by airlines

but not by the econometrician.

40The standard arguments apply for existence of equilibrium. (See Doraszelski and Satterthwaite 2010, Doraszelski
and Judd 2012).

41As de�ned before, a connecting route is a route which shares one of the endpoint cities with the focal route.
As of now, I do not consider the impact of indirect �ights on an airline's decision. However, descriptive evidence is
suggestive that the absolute impact of indirect �ights on a �rm's entry decision of a route is relatively small.

42For example, if route r connects city A and city B, and in state k, airline i o�ers direct �ights in a routes that
connect city A and b routes that connect city B, then cir is a+ b.
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7.2 Flow Pro�ts and Choice-Speci�c Payo�s

As I do not have demand side data such as price and seat occupancy, I specify the pro�t function

in a reduced form.43 The �ow payo� to airline i for operating �ights in route r is speci�ed as

a linear function of the airline's and the competitors' route networks as well as some exogenous

variables such as population, length of the route and the network of high HST. The �ow payo� also

depends on an unobserved (to the econometrician) characteristic of the route, s, which captures the

unobserved tastes of consumers in a given route. The full state of the model is therefore captured

by (k, s).

Formally, the �ow payo� to airline i in state (k, s) at route r is

uirk = β0 + β1
∑
m6=i

xmrk + β2cirk + β3
∑
m6=i

cmrk + β4Fastrk + β5Bulletrk

+ β6cFast,rk + β7cBullet,rk + β8Fastrk × cFast,rk + β9Bulletrk × cBullet,rk + β10poprk + β11drk

+ β12Fastrk × drk + β13Bulletrk × drk + β14sr.

(6)

I include cmrk withm 6= i to allow an airline's payo� to also depend on the network of its competitors.

I interact the presence of HST, Fastrk and Bulletrk with their respective number of connecting

HST lines to capture the moderating e�ect of competition on the positive spillovers. Finally, I also

interact the presence of HST with the length of the route to control for the heterogeneous e�ect of

the introduction of HST on routes of di�erent lengths. The �ow payo� for not operating �ights in

a given route is normalized to 0.

I assume that airlines pay a sunk cost from entering a route. The sunk cost depends on the

unobserved market type, s, on whether the route is a government-regulated air route, and on

whether the airline is exempt from the regulation. The scrape value associated with exiting a route,

is assumed to be zero.44 Therefore, the choice-speci�c instantaneous payo�s ψijk is given by

ψijk =

η0 + η1 × s+ η2 × regi + η3 ×HQi if j = 1

0 otherwise,
(7)

where regi is an indicator variable which equals to one if the route is regulated and zero otherwise,

and HQi is an indicator variable which equals one if airline i is headquartered at one of the city-pair

and zero otherwise. The structural parameters to be estimated are θ = (β0, ..., β14, η0, ..., η3).

43This is consistent with literature on �rm entry, e.g., Bresnahan and Reiss (1990), Seim (2006).
44Aguirregabiria and Ho 2012 have a similar assumption.
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7.3 Variable Discretization

To reduce the dimension of the state space, I discretize some of the variables. First, I discretize the

number of airline connections into 5 bins as

Ncirk =



0 if cirk ∈ [0, 5]

1 if cirk ∈ [6, 15]

2 if cirk ∈ [16, 25] .

3 if cirk ∈ [26, 35]

4 if cirk ≥ 36

Similarly, the HST connections are discretized into 3 bins as

Nchrk =


0 if chrk ∈ [0, 1]

1 if chrk ∈ [2, 3] .

2 if chrk ≥ 4, h ∈ {Fast,Bullet}

Because an airline's payo� does not necessarily change monotonically with the length of the route, I

do not specify the utility as a linear function of route lengths. Instead, I use three indicator variables

to denote short routes (≤ 600 km), median routes (between 600 km and 1200 km) and long routes

(> 1200 km). Finally, I discretize the average city-pair population into �ve quantile-based bins.

8 Estimation

I now describe the steps I followed to estimate the dynamic oligopoly model. I follow Arcidiacono

et al. (2016) and apply a two-step estimation approach similar to Bajari, Benkard, and Levin (2007)

(henceforth BBL), Hotz et al. (1994) (henceforth HMSS) and Aguirregabiria and Mira (2007) but

in a continuous-time framework. In the �rst step, I estimate the reduced form hazards that capture

the dynamics in entry and exit decisions for airlines in each route, as well as the rate of change for

the inclusive values for the network and exogenous states such as population and presence of HST.

With the estimation results from the �rst stage, I estimate the structural parameters in the second

stage (detailed below).

The �nite dependence property used in Arcidiacono et al. (2016) greatly reduces the computation

time when calculating value functions. However, this property requires the assumption of permanent

exit, which does not apply in my case.45 So I borrow from HMSS and BBL to approximate the

value function using forward simulation in the second stage. To reduce the computational burden,

I impose symmetry and anonymity in the model. Anonymity means that when an airline makes

decisions, it does not care about the identity of a speci�c player, but only about the distribution

45In the sample, about one third of the airlines returned to the routes once they exited.
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of the competitors' states. Symmetry implies that we can use a common policy function to model

each player's behavior.46

8.1 Stage 1

Following Arcidiacono et al. 2016, I estimate the probability of entry, exit and doing nothing for

an airline in a route using a multinomial logit sieve. Let σ̃ijr(k, s, α) denote the reduced form

probability of airline i making choice j in state (k, s) for route r, where α is the parameter to be

estimated. I assume that σ̃ijr(k, s, α) takes the following form

σ̃ijr(k, s, α) =
exp(φj(k, s, α))∑

j′∈A exp(φj′(k, s, α))
, (8)

where φj(k, s, α) is a �exible function of the state variables. The variables included in the function

are the number of competitors and its square, the number of own connecting routes and its square,

the total number of competitors and its square, the total number of competitors' connecting routes

and its square, the presence of fast train, the presence of bullet train and the interaction of these

indicator variables with route length dummies, the number of connecting fast train lines and its

interaction with the presence of fast train, and the number of connecting bullet train lines and its

interaction with presence of bullet train. I also include the average city-pair population, dummies

for length of route, and the average population growth rate of the city-pair47 as controls. Further,

I allow the �rst-stage policy function to depend on the unobserved type of the route.48

Entry costs are allowed to depend on the market unobserved type as well as on whether a route

is under regulation and on whether a airline is exempt from regulation.

De�ne σ̃icjr(k, s, αc) as the reduced form probability that the �aggregate player� makes choice

j in state (k, s) in r. I use the same functional form as in function 8 to model this probability.

The function includes the following variables: an indicator variable for whether an airline is the

incumbent in the focal route, the number of competitors in the focal route and its square, the

number of own connecting routes and its square, the total number of competitors' connecting routes

and its square, the presence of fast train, the presence of bullet train, the number of connecting fast

train lines, and the number of connecting bullet train lines. Again, I include the average city-pair

population and the average population growth rate of the city-pair as controls. I also allow the

�aggregate player� probabilities to depend on whether the focal route is regulated and on whether

a given airline is exempt from regulation.

The exogenous state variables include population, the presence of fast train, the presence of bullet

train, the number of fast train connections and the number of bullet train connections. I treat the

46For example, if there are 5 �rms, numbered 1 through 5. A vector summarizes the state of each �rm. Suppose
under the state (1,1,3,2,1), �rm 1 choose to enter a route, then anonymity means that �rm 1 will make the same
decision under the state (1,3,2,1,1). Symmetry implies that under the state (3,1,1,2,1), �rm 3 will make the same
decision as �rm 1 in the state (1,1,3,2,1).

47Speci�cally, I discretize these growth rates into three quantile-based bins.
48In the �rst stage, I jointly estimate the policy function and the probability of a route being of a speci�c unobserved

type.
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movement of all these variables as caused by �nature�. As discussed above, I model the changes in

the state of the HST's network as stochastic. However, I allow the �entry� probability of HST in a

given route to depend on factors such as the average city-pair population, the average population

growth rate of the city-pair, route length, as well as the number of connecting HST lines. Also, the

movement of connecting HST lines in a focal route is allowed to depend on the average city-pair

population and the average population growth rate of the city-pair. For the �entry� probabilities

and the probabilities of the movement of connecting HST lines for both fast trains and bullet trains,

I use multinomial logit model for the approximation. q̃j(k, s, α0) is used to denote the probability

that nature takes action j ∈ 0, ..., J − 1 in state (k, s).

8.1.1 Likelihood Function

Since we have assumed that airlines make decisions for each route individually and that they only

take into account the states in the focal route as well as the summary statistics of other routes when

making decisions, the likelihood function can be constructed at the route level. In what follows, I

suppress the dependence on r for brevity. Because the Poisson processes governing the movements

of all players (including nature) are assumed to be independent, the joint process can be modeled

as an aggregate Poisson process with accumulated arrival rate. Speci�cally, let hijk = λσijk denote

the hazard of player i choosing action j in state k, and let

h = (q12, q13, ..., qK−1,K , λσ111, ..., λσ1J−1k, ...λσN11, ...λσNJ−1K , ...λcσN+111, ..., λcσN+1Jk, ...λcσ2N11, ...λcσ2NJK)

denote the vector of hazard rates of all players including nature for state-speci�c non-continuation

choices. In state k the probability that player i takes action j after τ units of time can be decomposed

into two parts: the �rst part is the probability that state changes after τ units of time. Because the

aggregate process follows a Poisson process, the interval between state changes follows a exponential

distribution. Therefore the probability that state changes after τ units of time is given by∑
l 6=k

qkl +
∑
i

λ
∑
j 6=0

σijk +
∑
ic

λc
∑
jc 6=0

σicjk

 exp

−τ
∑
l 6=k

qkl +
∑
i

λ
∑
j 6=0

σijk +
∑
ic

λc
∑
jc 6=0

σicjk

 .
(9)

The second part is the probability that player i takes action j, conditional on the state change.

Again, by the property of independent Poisson arrival processes, the probability that player i takes

action j is given by

λσijk∑
l 6=k qkl +

∑
i λ
∑

j 6=0 σijk +
∑

ic λc
∑

j 6=0 σicjk
. (10)

Taken together, the probability becomes:
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λσijkexp

−τ
∑
l 6=k

qkl +
∑
i

λ
∑
j 6=0

σijk +
∑
ic

λc
∑
j 6=0

σicjk

 . (11)

For each route r ∈ 1, ..., R, I observeWr events over the continuous time interval [0, T ].49 Denote

krw (w ∈ {1, ...Wr}) as the state immediately prior to the wth event in route r and denote trw the

corresponding time at which the even occurs. The holding time of wth event for route r, τrw, can

therefore be de�ned as τrw = trw − tr,w−1.
Denote Irw(i, j) as the indicator variable which equals to one if player i takes action j in the

wth event at route r. Now, conditional on a route being of unobserved type s, the likelihood for

the single event w in route r is given by:

L̃rw(h(α); s) =∑
j 6=0

Irw(0, j)q̃j(krw, s, α
0) +

∑
i

λ
∑
j 6=0

Irw(i, j)σ̃ijr(krw, s, α) +
∑
ic

λc
∑
j 6=0

Irw(ic, j)σ̃icjr(krw, s, α
c)


× exp

−
∑

j 6=0

q̃j(krw, s, α
0) +

∑
i

λ
∑
j 6=0

σ̃ijr(krw, s, α) +
∑
ic

λc
∑
j 6=0

σ̃icjr(krw, s, α
c)

 τrw

 .
(12)

Following Arcidiacono et al. (2016), I control for the unobserved route type using mixture distri-

butions. I discretize the standard normal distribution into �ve points and calculate the probability

of each route being at each point as a function of the initial conditions of the routes. Speci�cally,

I specify this probability as an ordered probit which depends on the total number of �ights, the

total number of connecting routes, the average population growth rate of the city-pair, length of

the route as well as on an indicator variable that captures whether the route is regulated.

Denote kr0 as the initial state of route r. Let π(s, kr0) be the probability of route r being type

s given initial condition kr0. The likelihood function therefore integrates over the unobserved types

for each route. The maximum likelihood estimate then become

(α0∗, α∗, αc∗, π∗) = arg max
α0,α,αc,π

R∑
r=1

ln

(∑
s

π(s, kr0)

Wr∏
w=1

L̃rw(h(α); s)

)
. (13)

8.2 Stage 2

In the second stage, I estimate the structural parameters, θ, based on the probabilities of being in

each unobserved types and the hazards estimated in stage 1. Speci�cally, I take the following steps:

�rst, based on the estimated hazards, I approximate the value function of airline i for route r at

state (k, s) as a linear function of θ using forward simulation in the same spirit of BBL and HMSS.

Given the value functions V̌irk(θ; s), together with the assumption that the idiosyncratic error

49This includes the �event� at time T , where possibly nothing happens.
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terms in equation (4) follow an i.i.d. type I extreme value distributions, the choice probabilities in

equation (5) can be expressed as:

σ̌ijrk(θ; s) =
exp

(
V̌irl(j)(θ; s) + ψijk

)∑
j′∈Ak

exp
(
V̌irl(j′)(θ; s) + ψij′k

) .
Replacing σ̃ijk in L̃rw(h(α); s) with σ̌ijrk, the new likelihood function can be denoted as Ľrw(θ; s).

Also, denote πr(s) as the likelihood of route r being of unobserved type s given the data. Using

Bayes's rule, we have:

πr(s) =
π(s, kr0)

∏Wr
w=1 L̃rw(h(α); s)∑

s′ π(s′, kr0)
∏Wr
w=1 L̃rw(h(α); s′)

.

The second stage estimates therefore become

θ∗ = arg max
θ

R∑
r=1

∑
s

π(s, kr0)

Wr∑
w=1

lnĽrw(θ; s). (14)

9 Results

9.1 Parameter Estimates from The Structual Model

Table 15 shows the results of the estimation of the structural parameters. For the characteristics

regarding an airline's own industry, we see that the �ow payo� of an airline decreases with the

number of competitors. However, this negative impact can be compensated by the average number

of connecting routes provided by the airline. In fact, the positive impact of connecting routes is

almost twice as large as the negative impact associated with the presence of competitors. This

implies that, even if all competitors are present in a given route (in our case the total number of

competitors equals three), as long as the number of connecting routes takes a level of 2, which

corresponds to 16 to 25 connecting routes, the negative e�ect from competitors on the �ow payo�

will be completely compensated. The number of connecting routes for competing airlines has little

impact on the �ow payo� of the focal airline.

=========================

Insert Table 15 about here

=========================

Turning to the impact of the HST, there is a negative impact of the presence of HST on the

�ow payo� of airlines for short routes. Interestingly, the presence of fast train has a larger e�ect on

the airlines' �ow payo� than that of the bullet train. This happens probably because, for shorter

routes, the speed advantage of the bullet train is not as pronounced relative to the fast train, and

the tickets for the fast train are cheaper.
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Consistent with the results from the reduced form analysis in section 5, the negative e�ect of the

presence of the fast train goes away when the length of the route increases. Speci�cally, the negative

impact is reduced by 85% when the length changes from short to median, and even becomes positive

when the length is long (i.e., greater than 1200 km). A similar e�ect, however, is not found for

bullet trains. A possible explanation for the di�erential e�ect of fast and bullet trains on airlines'

payo�s is that the introduction of HST has both positive and negative impact on the airlines in

the same route. On one hand, there is a competition e�ect, and on the other hand there may also

exist a �market expansion� e�ect. As reported by the Economist,50 for many HST routes in China,

about half of the tra�c is �generated� such that passengers would not take the trip otherwise. This

generated tra�c expands the market, which would in turn possibly bene�t the airlines in the same

route. The strength of the two e�ects changes with the length of the route as well as with the type

of HST. For the fast trains, the positive e�ect of their presence on the �ow payo� of airlines could be

a result of stronger positive e�ect. Without �ner level data, however, there is no way to disentangle

these two e�ects.

Connecting to more fast train lines and bullet train lines has a positive e�ect on the payo� of

airlines, which shows that there are positive spillovers from the introduction of HST that result

from the complementarity in the two modes of transportation in terms of connecting routes. On

average, the negative impact of the presence of the fast train on the �ow payo� for short routes

can be compensated by having about 4 routes with a median level of connectivity to HST lines and

no overlap with HST. The corresponding number of connections for bullet train is 3, suggesting a

larger positive spillover from bullet trains than from fast trains. However, this positive e�ect seems

to be moderated by the presence of HST in the same route, especially for fast trains. Speci�cally,

when the fast train is present in a route, the impact of the connectivity to fast train routes changes

from positive to negative. This seems reasonable because when the HST also connects the focal

route, having connections to other HST lines is less likely to feed tra�c to the airlines in the focal

route because it is less convenient. This moderating e�ect is less strong for bullet trains than for

fast trains.

Turning to the market characteristics, airlines have lower �ow payo�s for longer routes, but enjoy

higher payo�s in routes with higher values of the route unobserved type. The level of population

does not seem to a�ect the payo�s.

I �nd signi�cant costs of entry for airlines. This demonstrates the importance of modeling the

game in a dynamic framework. Interestingly, a route with a higher value of the unobserved type

not only has a positive e�ect on the �ow payo�s, but also reduces the entry cost as well. This

contrasts to the results of Arcidiacono et al. (2016), where markets with higher unobserved type

have larger �ow payo� but at the same time have higher costs of entry. Finally, the regulated

routes are associated with a higher entry costs for airlines, but when an airline is exempt from the

regulation, this negative e�ect goes away.

50Source: http://www.economist.com/news/china/21714383-and-theres-lot-more-come-it-waste-money-china-has-
built-worlds-largest
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Pro�t Decomposition

Using the estimated structural parameters, we can study the sources of airlines' �ow pro�ts.

Speci�cally, I decompose an airline's pro�ts into several sources/categories: 1. Market character-

istics, 2. The characteristics of the airline's own network, 3. The characteristics of competing

airlines' networks, 4. Negative spillovers from fast trains, 5. Negative spillovers from bullet trains,

6. Positive spillovers from fast trains, and 7. Positive spillovers from bullet trains. To carry out

the pro�t decomposition for a speci�c group of routes, I �rst calculate the average characteristics

of these routes (conditional on an airline's market presence) and then, depending on the sources of

the pro�ts I assign these characteristics into di�erent categories. Finally, using the structural esti-

mates, I calculate the contribution of pro�ts in each category. Table 16 describes the characteristics

included in each category.

=========================

Insert Table 16 about here

=========================

Table 17 presents the results. The �rst row of the table reports the decomposition of average

airline pro�ts across all routes and all time periods. We can see that an airline's own network

has the greatest impact on the its pro�ts. This is consistent with the �nding in Aguirregabiria

and Ho (2012) that having a large hub can signi�cantly reduce the �xed costs and thus increase

the pro�ts in a route. The market characteristics of a route also have a signi�cant impact on the

pro�ts, followed by competitors' networks. The negative impact of fast trains is bigger than that of

bullet trains. This is probably because fast trains have a larger network coverage than bullet trains.

Together, the negative spillovers from HST account for about 6.7% of the pro�ts brought by each

airline's own networks. Interestingly, however, these negative spillovers seem to be compensated

by the combined positive spillovers from the connection to HST lines, which are about 8.6% of the

pro�ts from airline's own networks. This indicates that, conditional on an airline's (endogenous)

network con�guration, HST has a net positive impact on the airline's pro�ts.

=========================

Insert Table 17 about here

=========================

To investigate this further, I break down the routes into several groups along various dimensions.

I �rst look at the pro�t decomposition for routes of di�erent lengths. Across all groups on that

dimension, the contribution of the airline's own network and that of competitors' networks to the

pro�ts are quite comparable. However, there are large di�erences in terms of spillovers from the

HST across groups. While the negative spillovers from HST are the strongest for short routes and

weakest for long routes, it is the opposite for the positive spillovers, which are strongest for long

routes. This implies that more competition happens in short routes while more positive spillovers

happen in longer routes.
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Next, I examine the decomposition of pro�ts for routes of di�erent unobserved types. There are

several things worth notice: �rst, while the overall pro�ts of airlines go up monotonically with the

unobserved route types, this is largely driven by the market characteristics. Second, although the

airlines in the high type routes are the ones that enjoy the strongest positive spillovers from HST,

at the same time they also su�er from the largest negative spillovers, leaving the net e�ect negative.

Interestingly, it is the routes of median and low unobserved types where the overall spillovers from

HST are positive. A similar patten can also be found if we look at the groups of routes by their

average population. Together, this indicates that airlines bene�t more from the presence of HST in

less popular routes.

It is also interesting to break down the routes by airlines' (endogenous) entry/exit decisions.

Speci�cally, I focus on two groups: one group contains the routes which airlines enter during the

sample period and the other consists of those that airlines exit during the sample period.51,52 Figure

9 shows the results. We can see that, for routes from the �entry� group, airlines enjoy more positive

and less negative spillovers from both fast trains and bullet trains relative to the average level. For

routes from the �exit� group, the opposite is mostly true: airlines su�er from a much larger negative

spillover and get smaller positive spillovers from fast trains. Although the negative spillovers from

the bullet trains are smaller than the average level, the positive spillovers are also smaller. The

net e�ect therefore makes the routes less attractive. Together, these results imply that airlines

reposition their networks to avoid competition but at the same time take advantage of the positive

spillovers from the HST network.

=========================

Insert Figure 9 about here

=========================

10 Conclusion

This paper empirically assesses and quanti�es the negative and positive spillovers of the HST network

on the airline industry and studies the implications of such spillovers for �rms' entry decisions (i.e.,

network con�guration choices). I �nd strong evidence of heterogeneous spillover e�ects from the HST

on airlines which depend on the routes' characteristics and their interaction with the HST network.

Conditional on entry decisions, the overall contribution of positive spillovers from HST exceeds that

of negative spillovers, suggesting that airlines reposition their networks to avoid competition while

taking advantage of the complementarity in route connectivity.

51For tractability purposes, I don't include those routes in which an airline has both entry and exit during the
sample period.

52The pro�ts for airlines from the �exit� group are calculated for the period before they leave the market.
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Figures and Tables

Figure 1: Evolution of the HST Network

This �gure shows evolution of the high speed train (HST) network over years. I use di�erent color to distinguish

between fast train and bullet train rails.
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Figure 2: Airlines by Parent Company

This �gure shows the airline companies in China. Most of the airlines are subsidiaries of the top four airlines. The

market shares are calculated in terms of total number of �ights among the top 68 cities in China from 2006 to 2016.

Figure 3: Number of Overlapping Routes by Year

This �gure shows the number of routes provided by airlines and number of routes provided by both airlines and high

speed trains over the years.

38



Figure 4: Travel Time as A Function of Distance by Transportation Modes

This �gure shows the relation between travel time and travel distance for both bullet trains and airlines.

(Source: �Civil Aviation Big Data�)

Figure 5: Number of Flights by Group: Short Routes

This �gure shows the number of �ights provided in routes with and without direct competition from high speed

trains. The graph is for short routes only. The dotted line represents the number of �ights provided in routes in

the control group, where there is no HST competition, and the dashed line represents the corresponding number for

routes in the treatment group which face competition from HST at di�erent points of time. The bar graphs denotes

the proportion of routes that face competition from HST in the treatment group.
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Figure 6: Number of Flights by Group: Median Length Routes

This �gure shows the number of �ights provided in routes with and without direct competition from high speed trains.

The graph is for median length routes only. The dotted line represents the number of �ights provided in routes in

the control group, where there is no HST competition, and the dashed line represents the corresponding number for

routes in the treatment group which face competition from HST at di�erent points of time. The bar graphs denotes

the proportion of routes that face competition from HST in the treatment group.

Figure 7: Number of Flights by Group: Long Routes

This �gure shows the number of �ights provided in routes with and without direct competition from high speed

trains. The graph is for long routes only. The dotted line represents the number of �ights provided in routes in

the control group, where there is no HST competition, and the dashed line represents the corresponding number for

routes in the treatment group which face competition from HST at di�erent points of time. The bar graphs denotes

the proportion of routes that face competition from HST in the treatment group.
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Figure 8: Selection of Control Routes in the Di�erence-in-di�erence Analysis

This �gure shows the principles for selecting the control routes.

Figure 9: Pro�t Decomposition Conditional on Entry/Exit Decisions

This �gure shows the decomposition of positive/negative spillovers from HST conditional on airlines' entry/exit

decisions. I present the decomposition for three groups: all routes, routes where airlines enter, and routes where

airlines exit. For the �eixt� group, the pro�ts are calculated using periods before the airlines leave the market.
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Table 1: Summary Statistics

This table reports the summary statistics of the dataset. The statistics are calculated at the route-year level.

N Mean Median S.D. Min Max
Number of airlines 20502 0.53 0.00 0.98 0.00 4.00
Number of �ights 20502 1.05 0.00 2.96 0.00 52.00
Number of entries 20502 0.05 0.00 0.24 0.00 3.00
Number of exits 20502 0.03 0.00 0.18 0.00 3.00
Number of �ight increases 20502 0.06 0.00 0.28 0.00 3.00
Number of �ight decreases 20502 0.08 0.00 0.36 0.00 4.00
Fast train present 20502 0.11 0.00 0.32 0.00 1.00
Bullet train present 20502 0.03 0.00 0.17 0.00 1.00
City pair average population (Million) 20502 5.34 4.82 3.40 0.22 24.19
City pair average GDP (Billion) 20502 55.56 43.05 45.29 0.49 374.57
City pair average population growth rate 20502 0.01 0.01 0.01 -0.05 0.06
City pair average GDP growth rate 20502 0.16 0.15 0.02 0.11 0.27
City pair distance (00's km) 20502 15.26 13.89 8.71 0.54 44.06

Table 2: Summary Statistics by Year

This table reports the summary statistics by year. The statistics are calculated at the route level.

2008 2009 2010 2011 2012 2013 2014 2015
Number of airlines 0.43 0.47 0.50 0.51 0.55 0.58 0.61 0.65
Number of �ights 0.81 0.91 0.99 1.06 1.14 1.20 1.27 1.32
Number of entries 0.04 0.06 0.06 0.06 0.06 0.07 0.07 0.08
Number of exits 0.02 0.03 0.03 0.03 0.03 0.04 0.04 0.04
Number of �ight increases 0.05 0.07 0.07 0.07 0.08 0.07 0.09 0.08
Number of �ight decreases 0.03 0.02 0.03 0.03 0.03 0.05 0.05 0.07
Fast train present 0.07 0.08 0.09 0.10 0.10 0.11 0.19 0.21
Bullet train present 0.00 0.00 0.00 0.02 0.02 0.07 0.07 0.10
Observations 2278 2278 2278 2278 2278 2278 2278 2278
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Table 3: GDP Quantiles and Airline Decisions

This table reports airlines' �ight decisions by quantiles of average city-pair GDP.

1 2 3 4 5
Average GDP of the City Pair 1.15 2.76 4.34 6.62 12.91
Number of �ights provided by an airline 0.03 0.07 0.10 0.22 0.90
Probability of entry 0.00 0.01 0.01 0.03 0.04
Probability of exit 0.00 0.01 0.04 0.06 0.05
Probability of �ight increase 0.01 0.02 0.04 0.08 0.16
Probability of �ight decrease 0.03 0.06 0.16 0.27 0.21
Observations 16404 16400 16404 16400 16400

Table 4: Population Quantiles and Airline Decisions

This table reports airlines' �ight decisions by quantiles of average city-pair population.

1 2 3 4 5
Average Population of the City Pair 1.68 3.60 4.84 6.37 10.21
Number of �ights provided by an airline 0.04 0.09 0.17 0.26 0.76
Probability of entry 0.00 0.01 0.02 0.03 0.04
Probability of exit 0.01 0.03 0.04 0.04 0.04
Probability of �ight increase 0.02 0.03 0.05 0.07 0.12
Probability of �ight decrease 0.03 0.07 0.09 0.16 0.20
Observations 16404 16400 16408 16396 16400

Table 5: Income perCapita Quantiles and Airline Decisions

This table reports airlines' �ight decisions by quantiles of average city-pair income per capita.

1 2 3 4 5
mean mean mean mean mean

Average Income per Capita of the City Pair 0.00 0.01 0.01 0.01 0.02
Number of �ights provided by an airline 0.06 0.11 0.20 0.31 0.63
Probability of entry 0.01 0.01 0.02 0.02 0.03
Probability of exit 0.01 0.03 0.04 0.06 0.05
Probability of �ight increase 0.01 0.03 0.07 0.13 0.15
Probability of �ight decrease 0.06 0.11 0.18 0.19 0.20
Observations 16404 16400 16404 16400 16400
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Table 6: Route Length Quantiles and Airline Decisions

This table reports airlines' �ight decisions by quantiles of route length.

1 2 3 4 5
City pair distance (00's km) 4.90 9.86 13.89 18.61 29.09
Number of �ights provided by an airline 0.38 0.43 0.29 0.17 0.04
Probability of entry 0.02 0.03 0.02 0.01 0.00
Probability of exit 0.05 0.04 0.03 0.02 0.01
Probability of �ight increase 0.08 0.08 0.08 0.06 0.03
Probability of �ight decrease 0.20 0.17 0.11 0.07 0.02
Observations 16416 16416 16380 16416 16380

Table 7: Entry Probability in A Route

This table reports the marginal e�ect of airport presence on an airline's probability of entering a route. Airline �xed

e�ects as well as year �xed e�ects are included.

Airline operates in one end point airport in the previous year 0.0045
(single presence) (0.0005)
Airline operates in both end point airports in the previous year 0.0429
(dual presence) (0.0009)
N 65,185

Table 8: GDP Quantiles and High Speed Train Presence

This table reports the average presence of high speed trains by average GDP of the city-pair.

1 2 3 4 5
Average GDP of the City Pair 1.15 2.76 4.34 6.62 12.91
Fast train present 0.00 0.02 0.06 0.15 0.34
Bullet train present 0.00 0.00 0.00 0.02 0.13
Observations 16404 16400 16404 16400 16400

Table 9: Population Quantiles and High Speed Train Presence

This table reports the average presence of high speed trains by average population of the city-pair.

1 2 3 4 5
Average Population of the City Pair 1.68 3.60 4.84 6.37 10.21
Fast train present 0.01 0.04 0.07 0.16 0.29
Bullet train present 0.00 0.01 0.02 0.04 0.09
Observations 16404 16400 16408 16396 16400
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Table 10: Income per Capita Quantiles and High Speed Train Presence

This table reports the average presence of high speed trains by average income per capita of the city-pair.

1 2 3 4 5
Average Income per Capita of the City Pair 0.00 0.01 0.01 0.01 0.02
Fast train present 0.01 0.05 0.09 0.15 0.26
Bullet train present 0.00 0.00 0.01 0.03 0.12
Observations 16404 16400 16404 16400 16400

Table 11: Route Length Quantiles and High Speed Train Presence

This table reports the average presence of high speed trains by quantiles of route distance.

1 2 3 4 5
City pair distance (00's km) 4.90 9.86 13.89 18.61 29.09
Fast train present 0.27 0.18 0.08 0.03 0.00
Bullet train present 0.09 0.05 0.02 0.00 0.00
Observations 16416 16416 16380 16416 16380

Table 12: Number of Flights by Group

This table reports the average number of �ights provided in treatment and control groups. The routes in the

treatment group are ones with at least three connections to HST lines. The observations in each group are paired

using a matching algorithm such that two routes have similar route length, level of average population and size of

connecting routes. Both results using the algorithm with and without replacement are reported.

Number of Flights All Treatment Control P value

Average 0.42 0.51 0.32 0.01
W/ Replacement Std Dev. 0.75 0.88 0.58 0

Observations 200 100 100

Average 0.41 0.50 0.32 0.04
W/O Replacement Std Dev. 0.76 0.89 0.59 0

Observations 164 82 82
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Table 13: Regression Results

This table reports regression results. The unit of analysis is at the airline-route-year level and the dependent variables

are number of �ights (Columns 1 through 4) and whether �ights are provided (Columns 5 and 6). I use a linear

regression and a logistic regression for the two dependent variables respectively.

(1) (2) (3) (4) (5) (6)
Number of Number of Number of Number of Flights Flights
Flights Flights Flights Flights (Y/N) (Y/N)

Fast Train present (Y/N) 0.291∗∗∗ -0.387∗∗∗ -0.265∗∗∗ -0.390∗∗∗ -1.743∗∗∗ -1.728∗∗∗

(0.015) (0.025) (0.021) (0.025) (0.097) (0.237)
Bullet Train present (Y/N) -0.378∗∗∗ -1.292∗∗∗ -0.690∗∗∗ -0.937∗∗∗ -2.070∗∗∗ -4.182∗∗∗

(0.034) (0.049) (0.041) (0.030) (0.220) (0.368)
No. of Fast Train line connections 0.210∗∗∗ 0.048∗∗∗ -0.056∗∗∗ 0.030∗∗∗ 0.293∗∗∗ 0.033

(0.008) (0.008) (0.007) (0.007) (0.033) (0.072)
No. of Bullet Train line connections 0.248∗∗∗ 0.085∗∗∗ -0.005 0.230∗∗∗ 0.209∗∗∗ 0.211∗∗

(0.009) (0.009) (0.008) (0.007) (0.036) (0.066)
Fast Train × No. of 0.494∗∗∗ 0.255∗∗∗ 0.118∗∗∗ 0.021 -0.482∗∗∗ -0.489∗∗∗

Fast Train line connections (0.020) (0.019) (0.016) (0.015) (0.066) (0.118)
Bullet Train × No. of 0.521∗∗∗ 0.448∗∗∗ 0.255∗∗∗ -0.084∗∗∗ -0.310∗∗ -0.105
Bullet Train line connections (0.033) (0.032) (0.027) (0.020) (0.116) (0.172)
Average Population 0.000∗∗∗ -0.000 0.001∗∗∗ -0.000 -0.000

(0.000) (0.000) (0.000) (0.000) (0.001)
Length of Route -0.084∗∗∗ -0.055∗∗∗ 0.133∗∗∗ -1.027∗∗∗ -4.209∗∗∗

(0.004) (0.004) (0.029) (0.026) (0.680)
Regulated Route 0.962∗∗∗ -0.090∗∗∗ -2.553∗∗∗ -0.990∗∗∗ 0.694

(0.013) (0.014) (0.114) (0.057) (0.784)
Fast Train × distance 0.680∗∗∗ 0.341∗∗∗ 0.555∗∗∗ 2.139∗∗∗ 2.059∗∗∗

(0.024) (0.021) (0.025) (0.087) (0.215)
Bullet Train × distance 1.512∗∗∗ 0.680∗∗∗ 1.283∗∗∗ 2.115∗∗∗ 3.899∗∗∗

(0.050) (0.042) (0.031) (0.209) (0.342)
No. of own routes connected 0.069∗∗∗ 0.052∗∗∗ 0.254∗∗∗ 0.303∗∗∗

(0.001) (0.001) (0.004) (0.008)
Existence of own indirect �ights -0.090∗∗∗ -0.055∗∗∗ 0.857∗∗∗ 0.637∗∗∗

(0.007) (0.005) (0.050) (0.078)
No. of competitors' �ights 0.161∗∗∗ -0.549∗∗∗ 0.175∗∗∗ -1.027∗∗∗

(0.002) (0.002) (0.008) (0.025)
No. of competitors' routes connected -0.011∗∗∗ 0.021∗∗∗ 0.004∗∗ 0.024∗∗∗

(0.000) (0.001) (0.002) (0.006)
Existence of competitors' indirect �ights -0.096∗∗∗ -0.034∗∗∗ -0.019 0.411∗

(0.009) (0.008) (0.098) (0.197)
Headquarter 1.446∗∗∗ 0.586∗∗∗ 0.206∗ 0.112

(0.023) (0.015) (0.091) (0.160)
Constant 0.016∗∗ 0.034∗ -0.018 -0.875∗∗∗ -5.445∗∗∗ 0.894

(0.005) (0.014) (0.016) (0.107) (0.123) (0.911)
Year Dummies No Yes Yes Yes Yes Yes
Airline Dummies No No Yes Yes Yes Yes
City Pair Dummies No No No Yes No Yes
Observations 82008 82008 82008 82008 82008 32832
R2 0.100 0.209 0.443 0.784

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 14: Di�erence-in-Di�erences Regression

This table reports di�erence-in-di�erence regression results. The unit of analysis is at the airline-route-year level and

the dependent variable is the number of �ights an airline provides in a route in a given year. The key di�erence

between this regression and the previous linear regression is that for each route that overlaps with HST, I include

two control routes to capture the demand and cost shocks to the routes. I assign the same group ID for the treated

route (i.e., the route that overlaps with HST) and its corresponding control routes. I include group-year dummies in

the regression, which allows for each group to have their own �exible trend in number of �ights.

All Short Median Long
HST present 0.176∗∗∗ -0.430∗∗∗ 0.239∗∗∗ 0.591∗∗∗

(0.039) (0.116) (0.049) (0.082)
No. of HST line connections 0.059∗ -0.028 0.062 0.169∗∗

(0.030) (0.092) (0.035) (0.065)
Average Population 0.001 -0.009∗∗∗ 0.000 0.005∗∗∗

(0.001) (0.002) (0.001) (0.001)
Regulated Route -1.534 -15.583∗∗∗ 18.310∗∗∗ 5.717∗∗∗

(1.033) (3.657) (1.125) (1.548)
No. of own routes connected 0.089∗∗∗ 0.044∗ 0.096∗∗∗ 0.088∗∗∗

(0.005) (0.019) (0.007) (0.010)
Existence of own indirect �ights -0.181∗∗ -0.176 -0.169∗ -0.228∗

(0.057) (0.150) (0.071) (0.114)
No. of competitors' �ights -0.388∗∗∗ -0.414∗∗∗ -0.365∗∗∗ -0.380∗∗∗

(0.010) (0.024) (0.013) (0.020)
No. of competitors' routes connected 0.020∗∗∗ 0.019 0.010∗ 0.044∗∗∗

(0.004) (0.013) (0.005) (0.008)
Existence of competitors' indirect �ights -0.140 -0.202 -0.123 0.008

(0.101) (0.218) (0.122) (0.300)
Headquarter 1.271∗∗∗ 2.021∗∗∗ 0.852∗∗∗ 1.735∗∗∗

(0.095) (0.284) (0.149) (0.185)
Constant 0.217 18.178∗∗∗ -18.654∗∗∗ -11.682∗∗

(1.153) (4.642) (1.231) (3.650)
Year Dummies Yes Yes Yes Yes
Group Dummies Yes Yes Yes Yes
Year Dummies×Group Dummies Yes Yes Yes Yes
City Pair Dummies Yes Yes Yes Yes
Airline Dummies Yes Yes Yes Yes
Observations 9039 1728 5157 2154
R2 0.870 0.853 0.850 0.920

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 15: Estimation Results of The Structural Parameters

This table reports the estimation results for the structural model.

Coef. std.err t stat

Bullet Train present (Y/N) -0.18 0.10 -1.82
Bullet Train × Median distance 0.12 0.10 1.19
Bullet Train × Long distance 0.05 0.12 0.43
No. of Bullet Train line connections 0.07 0.02 2.74

Impact of HST Bullet Train × No. of Bullet train line connections -0.03 0.05 -0.64
Fast Train present (Y/N) -0.27 0.07 -4.10
Fast Train × Median distance 0.23 0.07 3.21
Fast Train × Long distance 0.46 0.08 6.00
No. of Fast Train line connections 0.06 0.02 2.84
Fast Train × No. of Fast Train line connections -0.09 0.03 -2.74

Own Network No. of own routes connected 0.17 0.01 11.68

No. of competitors -0.10 0.05 -1.83
CompetitorsÔÇÖ Networks No. of competitors' routes connected -0.01 0.01 -0.70

No. of competitors × Competitors' routes connected -0.02 0.02 -1.01

Population 0.00 0.01 0.18
Median distance -0.07 0.03 -2.23

Market Characteristics Long distance -0.21 0.03 -6.30
Unobserved Type 0.15 0.02 9.06
Constant -0.05 0.05 -0.96

Entry Cost -3.99 0.06 -64.46
Entry Costs Entry Cost × Unobserved Type 0.30 0.05 6.21

Control -1.39 0.14 -10.09
Control-Exempt 1.32 0.14 9.49
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Table 16: Variables Used in the Sources of Pro�ts

This table reports the variables I include in the analysis of the sources of pro�ts.

Source Variables

Own Network No. of own routes connected

Competitor's Network No. of competitors
No. of competitors' routes connected

Presence of Fast Train
Fast Train: Negative Presence of Fast Train × the length of the route

Presence of Fast Train × No. of Fast Train line connections

Presence of Bullet Train
Bullet Train: Negative Presence of Bullet Train × the length of the route

Presence of Bullet Train × No. of Bullet Train line connections

Fast Train: Positive No. of Fast Train line connections

Bullet Train: Positive No. of Bullet Train line connections

Constant
Market Speci�c Population

Route length
Unobserved market type

Table 17: Flow Pro�t Decomposition

This table reports the �ow pro�t decomposition for airlines. The columns represent the sources of pro�ts and rows

represent the groups of routes that are divided along di�erent dimensions.

Average Own Compeitors' Fast Train Bullet Train Fast Train Bullet Train Market
Pro�t Network Network Negative Negative Positive Positve Speci�c

Overall 0.225 0.810 -0.181 -0.040 -0.015 0.028 0.042 -0.420

Length
Low 0.190 0.741 -0.155 -0.107 -0.013 0.020 0.029 -0.324
Median 0.227 0.793 -0.189 -0.055 -0.020 0.025 0.040 -0.367
High 0.237 0.862 -0.181 0.007 -0.009 0.034 0.049 -0.526

Low 0.040 0.584 -0.121 -0.005 0.000 0.013 0.001 -0.432
MeidanLow 0.100 0.692 -0.148 -0.015 -0.002 0.015 0.008 -0.449

Population Median 0.170 0.771 -0.163 -0.029 -0.006 0.024 0.028 -0.455
Level MedianHigh 0.192 0.779 -0.166 -0.037 -0.009 0.027 0.037 -0.439

High 0.303 0.886 -0.206 -0.054 -0.025 0.033 0.060 -0.390

Low -0.531 0.704 -0.039 0.000 0.000 0.023 0.027 -1.247
Unobserved MeidanLow -0.098 0.728 -0.056 0.000 -0.002 0.025 0.033 -0.825
Market Median 0.128 0.762 -0.121 -0.019 -0.005 0.025 0.035 -0.549
Type MedianHigh 0.322 0.855 -0.241 -0.057 -0.020 0.029 0.047 -0.290

High 0.643 0.950 -0.341 -0.121 -0.063 0.040 0.070 0.107
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