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ABSTRACT

Many important classes of assets are illiquid in the sense that they cannot
always be traded immediately. Thus, a portfolio position in these types
of illiquid investments becomes at least temporarily irreversible. We
study the asset-pricing implications of illiquidity in a two-asset exchange
economy with heterogeneous agents. In this market, one asset is always
liquid. The other asset can be traded initially, but then not again until
after a “blackout” period. Illiquidity has a dramatic effect on optimal
portfolio decisions. Agents abandon diversification as a strategy and
choose highly polarized portfolios instead. The value of liquidity can
represent a large portion of the equilibrium price of an asset. We present
examples in which a liquid asset can be worth up to 25 percent more than
an illiquid asset even though both have identical cash flow dynamics. We
also show that the expected return and volatility of an asset can change
significantly as the asset becomes relatively more liquid.



1. INTRODUCTION

One of the cornerstones of traditional asset-pricing theory is the assumption that all assets
are liquid and readily tradable by economic agents. In reality, however, many important
classes of assets are not completely liquid, and agents often cannot buy and sell them imme-
diately. For example, a large percentage of the wealth of the typical household is held in the
form of illiquid assets such as human capital, sole proprietorships, partnerships, and equity
in other closely-held firms, deferred compensation, pension plans, tax-deferred retirement
accounts, savings bonds, annuities, trusts, inheritances, and residential real estate. On the
institutional side, an increasing amount of wealth is being allocated to illiquid asset classes
such as private equity, emerging markets, venture capital, commercial real estate, and the
rapidly-growing hedge fund sector. In each of these examples, an investor might have to
wait months, years, or even decades before being able to unwind a position.1

Asset illiquidity has major implications for asset pricing since it changes the economics
of portfolio choice in a fundamental way. When there are assets that cannot be bought
or resold immediately, portfolio decisions take on an important dimension of permanence
or irreversibility. In this sense, illiquidity in financial investment parallels the role that
irreversibility of physical investment plays in the real options literature. Asset illiquidity
raises a number of key asset-pricing issues. For example, how does illiquidity affect optimal
portfolio decisions? What risks are created by asset illiquidity? How does the liquidity of
an asset affect its own price and the prices of other assets?

To address these issues, this paper examines the asset-pricing implications of illiquidity
within a continuous-time exchange economy with multiple assets and heterogeneous agents.
In this framework, agents have identical logarithmic preferences, but differ in their sub-
jective time discount factors. Thus, we can characterize the agents as either patient or
impatient. Liquid assets can always be traded. Illiquid assets can be traded initially, but
then cannot be traded again until after a fixed horizon or trading “blackout” period. Al-
though simple, this approach to modeling illiquidity is consistent with many actual examples
of illiquidity observed in the markets such as IPO lockups, Rule 144 restrictions on security
transfers, trading blackouts around earnings announcements, etc. Also, this approach has
the advantage of capturing the intuitive notion of illiquidity as the absence of immediacy.

1A familiar example is the decision of a student to invest in his or her human capital by
getting an MBA degree. This investment (which typically requires a large financial com-
mitment and hopefully pays dividends throughout the student’s life) is completely illiquid
and cannot be unwound or reversed.
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As a benchmark for comparison, we first present results for the traditional case where
both assets are fully liquid. In this case, we obtain the standard result that all agents
choose to hold the market portfolio. Furthermore, assets with identical cash flow dynamics
have identical prices. With an illiquid asset, however, asset pricing becomes dramatically
different. For example, the logarithmic agents cease being myopic and no longer choose to
hold the market portfolio. Rather, the impatient agent tilts his portfolio towards the liquid
asset and holds less of the illiquid asset. In some cases, the agents may almost completely
abandon diversification as a strategy. The portfolio for the impatient agent may consist
almost entirely of the liquid asset, while the opposite is true for the patient agent.

Intuitively, the reason for this polarization in portfolio choice stems from the interplay
of two key factors. First, the impatient agent has a strong incentive to accelerate his
consumption by selling his portfolio over time to the patient agent. To do so, however, the
impatient agent needs to hold more of the liquid asset than is optimal in the fully-liquid
case. Second, illiquidity creates a new need for intertemporal risk sharing not present in
traditional asset pricing models with fully-liquid assets. In particular, even though the
agents have identical attitudes towards instantaneous risk, the impatient agent is better
able to bear the portfolio-irreversibility risk induced by illiquidity. This is because his
higher subjective discount rate dampens the effect of noninstantaneous risk on his utility.
In equilibrium, prices adjust to give the impatient agent an incentive to hold riskier assets.
When the liquid asset is riskier, these two factors combine to make the optimal portfolio
much more polarized. When the illiquid asset is riskier, these two factors tend to offset and
the optimal portfolio is less polarized.

In addition to the effects on portfolio choice, asset illiquidity has major implications
for asset prices. In general, the more polarized the optimal portfolios, the greater are the
valuation effects. Assets with identical cash flow dynamics, that otherwise would have
the same price, can differ in value by as much as 25 percent in the presence of illiquidity.
As might be expected, illiquidity generally has the effect of making the liquid asset more
valuable, and the illiquid asset less valuable, relative to what prices would be in the fully-
liquid case. Surprisingly, however, the opposite can be true. This situation occurs primarily
when the impatient agent’s incentive to hold the liquid asset conflicts with his incentive to
hold the riskier asset.

Illiquidity affects not only current prices, but also the distribution of future returns for
the liquid asset. We show that it is possible for both the initial price and the expected return
of the liquid asset to be higher when there is an illiquid asset in the market. The intuition
for this is that the portfolio effects resulting from illiquidity have long-term implications
for the distribution of wealth among agents. Thus, even after the illiquidity horizon lapses
and assets become fully liquid again, their prices need not revert back to what they would
have been otherwise. Because of this, the presence of illiquidity can induce long-term effects
and path dependency in asset returns. We also show that asset illiquidity can have a large
dampening effect on the volatility of the liquid asset’s returns.
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To provide additional insight into the asset-pricing effects of illiquidity, we also consider
the scenario in which neither asset can be traded during the trading “blackout” period. Thus,
the entire market becomes illiquid in this scenario. This extreme illiquidity has parallels
with actual markets in which search or adverse selection costs become so high that trading
cannot always occur. In this illiquid-market scenario, there is no liquid asset for the agents
to hold. Thus, the intertemporal risk-sharing effects predominate and initial asset prices
adjust so that the impatient agent is willing to hold a portfolio consisting almost entirely
of the risky asset. We show that asset-pricing effects can again be very large. Interestingly,
riskier assets can become more valuable when agents face this type of market illiquidity, and
vice versa. The reason for this apparent breakdown in the usual risk-return relation stems
from the extreme polarization of the agents’ portfolios.

In summary, this paper makes four key points about asset pricing and illiquidity. First,
illiquidity affects optimal portfolio choice profoundly. In particular, agents with identical
attitudes toward risk may rationally choose to hold very different types of portfolios. These
results may help explain a number of well-known puzzles about the way actual agents choose
to invest (for example, Mankiw and Zeldes (1991) and Benartzi and Thaler (2001)). Second,
the type of illiquidity we consider in this paper can have first-order effects on equilibrium
asset prices. This contrasts sharply with the transactions-cost or trading-friction literature
in which trading costs have only second-order effects on asset prices (for example, Con-
stantinides (1986)). Third, these results demonstrate that the value of a liquid asset can
be greater than the “simple” present value of its cash flows. Specifically, we show that a
liquid asset can be worth significantly more that an illiquid asset with the identical cash flow
dynamics. Thus, in asset pricing, it is not directly the dividend cash flows that matter, but
rather the consumption stream that asset ownership generates. Finally, these results illus-
trate that differences in patience across investors can have major asset-pricing effects. Thus,
heterogeneity in patience may provide an important (but underresearched) channel for un-
derstanding financial markets and resolving asset-pricing puzzles. Furthermore, differences
in patience may map well into the familiar notions of short-horizon financial institutions
and longer-horizon investors often found in the literature.

This paper contributes to the growing literature on the asset-pricing effects of illiquidity.
Important empirical work in this area includes Amihud and Mendelson (1986, 1991), Cor-
nell and Shapiro (1990), Boudoukh and Whitelaw (1991), Silber (1992), Daves and Ehrhardt
(1993), Kamara (1994), Grinblatt and Longstaff (2000), Brenner, Eldor, and Hauser (2001),
Chordia, Roll, and Subrahmanyam (2001), Krishnamurthy (2002), Pastor and Stambaugh
(2003), Wang (2003), Longstaff (2004), and many others. Similarly, important theoretical
contributions include Mayers (1972, 1973, 1976), Lippman and McCall (1986), Constan-
tinides (1986), Amihud and Mendelson (1986), Grossman and Laroque (1990), Boudoukh
and Whitelaw (1993), Longstaff (1995, 2001), Vayanos (1998, 2003), Hölmstrom and Ti-
role (2001), Weill (2002), Kahl, Liu, and Longstaff (2003), Acharya and Pedersen (2003),
Huang (2003), Duffie, Gârleanu, and Pedersen (2003a, 2003b), O’Hara (2003), Vayanos and
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Wang (2003), Eisfeldt (2004), and many others. Finally, the approach taken in this paper
of modeling illiquidity as portfolio irreversibility has a number of parallels in the literature
on asset pricing and uninsurable labor income. Important papers in this literature include
Aiyagari and Gertler (1991), Heaton and Lucas (1992, 1996), Telmer (1993), Duffie and
Constantinides (1996), and others.

The remainder of this paper is organized as follows. Section 2 describes the basic
modeling framework used throughout the paper. Section 3 presents the fully-liquid bench-
mark case. Section 4 presents the illiquid-asset case. Section 5 compares the two cases
and discusses the asset-pricing implications of asset illiquidity. Section 6 extends the basic
framework to the illiquid-market case. Section 7 summarizes the results and make conclud-
ing remarks.

2. THE MODEL

The key challenge in exploring the asset-pricing implications of illiquidity is developing a
modeling framework in which agents endogenously want to trade, and, therefore, care about
whether they can buy or sell individual assets. This task is complicated by the fact that
many standard paradigms in asset pricing, such as the familiar single-asset representative-
agent model, imply that there is no trading in equilibrium. Thus, to capture the incentives
that agents have for trading assets over time, we need to move beyond the usual types of
asset-pricing models. To this end, we develop a simple two-asset version of the standard
Lucas (1978) pure exchange economy in which there are two heterogeneous agents. When
both assets can be traded, the market is effectively dynamically complete. When one asset
is illiquid, however, the market becomes dynamically incomplete. All models are stylized to
some degree, and the model we present is no exception to the rule. Despite this, however,
the model does capture the economics of asset illiquidity in an intuitive way and is consistent
with many actual forms of asset illiquidity observed in the markets.

The basic structure of the model can be viewed as the extension of Cochrane, Longstaff,
and Santa-Clara (2004) to a heterogeneous agent economy. There are two assets or “trees”
in this economy. Each asset produces a stream of dividends in the form of the single
consumption good. Let Xt and Yt denote the dividends generated by the assets. The
dividends follow simple i.i.d. geometric Brownian motions

dX

X
= µX dt + σX dZX , (1)

dY

Y
= µY dt + σY dZY , (2)

4



where the correlation between dZX and dZY is ρ dt. Although we refer to the assets as
risky throughout the discussion, nothing prevents one of the assets from being a riskless
bond since σX or σY can equal zero.

2 We normalize the number of shares of each asset in
the economy to be one. To keep notation as simple as possible, expectations and variables
without time subscripts (such as X and Y ) will denote initial or time-zero values.

There are two agents in this model. The first agent is endowed with w shares of the
first and second assets, respectively. Thus, the second agent is endowed with 1 − w shares
of the two assets. Denote the agents’ consumption streams by Ct and Dt, respectively.
Since the effect of illiquidity in this model is that agents may have to wait to rebalance
their portfolios, intuition suggests that attitudes about waiting may play a central role in
the economics of illiquidity. Accordingly, we allow for heterogeneity in the agents’ level of
patience. Specifically, we assume that preferences at time zero are given by

ln(C) + E
∞

0

e−βt ln(Ct) dt , (3)

ln(D) + E
∞

0

e−δt ln(Dt) dt , (4)

where the subjective time discount rates β and δ may differ, implying that one agent is less
patient that the other. For concreteness, assume that the first agent is less patient than the
second, β > δ. We refer to the first and second agents as the impatient and patient agents,
respectively.3

3. THE FULLY-LIQUID CASE

As a preliminary, we present results for the case where both assets are fully liquid. These
results will be used as a benchmark for comparison to the illiquid-asset case in later sections.

2More specifically, one of the assets can be a riskless consol bond in positive net supply by
setting either σX or σY equal to zero.

3These preferences imply that consumption at time zero takes the form of a discrete “gulp,”
while consumption at all future times occurs as a flow. Thus, X and Y represent discrete
dividends while Xt and Yt represent dividend flows. This feature simplifies the exposition
of the model, but has no effect on any of the results. In particular, the model could easily
be modified to allow only continuous consumption, or only discrete consumption, without
any loss of generality.
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Let Pt and Qt denote the equilibrium prices for the first and second assets. The first-
order conditions for the first agent imply

Pt = Et

∞

0

e−βs
Ct
Ct+s

Xt+s ds , (5)

Qt = Et

∞

0

e−βs
Ct
Ct+s

Yt+s ds . (6)

Similarly, the first-order conditions for the second agent imply

Pt = Et

∞

0

e−δs
Xt + Yt − Ct

Xt+s + Yt+s − Ct+s Xt+s ds , (7)

Qt = Et

∞

0

e−δs
Xt + Yt − Ct

Xt+s + Yt+s − Ct+s Yt+s ds , (8)

after substituting in the market clearing condition Dt = Xt + Yt − Ct.
In this setting, the first agent chooses his consumption Ct, and a portfolio consisting

of Nt and Mt shares of the two assets, respectively, and similarly for the second agent. The
Appendix shows that equilibrium consumption of the first agent is given by

Ct =
e−βt β (1 + δ) w

e−βt β (1 + δ) w + e−δt δ (1 + β) (1− w) (Xt + Yt). (9)

From Equation (9), optimal consumption depends directly on the distribution of wealth in
the economy as measured by the fraction w of total assets initially held by the first agent.

Similarly, the optimal portfolio for the first agent is given by

Nt =Mt =
e−βt (1 + δ) w

e−βt (1 + δ) w + e−δt (1 + β) (1− w) . (10)

This optimal portfolio rule has several important aspects. First, each agent holds a portfolio
that has the same number of shares of each of the two assets. Since there are equal numbers
of shares of the two assets in the economy, however, this means that the optimal portfolio
for each agent is simply the market portfolio. Thus, a one-fund separation result holds;
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agents would be indifferent between trading the assets individually or trading the shares
of a stock index fund. Second, trading occurs in equilibrium since the number of shares
held by the two agents changes over time. In particular, since the first agent is less patient
than the second, the first agent systematically sells his portfolio to the second agent over
time. This enables the first agent to consume more than the total dividends he receives
initially. Over time, however, the share of dividends consumed by the first agent declines
while the share of dividends consumed by the second agent increases. Third, the portfolio
rule is a deterministic function of time; the portfolio rule does not vary with changes in the
state variables Xt and Yt. Finally, the optimal portfolio rule is also affected by the initial
distribution of wealth as measured by w.

Asset prices can now be obtained by substituting the optimal consumption process into
the first-order equations and evaluating the expectations. The Appendix shows that the
prices for the two assets are given by

Pt = Ct A(β,Xt, Yt) + (Xt + Yt − Ct) A(δ,Xt, Yt), (11)

Qt = Ct B(β, Xt, Yt) + (Xt + Yt − Ct) B(δ, Xt, Yt), (12)

where we define the functions A(·,Xt, Yt) and B(·, Xt, Yt) as

A(·,Xt, Yt) = k1 Xt
Yt

F 1, 1− γ; 2− γ; −Xt

Yt
+ k2 F 1, θ; 1 + θ; − Yt

Xt
, (13)

B(·,Xt, Yt) = k3 Yt
Xt

F 1, 1 + θ; 2 + θ; − Yt
Xt

− k4 F 1, −γ; 1− γ; −Xt

Yt
, (14)

and where k1, k2, k3, k4, γ, and θ are constants defined in the Appendix. The function
F (a, b; c; z) is the standard hypergeometric function (see Abramowitz and Stegum (1970)
Chapter 15). The hypergeometric function is defined by the power series

F (a, b; c; z) = 1+
a · b
c · 1z+

a(a+ 1) · b(b+ 1)
c(c+ 1) · 1 · 2 z2+

a(a+ 1)(a+ 2) · b(b+ 1)(b+ 2)
c(c+ 1)(c+ 2) · 1 · 2 · 3 z3+. . . (15)

The hypergeometric function has an integral representation, which can be used for numerical
evaluation and as an analytic continuation beyond z < 1,
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F (a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)
1

0

wb−1(1− w)c−b−1(1− wz)−a dw, (16)

where Re(c) > Re(b) > 0.

Interestingly, the functions A(·, Xt, Yt) and B(·, Xt, Yt) have intuitive interpretations
as the equilibrium prices for the first and second assets (normalized by total consumption)
that would exist in a representative-agent version of this economy where the subjective time
discount rate for the representative agent equals the first argument. Thus, the price functions
Pt and Qt in Equations (11) and (12) are simple consumption-weighted (or, equivalently,
wealth-weighed) averages of the prices in a representative-agent economy with subjective
discount rates of β and δ, respectively.

4. THE ILLIQUID-ASSET CASE

In this section, we relax the assumption that both assets are always liquid. Specifically, we
assume that the first asset can always be traded. Thus, there is always a way for agents to
smooth their intertemporal consumption by trading in the first asset. Note that the first
asset can play the role of a riskless asset in this framework since the volatility of its dividends
can be set equal to zero and the agents are allowed to take whatever long or short position
in this asset they choose.4 The second asset can be traded at time zero, but then becomes
illiquid and cannot be traded again until time T . After time T , the second asset reverts
back to being fully liquid. Thus, this approach models the illiquidity of the second asset as
a trading “blackout” period. By contrasting this case with the benchmark fully-liquid case,
we can examine directly how asset prices and portfolio choice are affected by illiquid assets
in the market.

In this setting, agents choose an initial consumption level C and a portfolio of assets
N and M at time zero. Once the portfolio is chosen, however, the number of shares of the
second asset cannot be changed until time T . Thus, Mt =M for t < T . Each agent’s initial
consumption C consists of their endowment less the value of the portfolio they choose,

4The fact that the asset is in positive net supply rather than in zero net supply has little
effect on the results. In equilibrium, market clearing requires that the total amount of the
first asset must be held by market participants. Thus, the existence of this market clearing
condition is important in determining the qualitative nature of the equilibrium. Whether
the market clears at a level of zero, one, two, etc. shares is qualitatively less important than
the fact that some market clearing condition is imposed.
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C = w(P +X +Q+ Y )−NP −MQ. (17)

Subsequent consumption equals the dividends on their portfolio net of changes in their
holdings of the first asset,

Ct = Nt Xt +M Yt −Ht Pt, (18)

for 0 < t < T , where Ht is the rate at which shares of the first asset are sold. By definition,

Nt = N +
t

0

Hs ds. (19)

At time T , both assets become fully liquid again and the framework reverts back to the
benchmark fully-liquid case, although with one slight difference. Specifically, the first agent
arrives at time T with NT (before rebalancing the portfolio) andM shares of the two assets,
respectively, rather than with w shares of each asset. With this modification, the Appendix
shows that optimal consumption at time T is given by,

CT =
(NT A(δ, XT , YT ) +M B(δ, XT , YT )) (XT + YT )

1
β +NT (A(δ, XT , YT )−A(β, XT , YT )) +M (B(δ, XT , YT )−B(β,XT , YT ))

.

(20)

Similarly, the prices of the two assets at time T are again given by

PT = CT A(β, XT , YT ) + (XT + YT − CT ) A(δ,XT , YT ), (21)

QT = CT B(β,XT , YT ) + (XT + YT − CT ) B(δ, XT , YT ). (22)

but where CT is defined as in Equation (20).

Solving for the values of the assets at time zero in this illiquid-asset case requires an
recursive approach in which we first solve for the value of the liquid asset and the optimal
number of shares of the first asset to hold at times T − ∆t, T − 2∆t, T − 3∆t, . . ., ∆t,
conditional on the corresponding state variables. In doing this, we make sequential use of
the first-order conditions implied by the agents’ optimal portfolio and consumption choices
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Pt = Et

T−t

0

e−βs
Ct
Ct+s

Xt+s ds+ e
−β(T−t) Ct

CT
PT , (23)

Pt = Et

T−t

0

e−δs
Xt + Yt − Ct

Xt+s + Yt+s − Ct+s Xt+s ds

+ e−δ(T−t)
Xt + Yt − Ct
XT + YT − CT PT . (24)

The Appendix describes the recursive numerical approach that is used to solve these pairs
of equations for the values of Pt and Nt.

Once this recursive process is complete, we then need to solve for the time-zero values
N , M , P , and Q. At time zero, the first-order conditions for the first agent imply

P = E
T

0

e−βt
C

Ct
Xt dt + e−βT

C

CT
PT , (25)

Q = E
T

0

e−βt
C

Ct
Yt dt + e−βT

C

CT
QT , (26)

where consumption values are given as above. Similarly, the first-order conditions for the
second agent imply

P = E
T

0

e−δt
X + Y − C
Xt + Yt − Ct Xt dt + e−δT

X + Y − C
XT + YT − CT PT , (27)

Q = E
T

0

e−δt
X + Y − C
Xt + Yt − Ct Yt dt + e−δT

X + Y − C
XT + YT − CT QT . (28)

The Appendix shows how the equilibrium values of N ,M , P , and Q can be determined from
these four equations numerically.5 A key difference between the equilibrium trading rules in
the fully-liquid case and in this illiquid-asset case is that trading becomes state dependent

5As shown by Diamond (1967), Geanakoplos and Polemarchakis (1986), Geanakoplos, Mag-
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when only the liquid asset can be traded. In fact, illiquidity can have large effects on the
amount of trading that occurs in equilibrium in this framework.

5. ASSET-PRICING IMPLICATIONS

In this section, we explore the asset-pricing implications of illiquidity. To make these as
clear as possible, we present numerical results for scenarios that highlight key asset-pricing
effects such as the how illiquidity changes optimal portfolio decisions, equilibrium prices,
and return distributions.

To make the results easier to compare, we use a common format and set of parameters
in reporting the results for these scenarios. Specifically, in each scenario, we provide results
for the benchmark fully-liquid case (in which T = 0), and then report results for illiquidity
horizons of 2, 5, 10, 20, and 30 years. These values reflect degrees of asset illiquidity ranging
from private equity, IPO, or hedge-fund lockups all the way to the extended illiquidity of
human capital, pensions, or other retirement assets. In each scenario, the parameter values
µX , µY , and ρ are fixed at zero, and the subjective discount rates for the two agents are
fixed at β = 0.20, and δ = 0.01. Unless otherwise denoted, the initial values of the dividends
are assumed to be the same, X = Y = 0.50, the volatilities of the two assets are assumed to
be the same, σX = σY = 0.50, and the two agents are assumed to have equal initial wealth,
w = 0.50.6

5.1 Identical Assets

We first consider the scenario in which the two assets are identical in terms of the distribution
of their future cash flows. This scenario provides a natural starting point for our analysis
since, in the absence of liquidity restrictions, the two assets would have identical prices and
return distributions.

ill, Quizii, and Dreze (1990) and others, an unconstrained Pareto optimal equilibrium need
not exist in an incomplete market. This occurs in our framework when one of the agents
is at a corner by choosing zero shares of an asset. In this situation, the agent’s first-order
condition for that asset is not required to hold. The Appendix shows how the equilibrium
portfolio holdings for the other asset and the prices can be determined from the remaining
first-order conditions in this situation.
6Although these asset volatilities appear larger than the typical volatility of reported div-
idends, they are actually consistent with the volatility of dividends based on broader def-
initions. For example, reported dividends typically do not include share repurchases. For
a discussion of the volatility of economic (nonsmoothed) dividends imputed from corporate
earnings, see Longstaff and Piazzesi (2004).
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Table 1 reports key asset-pricing results for the cases in which both dividend volatilities
are set at 20 percent, and in which both are set at 50 percent. As mentioned above, the
length of the illiquidity horizon ranges from zero (the benchmark fully-liquid case) to 30
years.

Table 1 shows that when both assets are liquid, each agent chooses to hold the market
portfolio. In particular, the impatient agent chooses a portfolio consisting of 0.458 shares
of each of the two assets (implying that the patient agent chooses a portfolio consisting of
0.542 shares of each of the two assets). When both assets are liquid, Equation (10) implies
that the optimal portfolio does not depend on dividend volatility. This is evident in Table 1
since the optimal portfolio N =M = 0.458 is the same for each set of volatility assumptions.

When one asset is illiquid, however, optimal portfolio behavior becomes strikingly dif-
ferent. Instead of holding the market portfolio, the impatient first agent now begins to tilt
his portfolio towards the liquid asset and away from the illiquid asset. This effect becomes
more pronounced as the length of the illiquid horizon increases. Thus, with illiquidity, the
logarithmic agents no longer behave myopically as is the case in the standard Merton (1969,
1971) portfolio-choice paradigm. For example, when the illiquidity horizon is 30 years,
the first agent’s optimal portfolio consists of 0.843 and 0.030 shares of the two assets, or
0.740 and 0.107 shares, depending on the dividend volatility parameterization. Thus, the
first agent abandons portfolio diversification as a strategy, and chooses a highly polarized
portfolio instead.7

Although these results differ dramatically from those that hold when assets are fully
liquid, the intuition behind them is not hard to understand. In this economy, the impatient
agent wants to accelerate his consumption. His only mechanism for doing so is to system-
atically sell off his portfolio to the more-patient agent over time. When one of the assets is
illiquid, however, the impatient agent needs to hold more of the liquid asset to be able to
do so. The longer the illiquidity horizon, the larger is the position in the liquid asset that
the first agent chooses.

By tilting his portfolio towards the liquid asset, however, the impatient first agent suf-
fers the welfare costs of holding an undiversified portfolio. Ultimately, the optimal portfolio
represents a tradeoff between the benefits of being able to sell assets to accelerate consump-
tion and the costs of being undiversified. The effects of this tradeoff can be seen in Table 1
which shows that the first agent deviates less from the market portfolio when the dividend
volatility (and, consequently, the cost of being undiversified) is higher.

7These results, however, depend on the assumption that there are no trading costs. If there
were costs to rebalancing a portfolio, then the degree of polarization in optimal portfo-
lios would likely decrease. For an in-depth analysis of the effects of transaction costs in
incomplete markets with heterogeneous agents, see Heaton and Lucas (1996).
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The second panel of results in Table 1 shows the valuation effects induced by the
illiquidity of the second asset. In particular, the table reports the percentage difference
between the first asset and its liquid-benchmark value, the percentage difference between
the second asset and its liquid-benchmark value, and the net percentage change in the
relative values of the two assets. Note that since the two assets have identical values in the
liquid benchmark case, this latter measure is simply the percentage difference in the price
of the two assets.8

Table 1 shows that when the second asset becomes illiquid, the prices of the two assets
are no longer equal. In particular, as the length of the illiquidity horizon increases, the
liquid asset becomes more valuable while the illiquid asset becomes less valuable. Thus, the
values of both assets are affected by the illiquidity of the second asset.

The magnitude of the valuation effects varies significantly with the length of the illiq-
uidity horizon. In these examples, the net valuation effect is much smaller than one percent
when the illiquid horizon is only two years. The valuation effects, however, increase rapidly
with the length of the illiquidity horizon and can be very large. For example, if the illiquidity
horizon is 30 years, the prices of the two assets differ by 11.39 and 24.88 percent. Recall that
in the absence of illiquidity, the two assets have identical values since they have identical
cash flow dynamics. Thus, liquidity introduces an additional dimension into asset pricing
that extends beyond the simple present value of an asset’s cash flows. Intuitively, this is
because the cash flows an agent receives from an asset are not simply the dividends it pays,
but rather the dividends plus the market value of shares bought and sold over time. Thus,
the consumption stream from a liquid asset can be very different from that generated by an
illiquid asset even when both assets have identical dividend dynamics. In asset pricing, it
is the actual consumption stream generated from asset ownership that matters.

Finally, these results indicate that the value of liquidity can represent a large portion
of the price of an asset. This contrasts with earlier results such as Constantinides (1986)
that show that liquidity only has a second-order effect on asset prices. The key difference,
however, is that the earlier literature focuses only on a narrow definition of liquidity as
transaction costs or other types of market frictions. In our setting, illiquidity is not merely
a friction, but rather something that changes the very nature of investing.

At first glance, the magnitude of the valuation differences between otherwise identi-
cal assets implied by the model may seem implausible large. These valuation differences,
however, are consistent with the extensive recent empirical evidence about the effects of
illiquidity on otherwise identical securities. For example, Silber (1992) finds that the differ-

8The net percentage difference is defined as the percentage difference in the ratio of P/Q
in the illiquid-asset case to P/Q in the fully-liquid case. Consequently, the net percentage
difference will generally not equal the sum of the percentage differences for the individual
assets.
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ence in value between privately placed illiquid stock and otherwise identical publicly traded
stock averages 35 percent. Wruck (1989) documents valuation differences of about 15 per-
cent for the illiquid privately-placed shares of major NYSE firms. Boudoukh and Whitelaw
(1991) show that illiquid Japanese Government bonds traded at as much as a five percent
discount to virtually identical liquid benchmark Japanese Government bonds. Amihud and
Mendelson (1991), Kamara (1994), Krishnamurthy (2002), Longstaff (2004), and others
find similar large differences in the values of otherwise identical liquid and illiquid Treasury
bonds. Brenner, Eldor, and Hauser (2001) show that the valuation difference between liq-
uid and illiquid foreign currency options can be as large as 30 percent. Thus, this model
suggests that these huge observed illiquidity-related differences in the values of securities
could potentially be reconciled within the context of a rational general equilibrium model.9

In this model, both assets trade at time zero. After time zero, however, the first asset
continues to trade even though the second asset does not. By solving numerically for the
value of the first asset after time zero, we can directly examine how the distribution of its
returns is affected by the illiquidity of the second asset.

The third panel of Table 1 reports the expected return and standard deviation of
the first asset’s returns over the next one-year horizon. As shown, the illiquidity of the
second asset can have surprising effects on the distribution of the liquid asset’s returns. For
example, Table 1 shows that not only does the time-zero value of the liquid asset increase
as the illiquidity horizon increases, the expected return of the liquid asset can also increase.
This result is somewhat counterintuitive since after the illiquidity horizon lapses, the model
returns to the liquid-benchmark case. Thus, intuition suggests that the prices of the two
assets should again converge once the illiquidity horizon lapses. What this intuition misses,
however, is that illiquidity has real effects on the economy over time. In particular, the
distribution of wealth between the agents over time is affected in fundamental ways by the
liquidity restrictions. Thus, the economy that emerges when the illiquidity restriction lapses
can differ significantly from what the economy would have been in the absence of liquidity
restrictions. Because of these differences, expected returns for the liquid asset can increase,
decrease, or oscillate as the illiquidity horizon increases.

The third panel also shows that the illiquidity of the second asset can have a major
effect on the volatility of the liquid first asset’s returns. For example, when the illiquidity
horizon is 30 years, the volatility of the liquid asset’s returns may only be 70 to 80 percent
of what it would be in the absence of the liquidity restriction. Thus, the liquidity restriction
can have the effect of significantly dampening the volatility of the liquid asset.

5.2 Assets with Different Volatilities

In the previous section, we considered the effects of illiquidity on assets with identical cash

9Partial equilibrium models include Longstaff (2001), and Kahl, Liu, and Longstaff (2003).
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flow distributions. In this section, we explore asset-pricing effects for the case in which one
asset is riskier than the other. Specifically, the top part of Table 2 presents results for the
case where the liquid asset is less risky that the illiquid asset; the bottom part of Table 2
present results for the case where the liquid asset is riskier than the illiquid asset. All other
parameters are the same as in Table 1.

Table 2 shows that the implications of illiquidity depend heavily on the relative volatility
of the two assets. When the liquid asset is less risky, the optimal portfolios for the agents
deviate far less from the market portfolio than when the two asset have the same volatility.
In contrast, the optimal portfolio tends to be much more polarized when the liquid asset is
riskier than the illiquid asset.

The intuition for these results can best be understood by recognizing that there are two
major factors at work in determining the agents’ optimal portfolios. The first is the strong
incentive that the impatient agent has to hold the liquid asset. As discussed previously, this
allows the impatient agent to accelerate his consumption by selling his portfolio over time.
The second factor is more subtle and has to do with intertemporal risk sharing. The two
agents have the same attitude towards instantaneous risk because they both have logarithmic
preferences. When illiquidity is introduced, however, patience emerges as an important
additional factor driving portfolio choice. In particular, the impatient agent is better suited
to bear the risk of holding the riskier asset during the illiquid period since his future utility
is more heavily discounted and, consequently, less sensitive to noninstantaneous risk. This
aspect introduces a strong demand for intertemporal risk sharing that is not present when
markets are fully liquid. Thus, the impatient agent has strong incentives to tilt his portfolio
heavily towards the risky asset when the market is illiquid.

The intuition for the optimal portfolio results in Table 2 can now be understood in light
of these two factors. When the liquid asset is less risky than the illiquid asset, the impatient
agent’s incentives to hold more of the liquid asset are partially offset by his incentives to
hold more of the riskier asset. Thus, the optimal portfolio does not diverge as far from the
market portfolio. In contrast, when the liquid asset is riskier, the two factors reinforce each
other and the optimal portfolio is much more tilted towards the risky liquid asset.

These results have many important implications for financial economics since they may
help explain a number of well-known puzzles about the way actual agents choose invest-
ment portfolios. For example, Mankiw and Zeldes (1991) find evidence that equity market
participation of the typical U.S. household is far less than predicted by classical models of
portfolio choice (Merton (1969, 1971)). Our results suggests that if households view equity
markets as riskier and more liquid than markets for other assets such as real estate, it may
be rational for them to hold less stock than short-horizon institutional investors.

The intuition above also helps explain the valuation effects shown in the second panel
of Table 2. For example, the top portion of the table shows that when the liquid asset is less

15



risky, its value can actually be less than it would be in the absence of liquidity restrictions
for short illiquidity horizon. Similarly, the value of the illiquid asset can also be greater than
it would be in the absence of liquidity restrictions. These counterintuitive valuation effects
happen precisely when the two factors offset each other, at least for illiquidity horizons of
two to five years.10 In contrast, the bottom panel of Table 2 shows that when these two
factors reinforce each other (since the liquid asset is also the riskier asset), the valuation
effects are much stronger and go in a more intuitive direction. For example, when the
illiquidity horizon is 30 years, the difference in the relative valuation between the two assets
can be as much as 43 percent.

Which situation is more realistic? There is certainly a case to be made that illiquid
assets such as human capital and real estate tend to have less volatile cash flows than highly
liquid assets such as stocks. If so, then the results in Table 2 suggest that illiquidity has the
potential to have huge effects on the relative valuation of assets in the economy.

The third panel of Table 2 again illustrates that the expected return and volatility of
the liquid asset can either increase or decrease with the length of the liquidity restriction.
These effects on the distribution of returns can also be large in magnitude. For example, the
presence of a illiquid less-risky asset in the economy can reduce the volatility of the liquid
asset from 46.35 to 33.69 percent when the illiquidity horizon is 30 years. Effects of this size
clearly have major asset-pricing implications.

5.3 Assets of Different Sizes

In this section, we examine scenarios in which the size of the assets differs (size defined as
the proportion of total dividends an asset currently generates). Specifically, we focus on the
cases where X = 0.25 and Y = 0.75, and where X = 0.75 and Y = 0.25. Other than these
initial values, the two assets have identical dividend dynamics.

Table 3 reports the results for these two scenarios. As shown, the impatient agent tends
to hold more of the liquid asset when it accounts for 25 percent of total dividends than when
it accounts for 75 percent of total dividends. For example, when the illiquidity horizon is 30
years, the impatient agent’s optimal portfolio includes 0.902 and 0.644 shares of the liquid
asset for the two scenarios, respectively.

The intuition for this result is easily explained. The impatient agent has strong incen-
tives to sell his portfolio over time to accelerate his consumption. To do this, he needs to
hold some of the liquid asset. If the liquid asset is small, then he needs to sell more of it to
generate the same amount of accelerated consumption. In turn, he needs to hold more of it
to be able to sell more of it. In essence, he needs a larger slice of a “smaller pie.”

10This finding parallels Vayanos (1998) who finds that the price of an asset can be an
increasing function of its transaction costs.
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One common theme throughout all of the examples we have presented so far is that
the valuation effects tend to increase as the optimal portfolio becomes more polarized. This
tendency can be seen in the second panel of Table 3. When the liquid asset is small, the
valuation effects are again very large. In fact, when the illiquidity horizon is 30 years, the
net valuation effect is 33.72 percent.

Finally, as in previous tables, the effects of illiquidity on the liquid asset’s return dis-
tribution can be large. Furthermore, these effects need not even be monotonic in the length
of the illiquidity horizon.

5.4 Agents with Different Wealth

As a final set of examples, we consider the cases where the impatient agent starts with either
25 percent or 75 percent of the wealth in the economy. These examples allow us to examine
directly how asset pricing is affected by changes in the (wealth weighted) average level of
patience in the economy. Table 4 reports key statistics for these examples.

The primary result that emerges from Table 4 is that valuation effects become much
larger as the average market participant becomes less patient. For example, when the
illiquidity horizon is 30 years, the net valuation effect is 9.69 percent when the impatient
agent’s initial wealth is 25 percent of the total, and 25.42 percent when the impatient agent’s
initial wealth is 75 percent of the total.

6. THE ILLIQUID-MARKET CASE

The primary focus of this paper is on the asset-pricing implications when one asset is
not fully liquid. To provide some additional perspective on this issue, however, it is also
worthwhile to consider the extended case where both assets are illiquid. In essence, this
is the case where the entire market becomes illiquid. While this situation is clearly less
common, there are instances where actual markets can approach this level of illiquidity.
Examples may include emerging equity and debt markets as well as other economies without
well-functioning capital markets.

6.1 Extending the Model

In this extended setting, agents choose an initial consumption level and portfolio of assets
at time zero. Once the portfolio is chosen, however, it cannot be rebalanced again until time
T . Thus, Nt = N and Mt =M for 0 < t < T .

The first-order conditions for the agents at time zero are the same as in Equations (25)
through (28). What is different, however, is since the portfolio cannot be rebalanced during
the trading “blackout” period, the first agent’s consumption during this period equals the

17



amount of dividends he receives. Thus, consumption is given by

C = w(P +X +Q+ Y )−NP −MQ, (29)

Ct = NXt +MYt, (30)

CT =
(NA(δ,XT , YT ) +MB(δ,XT , YT )) (XT + YT )

1
β +N(A(δ,XT , YT )−A(β, XT , YT )) +M(B(δ,XT , YT )−B(β, XT , YT ))

, (31)

where 0 < t < T . The expressions for PT and QT also the same as in Equations (21) and
(22), but where Equation (31) is substituted in for CT .

Substituting the expressions for PT , QT , C, Ct, and CT into the first-order conditions
results in a system of four equations in P , Q, N , and M . Since C is linear in P and Q, the
model can again be solved explicitly for P and Q, leaving a system of two equations in N
and M to solve. These equations in N and M are easily solved numerically. Substituting
the values N andM into the explicit expressions for P and Q completes the solution. When
there is only a constrained equilibrium, we follow the same procedure as in Section 4.

6.2 Asset-Pricing Results

Table 5 reports numerical results for the illiquid-market case. In these examples, the first
asset is less risky with dividend volatility of 20 percent. The second asset is riskier with
dividend volatility of 50 percent. In the top panel, the first asset’s dividend is 25 percent of
aggregate dividends; in the second panel, the first asset’s dividend is 75 percent of aggregate
dividends. The remaining parameters are the same as in the previous examples.

As shown, optimal portfolios become even more polarized when both assets are illiquid.
Since there is no liquid asset to hold, the impatient agent’s portfolio choice is driven entirely
by the demand for intertemporal risk-sharing. In both the top and bottom panels of Table
5, the impatient agent holds virtually all of the risky asset in the economy, even though
both agents are endowed with the same initial wealth. Thus, the patient second agent
ends up holding virtually only the less-risky asset. The key lesson here is that illiquidity
fundamentally changes the way agents behave towards risk. Agents who behave in one
way when decisions have only short-term reversible consequences for risk can behave in a
completely different way when consequences are longer lasting.

Table 5 also shows that there are large effects on asset values at time zero resulting from
the illiquidity of the market. The magnitude of these effects, however, is similar to that seen
in earlier tables where one asset remained liquid. Thus, while market illiquidity makes the
valuation effects larger, asset-specific illiquidity plays the central role in determining these
effects.
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One counterintuitive feature of the valuation results is that the riskier asset is worth
more when agents face illiquid markets, while the opposite is true for the less-risky asset.
This result is particularly surprising given that one might expect the riskier asset to trade
at a lower price when investors may have to bear its risk for extended periods of time. To
understand these results, observe that when portfolios are highly polarized, the consumption
streams of the two agents in these examples are essentially uncorrelated. Thus, the marginal
utilities of the two agents are also nearly uncorrelated. Recall that first-order conditions can
be rearranged to express an asset’s price in terms of the covariance (consumption beta) of
its cash flows with marginal utility. In a representative-agent or complete-markets setting,
an asset need only satisfy a single “consumption CAPM” expression. For the first-order
conditions of both agents to be satisfied in this illiquid market, however, the price of an asset
has to simultaneously satisfy two conflicting “consumption CAPMs,” with betas based on
uncorrelated marginal utilities. To resolve the tension between these conflicting conditions,
equilibrium prices must be largely unrelated to the riskiness of the assets’ cash flows.

In a liquid market, the second asset’s value is heavily discounted because of the risk-
iness of its cash flows, and conversely for the first asset. In an illiquid market, however,
conventional risk and return relations break down, and the price of the risky asset is not as
heavily discounted as in a liquid market. Thus, as shown in Table 5, the price of the risky
asset is generally higher when markets are illiquid, and vice versa for the less-risky asset.

7. CONCLUSION

We study the asset-pricing implications of relaxing the standard assumption that assets
can always be traded whenever investors would like to. To do this, we develop a two-
asset heterogeneous agent model in which one asset can always be traded. The other asset,
however, can be traded initially, but not again until after a trading “blackout” period. Thus,
during the “blackout” period, only the liquid asset can be traded by the agents.

Because portfolio decisions become temporarily irreversible in this setting, the eco-
nomics of portfolio choice are much more complex than in the traditional portfolio-choice
framework. We show that when one of the assets is illiquid, the agents no longer find it
optimal to hold the market portfolio. Instead, they abandon diversification as a strategy
and tend to hold highly polarized portfolios. The reason for this stems from effects of two
factors not present in the traditional portfolio choice problem. First, because the impatient
agent needs to sell assets over time to accelerate his consumption, he needs to hold more
of the liquid asset during the trading “blackout” period. Second, illiquidity introduces an
additional demand for intertemporal risk sharing which induces the impatient agent to hold
more of the riskier asset. These two factors can reinforce or offset each other. In general,
the impatient agent tilts his portfolio significantly towards the liquid asset.
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The illiquidity-induced changes in the optimal portfolios have major effects on asset
prices. We show that assets with identical cash flow distributions, that would otherwise
have the same value, can differ by as much as 25 percent in their prices when one is liquid
and the other is not. Thus, the model can produce large discounts for illiquidity similar in
magnitude to those documented in many empirical studies.

Finally, our results indicate that heterogeneity in investor patience can have large asset-
pricing implications. Heterogeneity in patience has been largely unexplored as a channel for
resolving asset-pricing puzzles. Our results indicate that this may be a promising direction
well worth pursuing in future research.
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APPENDIX

1. The Fully-Liquid Case.

Setting the expressions for Pt in Equations (5) and (7) equal to each other, and similarly
for the expressions for Qt in Equations (6) and (8), implies the following pair of equations:

0 = Et

∞

0

e−βs
Ct
Ct+s

− e−δs Xt + Yt − Ct
Xt+s + Yt+s − Ct+s Xt+s ds , (A1)

0 = Et

∞

0

e−βs
Ct
Ct+s

− e−δs Xt + Yt − Ct
Xt+s + Yt+s − Ct+s Yt+s ds . (A2)

Both of the above expressions are satisfied by requiring that

e−βs
Ct
Ct+s

= e−δs
Xt + Yt − Ct

Xt+s + Yt+s − Ct+s , (A3)

hold for all s, Xt+s, and Yt+s. Solving this expression for Ct+s implies

Ct+s =
e−βs Ct

e−βs Ct + e−δs (Xt + Yt − Ct) (Xt+s + Yt+s). (A4)

Thus, Ct+s can be expressed in terms of Ct.

Similarly, satisfying the first-order conditions as of time zero requires that

Ct =
e−βt C

e−βt C + e−δt (X + Y − C) (Xt + Yt), (A5)

Ct+s =
e−β(t+s) C

e−β(t+s) C + e−δ(t+s) (X + Y − C) (Xt+s + Yt+s). (A6)

Substituting the expression for Ct in Equation (A5) into Equation (A4), however, reduces
Equation (A4) to Equation (A6). Thus, requiring that Equation (A5) hold for all t is
sufficient for the first-order conditions in Equations (5) through (8) to be satisfied for all t.

Dividing Ct by the expression for Ct+s in Equation (A4) and rearranging gives
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Ct
Ct+s

=
Ct + (Xt + Yt − Ct) e(β−δ)s

Xt+s + Yt+s
. (A7)

Substituting this into Equations (5) and (6) and rearranging yields

Pt = Ct Et

∞

0

e−βs
Xt+s

Xt+s + Yt+s
ds

+ (Xt + Yt − Ct) Et
∞

0

e−δs
Xt+s

Xt+s + Yt+s
ds , (A8)

Qt = Ct E
∞

0

e−βs
Yt+s

Xt+s + Yt+s
ds

+ (Xt + Yt − Ct) Et
∞

0

e−δs
Yt+s

Xt+s + Yt+s
ds . (A9)

Section 3 of this Appendix shows that these equations can be reexpressed as

Pt = Ct A(β, Xt, Yt) + (Xt + Yt − Ct) A(δ, Xt, Yt), (A10)

Qt = Ct B(β,Xt, Yt) + (Xt + Yt − Ct) B(δ,Xt, Yt), (A11)

which are Equations (11) and (12).

To solve for C, note that after consuming at time zero, the first agent’s wealth equals
w(P +X +Q+ Y )−C, where the first term represents the value of the agent’s endowment
(with dividends). Setting the value of the agent’s wealth equal to the present value of his
future consumption stream gives

w(P +X +Q+ Y )− C = E
∞

0

e−βt
C

Ct
Ct dt , (A12)

= C/β, (A13)

which implies
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C =
w(P +X +Q+ Y )

1 + 1
β

. (A14)

Substituting in the expressions for P and Q from Equations (A8) and (A9), and solving for
C gives

C =
w β (1 + δ)

δ (1 + β) + w(β − δ) (X + Y ). (A15)

Substituting this expression into Equation (A5) gives Equation (9).

From Equation (9), optimal consumption is homogeneous of degree one in total divi-
dends Xt + Yt. Based on this, we conjecture (and later verify) that the dynamic portfolio
strategy that generates Ct consists of equal numbers of shares of the two assets, Nt = Mt,
where Nt is a differentiable function of time. By definition, consumption equals the sum of
dividends received minus net purchases of assets. Thus,

Ct = Nt(Xt + Yt)− (Pt +Qt)Nt , (A16)

where Nt denotes a derivative. From Equations (A8) and (A9) it follows that

Pt +Qt =
Ct
β
+
Xt + Yt − Ct

δ
. (A17)

Substituting this and the expression for Ct in Equation (A5) into Equation (A16) gives the
ordinary differential equation

Nt −
βδ(Ceδt + (X + Y − C)eβt)
Cδeδt + β(X + Y − C)eβt Nt =

−Cβδeδt
Cδeδt + β(X + Y − C)eβt . (A18)

This is a standard first-order linear differential equation which can be solved directly by an
integration. The initial value of N is determined by imposing the condition that N(P +Q)
equals the first agent’s initial wealth after time-zero consumption. From Spiegel (1967), the
solution to this differential equation is the expression given in Equation (10). This verifies
the conjecture and also establishes that the consumption strategy identified in Equation
(A5) is feasible.
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In solving the illiquid-asset problem, it is also necessary to solve for CT when the first
agent has w shares of the first asset and v shares of the second asset at time T (instead of
w shares of each). Since the model reverts back to the fully-liquid case at time T (with the
exception that there is no consumption gulp at time T ), the expressions for PT and QT are
as given from Equations (11) and (12). To solve for CT in this more general case, we set
the value of the first agent’s wealth at time T equal to the present value of his remaining
consumption stream

wPT + vQT = ET

∞

0

e−βs
CT
CT+s

CT+s ds , (A19)

= CT /β, (A20)

which implies

CT = β(wPT + vQT ). (A21)

Substituting in the expressions for PT and QT in Equations (A10) and (A11), and then
solving for CT gives,

CT =
(wA(δ, XT , YT ) + vB(δ,XT , YT ))(XT + YT )

1
β + w(A(δ, XT , YT )−A(β,XT , YT )) + v(B(δ,XT , YT )−B(β,XT , YT ))

. (A22)

in this general case. In the illiquid-asset case, CT is given by substituting in w = NT and
v = M into the above equation. In the illiquid-market case, CT is given by substituting in
w = N and v =M into the above equation.

2. The Illiquid-Asset Case.

To solve the illiquid-asset case numerically, we first discretize the problem by approximating
the dividend dynamics using binomial processes. Let ∆t denote the discretization step.
Then,

Xt+∆t = Xt exp (µX − σ2X/2)∆t± σX
√
∆t , (A23)

Yt+∆t = Yt exp (µY − σ2Y /2)∆t± σY
√
∆t , (A24)
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where the probability of both processes increasing or decreasing together is p/2, the proba-
bility of the first process increasing and the second decreasing is (1−p)/2, the probability of
the first process decreasing and the second increasing is (1− p)/2, and where p = (1+ ρ)/2.
This assumption insures that the correlation between the two processes is ρ. Note that we
use this binomial process merely as an approximation to the continuous-time process.

To simplify the exposition, we make the assumption that ∆t = 1. The numerical
procedure, however, is applicable to any positive value of ∆t. Note that at time t, where
0 < t < T , the first agent’ consumption is

Ct = Nt−1 Xt +M Yt − Pt(Nt −Nt−1). (A25)

The recursive approach begins by first solving the problem at time T−1, conditional on
knowing the functional forms of PT and CT . Since the model reverts back to the fully-liquid
model at time T , however, these functional forms are those for the fully-liquid model. At
time T − 1, the first-order conditions of optimality for the two agents are

PT−1
CT−1

= ET−1
e−β(XT + PT )

CT
, (A26)

PT−1
XT−1 + YT−1 − CT−1 = ET−1

e−δ(XT + PT )
XT + YT − CT . (A27)

Substituting in the expression for CT−1 from Equation (A25) into Equations (A26) and
(A27) and solving for PT−1 gives the following pair of equations,

PT−1 =
(NT−2 XT−1 +M YT−1) ET−1

e−β(XT+PT )
CT

1 + (NT−1 −NT−2) ET−1 e−β(XT+PT )
CT

, (A28)

PT−1 =
((1−NT−2) XT−1 + (1−M) YT−1) ET−1 e−δ(XT+PT )

XT+YT−CT

1− (NT−1 −NT−2) ET−1 e−δ(XT+PT )
XT+YT−CT

. (A29)

For a given choice of M , and recognizing that both PT and CT can be expressed as explicit
functions of NT−1, M , XT , and YT (using the generalized solution for consumption in the
fully-liquid case given in Equation (A22)), these two equations can be set equal to each
other to provide a single equation in the unknown NT−1. This single equation is easily
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solved numerically for NT−1, which, in turn, can be substituted back into Equation (A28)
or Equation (A29) to give PT−1.

To provide a full solution at time T − 1, we solve this problem repeated for every com-
bination of XT−1 and YT−1 on the two-dimensional binomial tree and for every value of M
and NT−2 ranging from zero to one, (in steps of 0.001). Although computationally intensive,
this procedure gives us a lookup table from which we can interpolate the equilibrium values
of NT−1 and PT−1 for any value of XT−1, YT−1, M and NT−2.

The algorithm now rolls back to time T − 2. Exactly as before, the agents first-order
conditions as of time T − 2 can be rearranged to give the pair of equations,

PT−2 =
(NT−3 XT−2 +M YT−2) ET−2

e−β(XT−1+PT−1)
CT−1

1 + (NT−2 −NT−3) ET−2 e−β(XT−1+PT−1)
CT−1

, (A30)

PT−2 =
((1−NT−3) XT−2 + (1−M) YT−2) ET−2 e−δ(XT−1+PT−1)

XT−1+YT−1−CT−1

1− (NT−2 −NT−3) ET−2 e−δ(XT−1+PT−1)
XT−1+YT−1−CT−1

. (A31)

These can again be set equal and solved for NT−2 (and PT−2) for each set of values forXT−2,
YT−2,M , and NT−3, given the functional forms for PT−1 and CT−1. These functional forms,
however, can be approximated directly using the lookup table constructed in the previous
step (the value of CT−1 follows from the value of NT−1 because of Equation (A25)). Once
again, we solve the problem at time T − 2 repeatedly and construct a new lookup table for
NT−2 and PT−2. This process iterates back until we have constructed a lookup table for
time one.

At time zero, the first-order conditions for the agents are

P

C
= E

e−β(X1 + P1)
C1

, (A32)

P

X + Y − C = E
e−δ(X1 + P1)
X1 + Y1 − C1 , (A33)

Q

C
= E

T

i=1

e−βi
Yi
Ci

+ e−βT
QT
CT

, (A34)

Q

X + Y − C = E
T

i=1

e−δi
Yi

Xi + Yi − Ci + e−δT
QT

XT + YT − CT . (A35)
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Since both assets can be traded at time zero,

C = w(X + Y + P +Q)− PN −QM. (A36)

By substituting this expression into Equations (A32) through (A35), the values P and Q
can be eliminated, resulting in a system of two equations in the two unknowns M and N .
Again, this system is straighforward to solve numerically. Once N and M are determined,
the values of P and Q are given directly by substituting N and M back into the first-order
conditions.

To minimize the computational burden, we make a number of simplifying assumptions
in implementing the algorithm. First, we set ∆t equal to one year. Second, we model the
binomial process and value the cash flows out only to 100 years. Third, rather than using the
closed-form solutions for the fully-liquid case, we solve for these numerically using the same
binomial grid. This allows us to compare the fully-liquid case directly with the illiquid-asset
case without introducing small discretization errors. Finally, rather than evaluating the
expectations on the right hand side of Equations (A34) and (A35) directly as of time zero,
we use a similar type of lookup table approach to solve for the values of the expectations
sequentially from time T−1 to time zero (using the double expectation theorem repeatedly).

Finally, since an unconstrained equilibrium may not exist, it is important to consider
how the algorithm should be modified in this situation. First, it is important to recognize
that agents will never take a short position in the liquid asset at time 0 < t < T . The
reason for this is that the dividends for the illiquid asset could decline to the point where
an agent’s consumption became negative, and therefore, his utility became negative infinity.
Thus, zero and one are upper and lower bounds for Nt. Now consider the situation where
the first agent has a lower valuation for the liquid asset even when Nt = 0. Since the first
agent cannot sell any more shares to the second agent, his first-order conditions cannot
be satisfied. In this situation, Nt = 0, and Pt is given from the second agent’s first-order
conditions. A similar argument holds for the second agent.

Now consider the situation at time zero. Similar reasoning to the above shows that
agents will not take short positions in either asset at time zero. Thus, zero and one become
upper and lower bounds for N and M . If one agent has a lower valuation for an asset even
when his holdings of the asset are zero, then that agent’s first-order condition for the asset
cannot be satisfied. In this situation, we use the first-order condition for the other agent in
determining the equilibrium values for the other portfolio weight and for the asset prices at
time zero.

3. The A(·, Xt, Yt) and B(·,Xt, Yt) Functions.
We define A(c,Xt, Yt) as the expectation
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A(c,Xt, Yt) = Et

∞

0

e−cs
Xt+s

Xt+s + Yt+s
ds , (A37)

that appears in various forms in the agents’ first-order conditions. This can be rewritten as

Et

∞

0

e−cs
1

1 + qeu
ds , (A38)

where q = Yt
Xt
, and u is a normally distributed random variable with mean µs and variance

σ2s, where

µ = µY − µX − σ2Y /2 + σ2X/2, (A39)

σ2 = σ2X + σ2Y − 2ρσXσY . (A40)

Introducing the density for u into the above expectation gives

∞

0

∞

−∞
e−cs

1√
2πσ2s

1

1 + qeu
exp

−(u− µs)2
2σ2s

du ds. (A41)

Interchanging the order of integration and collecting terms in s gives,

∞

−∞

1√
2πσ2

1

1 + qeu
exp

µu

σ2

∞

0

s−1/2 exp − u2

2σ2
1

s
− µ

2 + 2cσ2

2σ2
s ds du. (A42)

From Equation (3.471.9) of Gradshteyn and Ryzhik (2000), this expression becomes,

∞

−∞

2√
2πσ2

1

1 + qeu
exp

µu

σ2
u2

µ2 + 2cσ2

1/4

K1/2 2
u2(µ2 + 2cσ2)

4σ4
du, (A43)

where K1/2(·) is the modified Bessel function of order 1/2 (see Abramowitz and Stegum
(1970) Chapter 9). From the identity relations for Bessel functions of order equal to an
integer plus one half given in Gradshteyn and Ryzhik Equation (8.469.3), however, the
above expression can be expressed as,
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1

ψ

∞

−∞

1

1 + qeu
exp

µu

σ2
exp − ψ

σ2
| u | du, (A44)

where

ψ = µ2 + 2cσ2.

In turn, Equation (A44) can be written

1

ψ

∞

0

1

1 + qeu
exp (γu) du +

1

ψ

0

−∞

1

1 + qeu
exp (θu) du, (A45)

where

γ =
µ− ψ
σ2

, θ =
µ+ ψ

σ2
.

Define y = e−u. By a change of variables Equation (A37) can be written

1

qψ

1

0

1

1 + y/q
y−γ dy +

1

ψ

1

0

1

1 + qy
yθ−1 dy. (A46)

From Abramowitz and Stegum Equation (15.3.1), this expression becomes

1

qψ(1− γ) F (1, 1− γ; 2− γ; −1/q) +
1

ψθ
F (1, θ; 1 + θ; −q). (A47)

Substituting in for q gives the expression for A(c,Xt, Yt)

A(c,Xt, Yt) = k1 (Xt/Yt) F 1, 1− γ; 2− γ; −Xt

Yt
+ k2 F 1, θ; 1 + θ; − Yt

Xt
,

(A48)

where

k1 =
1

ψ(1− γ) , k2 =
1

ψθ
.

The function B(c,Xt, Yt) is defined as the expectation,
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B(c,Xt, Yt) = Et

∞

0

e−cs
Yt+s

Xt+s + Yt+s
ds . (A49)

The evaluation of this expectation is omitted since it is virtually the same at that for
A(c,Xt, Yt) above. The resulting expression for B(c,Xt, Yt) is

B(c,Xt, Yt) = k3 (Yt/Xt) F 1, 1 + θ; 2 + θ; − Yt
Xt

− k4 F 1, −γ; 1− γ; −Xt

Yt
,

(A50)

where

k3 =
1

ψ(1 + θ)
, k4 =

1

ψγ
.

Substituting the solutions for A(c,Xt, Yt) and B(c,Xt, Yt) into Equations (A8) and (A9)
gives the expressions for Pt and Qt in Equations (11) and (12).
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