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I. Introduction

One of the most fundamental issues in finance is how
the market compensates investors for bearing credit
risk. This issue is complicated by the fact that credit
spreads may actually consist of both default and li-
quidity components, as a number of recent papershave
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We study how the market
prices the default and li-
quidity risks incorporated
into interest rate swap
spreads. We jointly
model the Treasury, repo,
and swap term structures
using a five-factor affine
framework and estimate
the model by maximum
likelihood. The credit
spread is driven by a per-
sistent liquidity process
and a rapidly mean-re-
verting default intensity
process. The credit pre-
mium for all but the
shortest maturities is pri-
marily compensation for
liquidity risk. The term
structure of liquidity pre-
mia increases steeply,
while that of default pre-
mia is almost flat. Both
liquidity and default pre-
mia vary significantly
over time.
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shown.® How large are the market premia for the default and liquidity risks
faced by the holder of a credit-sensitive security?

To address this issue, this article studies what is rapidly becoming one of
the most important credit spreads in the financial markets—interest rate swap
spreads. Since swap spreads represent the difference between swap rates and
Treasury bond yields, they reflect the difference in the default risk of the
financial sector quoting Libor rates and the U.S. Treasury. In addition, swap
spreads may include a significant liquidity component if the relevant Treasury
bond trades special in the repo market. Thus, swap spreads represent a nearly
ideal data set for examining how both default and liquidity risks influence
security returns. The importance of swap spreads derives from the dramatic
recent growth in the notional amount of interest rate swaps outstanding rel ative
to the size of the Treasury bond market. For example, the total amount of
Treasury debt outstanding at the end of June 2003 was $6.6 trillion. In contrast,
the Bank for International Settlements (BIS) estimates that the total notiona
amount of interest rate swaps outstanding at the end of June 2003 was $95.0
trillion, representing nearly 15 times the amount of Treasury debt (see http://
www.bis.org/publ/otc_hy0311.pdf).

Our empirical approach consists of jointly modeling the Treasury, repo, and
swap term structures using the reduced-form credit framework of Duffie and
Singleton (1997, 1999). The liquidity component in swap spreadsisidentified
from the difference between general collateral government repo rates (which
can be viewed essentialy as riskless rates) and yields on highly liquid on-
the-run Treasury bonds. The default component in swap spreads can then be
identified from the difference between swap and repo rates. Estimating all
three curves jointly allows us to capture the interactions among the term
structures. To capture the rich dynamics of the Treasury, repo, and swap
curves, we use a five-factor affine term structure model that allows the swap
spread to be correlated with the riskless rate. In addition, our specification
allows market prices of risk to vary over time to reflect the possibility that
the willingness of investors to bear default and liquidity risk may change. We
estimate the parameters of the model by maximum likelihood. The data for
the study span nearly the full history of the swap market. We show that both
the swap and Treasury term structures are well described by the five-factor
affine model.

As a preliminary, we first verify that there are both significant default and
liquidity components in the swap spread. On average, the default risk com-
ponent is about 31 basis points, while the liquidity risk component is about
7 basis points. The default risk component is uniformly positive, has frequent
spikes, and is rapidly mean reverting. In contrast, the liquidity risk component
is very persistent and was near zero for much of the 1990s but has increased

1. See, eg., Duffie and Singleton (1997), Huang and Huang (2000), Collin-Dufresne, Gold-
stein, and Martin (2001), Elton et a. (2001), and Longstaff, Mithal, and Neis (2005).
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dramatically in recent years. The results also suggest that little of the swap
spread is attributable to tax effects.

We then turn to the central issue of how the market prices the liquidity and
default risks in the swap curve. We find that there is a sizable credit premium
built into the swap curve. Surprisingly, however, for horizons beyond 5 years,
this credit premium is largely compensation for the variation in the liquidity
component of the spread. On average, the term structure of liquidity premia
is positive and steeply increasing with maturity. In contrast, the average term
structure of default risk premiais flat. Both the default and liquidity premia
vary significantly through time and occasionally take on negative valuesduring
the sample period.

A number of other papers have aso focused on the determinants of swap
spreads. In an important recent paper, Duffie and Singleton (1997) apply a
reduced-form credit modeling approach to the swap curve and examine the
properties of swap spreads. Our results support their finding that both default
risk and liquidity components are present in swap spreads. He (2000) uses a
multifactor affine term structure framework to model the Treasury and swap
curves simultaneously but does not estimate the model. Other research on
swap spreads includes Sun, Sundaresan, and Wang (1993), Lang, Litzenberger,
and Liu (1998), Collin-Dufresne and Solnik (2001), Grinblatt (2001), Eom,
Subrahmanyam, and Uno (2002), Huang, Neftci, and Jersey (2003), Afonso
and Strauch (2004), and Kambhu (2004). Our article differsin afundamental
way from this literature, since, by jointly modeling and estimating the Trea-
sury, repo, and swap curves, our approach allows us to identify both the
default and liquidity components of the credit spread embedded in swap rates.
Furthermore, to our knowledge, this article is the first to provide direct es-
timates of both the liquidity and default risk premiain the swap market.

The remainder of this article is organized as follows. Section Il explains
the framework used to model the Treasury, repo, and swap term structures.
Section |11 describesthe data. Section IV discussesthe estimation of the model.
Section V presents the empirical results. Section VI summarizes the results
and makes concluding remarks.

1. Modeling Swap Spreads

To understand how the market prices credit risk over time, we need a frame-
work for estimating expected returns implied by the swap and Treasury term
structures. In this section, we use the Duffie and Singleton (1997, 1999) credit
modeling approach as the underlying framework for analyzing the behavior
of swap spreads. In particular, we jointly model the Treasury, repo, and swap
term structures using a five-factor affine framework and estimate the param-
eters of the model by maximum likelihood.?

2. There are many recent examples of affine credit models. A few of these are Duffee (1999),
He (2000), Collin-Dufresne and Solnik (2001), Duffie and Liu (2001), Duffie, Pedersen, and
Singleton (2003), Huang and Huang (2003), Berndt et a. (2004), and Longstaff et al. (2005).



2340 Journal of Business

Recall that in the Duffie and Singleton (1997, 1999) framework, the value
D(t, T) of aliquid riskless zero-coupon bond with maturity date T can be
expressed as

: oy

T
t

D, T) = EQ[exp(—f rsds)

where r, denotes the instantaneous riskless rate and the expectation is taken
with respect to the risk-neutral measure Q rather than the objective measure
P. Assumethat there are also illiquid riskless zero-coupon bondsin the market.
This framework can be extended to show that the price A(t, T) of an illiquid
riskless zero-coupon bond can be expressed as

.
exp(—f rs+7sd%
t

where v, is an instantaneous liquidity spread (or perhaps more precisely, an
illiquidity spread).® Finally, default is modeled as the realization of a Poisson
process with an intensity that may be time varying. Under some assumptions
about the nature of recovery in the event of default, the value of arisky zero-
coupon bond C(t, T) can be expressed in the following form:

.
exp(—J s+ s+ )\Sds;

where A, is the risk-neutral default intensity process. This default intensity
process can aso be thought of as the product of the time-varying Poisson
intensity and the fraction of the loss of market value in the event of default.

In applying this credit model to swaps, we are implicitly making two as-
sumptions. First, we assume that there is no counterparty credit risk. Thisis
consistent with recent papers by Duffie and Singleton (1997), He (2000), and
Grinblatt (2001) that argue that the effects of counterparty credit risk on market
swap rates should be negligible because of the standard marking-to-market
or posting-of-collateral and haircut requirements almost universally applied
in swap markets.* Second, we make the relatively weak assumption that the
credit risk inherent in the Libor rate (which determines the swap rate) can be
modeled as the credit risk of a single defaultable entity. In actuality, the Libor
rateisacomposite of rates quoted by 16 banks and, as such, need not represent

AL T) = Eq , )

CtT) = Eq , 3

3. This approach follows Duffie and Singleton (1997), who alow for Treasury cash flows to
be discounted at a lower rate than non-Treasury cash flows, where the difference is due to a
convenience yield process. Our approach accomplishes the same by adding a spread to the
discount rate applied to non-Treasury cash flows.

4. Even in the absence of these requirements, the effects of counterparty credit risk for swaps
between similar counterparties are very small relative to the size of the swap spread. For example,
see Cooper and Mello (1991), Sun et a. (1993), Bollier and Sorensen (1994), Longstaff and
Schwartz (1995), Duffie and Huang (1996), and Minton (1997).
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the credit risk of any particular bank.® In this sense, the credit risk implicit
in the swap curve can be viewed essentially as the average credit risk of the
most representative banks providing quotations for Eurodollar deposits.®

To model the bond prices D(t, T), A(t, T), and C(t, T), we next need to
specify the dynamics of r, -, and A. In doing this, we work within a general
affine framework. In particular, we assume that the dynamics of r, v, and A
are driven by a vector X of five state variables, X' = [X,, X,, X3, X,, X5].

In modeling the liquid riskless rate r, we assume that

r=206,+X +X,+X,, (@]

where §, is a constant. Thus, the dynamics of the liquid risklessterm structure
are driven by the first three state variables. This three-factor specification of
the riskless term structure is consistent with recent evidence by Da and
Singleton (2002) and Duffee (2002) about the number of significant factors
affecting Treasury yields.”

In modeling the dynamics of the liquidity spread v, we assume that

v =06, +X,, )

where 6§, is a constant. Thus, the state variable X, drives the variation in the
yield spreads between illiquid and liquid riskless bonds. The liquidity spread
v may be correlated with both r and A, since our framework will allow X,
to be correlated with the other state variables.

Finally, to model the dynamics of the default intensity A, we assume that

N =26,+ 7+ X, (6)

where 6, and 7 are constants. This specification allows the default process A
to depend on the state variables driving the riskless term structure in both
direct and indirect ways. Specifically, N depends directly on the first three
state variables through the term 7r in equation (6). Indirectly, however, the
default process N may be correlated with the riskless term structure through
correlations between X, and the other state variables. The advantage of a-
lowing both direct and indirect dependence is that it enables us to examine
in more depth the determinants of swap spreads. For example, our approach

5. Theofficia Libor rate is determined by eliminating the highest and lowest four bank quotes
and then averaging the remaining eight. Furthermore, the set of 16 banks whose quotes are
included in determining Libor may change over time. Thus, the credit risk inherent in Libor may
be “refreshed” periodically as low-credit banks are dropped from the sample and higher-credit
banks are added. The effects of this “refreshing” phenomenon on the differences between Libor
rates and swap rates are discussed in Collin-Dufresne and Solnik (2001).

6. For discussions about the economic role that interest-rate swaps play in financial markets,
see Bickder and Chen (1986), Turnbull (1987), Smith, Smithson, and Wakeman (1988), Wall
and Pringle (1989), Macfarlane, Ross, and Showers (1991), Sundaresan (1991), Litzenberger
(1992), Sun et a. (1993), Brown, Harlow, and Smith (1994), Minton (1997), Gupta and Sub-
rahmanyam (2000), and Longstaff, Santa-Clara, and Schwartz (2001).

7. Also see the empirical evidence in Litterman and Scheinkman (1991), Knez, Litterman,
and Scheinkman (1994), Longstaff et al. (2001), and Piazzesi (2005) indicating the presence of
at least three significant factors in term structure dynamics.
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allows us to examine whether the swap spread is an artifact of the difference
in the tax treatment given to Treasury securities and Eurodollar deposits.
Specificaly, interest from Treasury securities is exempt from state income
taxation while interest from Eurodollar deposits is not. Thus, if the spread A
were determined entirely by the differential tax treatment, the parameter 7
would represent the marginal state tax rate of the marginal investor and might
be on the order of 0.05 to 0.10. In contrast, structural models of default risk,
such as Merton (1974), Black and Cox (1976), and Longstaff and Schwartz
(1995), suggest that credit spreads should be inversely related to the level of
r, implying a negative sign for 7. Finally, we assume that the value of v is
the same under both the objective and risk-neutral measures. The value of \,
however, can be different under the objective and risk-neutral measures. This
issue is addressed later in the section on risk premia.

To close the model, we need to specify the dynamics of the five state
variables driving r, v, and A. We assume that under the risk-neutral measure,
the state variable vector X follows the general Gaussian process,

dX = —BXdt+ LdB®, ©

where 8 isadiagonal matrix, B? isavector of independent standard Brownian
motions, I islower diagonal (with elements denoted by ¢; ), and the covariance
matrix of the state variables XX’ is of full rank and allows for general cor-
relations among the state variables. As shown by Dai and Singleton (2000),
thisis the most general Gaussian or A;(0) structure that can be defined under
therisk-neutral measure. Finally, Dai and Singleton (2002) argue that Gaussian
models are more successful in capturing the dynamic behavior of risk premia
in the class of affine models.

To study how the market compensates investors over time for bearing credit
risk, it isimportant to allow afairly genera specification of the market prices
of risk in this affine A,(5) framework. Accordingly, we assume that the dy-
namics of X under the objective measure are given by

dX = —(X — 6)dt + £dB", G)

where « is a diagonal matrix, 6 is a vector, and B is a vector of independent
standard Brownian motions. This specification has the advantages of being
both tractable and alowing for general time-varying market prices of risk for
each of the state variables.?

8. It is important to acknowledge, however, that even more general specifications for the
market prices of risk are possible. For example, the diagonal matrix x could be generalized to
allow nonzero off-diagonal terms. Our specification, however, already requires the estimation of
10 market price of risk parameters and approaches the practical limits of our computational
techniques. Adding more market price of risk parameters also raises the risk of introducing
identification problems.
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Given therisk-neutral dynamics of the state variables, closed-form solutions
for the prices of zero-coupon bonds are given by

D(t,T) = exp(—6,(T — t) + a(t) + b'(t)X), 9
A(t, T) = exp(—(6o + 6,)(T — t) + c(t) + d'(t)X), (10)
Ct,T) = exp(—((A + 7)do + 6, + 8,))(T — t) + et) + F(t)X), (11)

where
1
alt) = EL’B EXBTI(T —t)a
— L'BZZ872(l —e AT YL

v 2 266,86 + )

b(t) = 87 (e "™V —I)L,
| istheidentity matrix, and L’ = [1,1,1,0,0]. The functions c(t) and d(t) are
the same as a(t) and b(t), except that L' is defined as [1, 1, 1,1,0]. Similarly,

the functions e(t) and f(t) are the same as a(t) and b(t), except that L' is
defined as[1+ 7,1+ 7,1+ 7,1, 1].

1 — e GithT
(EX); Ly,

[Il. The Data

The objective of our articleisto estimate the values of theliquidity and default
processes underlying swap spreads and then to identify the risk premia as-
sociated with these processes. To this end, our approach is to use data that
allow these processes to be identified separately. Specifically, we use data for
actively traded on-the-run Treasury bonds to define the liquid riskless term
structure. To identify the liquidity component of spreads over Treasuries, we
need a proxy for the yields on illiquid Treasury bonds. There are severa
possible candidates for this proxy. First, we could use data from off-the-run
Treasury bonds. The difficulty with this approach is that even off-the-run
Treasury bonds may still contain some “flight-to-liquidity” premium over other
types of fixed income securities. Second, we could use data for bonds that
are guaranteed by the U.S. Treasury, such as Refcorp Strips. As shown by
Longstaff (2004), these bonds have the same credit risk as Treasury bonds,
but they do not enjoy the same liquidity as Treasury bonds. One difficulty
with this approach, however, is that data for Refcorp Strips are not available
for the first part of the sample period. The third possibility, and the approach
we adopt, is to use the general collateral government repo rate as a proxy for
the “liquidity-adjusted” riskless rate. As argued by Longstaff (2000), thisrate
isvirtually arisklessrate, since repo loans are almost awaysovercollateralized
using Treasury securities as collateral. Furthermore, since repo loans are con-
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tracts rather than securities, they are less likely to be affected by the types of
supply- and demand-related specialness effects that influence the prices of
securities. We note that the 3-month repo rate and the yield on 3-month Refcorp
Strips are within severa basis points of each other throughout most of the
sample period (when both rates are available). With this interpretation of the
repo rate as the “liquidity-adjusted” riskless rate, the estimated value of r can
be viewed as a proxy for the implied “specia” repo rate for the highly liquid
on-the-run bonds used to estimate the Treasury curve.® Finally, the default
component of the credit spread built into swap rates can be identified using
market swap rates in addition to the Treasury and repo rates.

Given this approach, the next step isto estimate the parameters of the model
from market data. In doing this, we use one of the most extensive sets of
U.S. swap data available, covering the period from January 1988 to February
2002. This period includes most of the active history of the U.S. swap market.

The Treasury data consist of weekly (Friday) observations of the constant
maturity Treasury (CMT) rates published by the Federal Reserve in the H-
15 release for maturities of 2, 3, 5, and 10 years. These rates are based on
the yields of on-the-run Treasury bonds of various maturities and reflect the
Federal Reserve's estimate of what the par or coupon rate would be for these
maturities. The CMT rates are widely used in financial markets as indicators
of Treasury rates for the most actively traded bond maturities. Since CMT
rates are based heavily on the most recently auctioned bonds for each maturity,
they provide accurate estimates of yields for liquid on-the-run Treasury bonds.
The possibility that these bonds may trade special in the repo market is taken
into account explicitly in the estimation, since the liquidity process«, can be
viewed as a direct measure of the specialness of Treasury bonds relative to
the repo rate. Finaly, data on 3-month general collateral repo rates are pro-
vided by Salomon Smith Barney.

The swap data for the study consist of weekly (Friday) observations of the
3-month Libor rate and midmarket constant maturity swap (CMS) rates for
maturities of 2, 3, 5, and 10 years. These maturities represent the most liquid
and actively traded maturities for swap contracts. All of these rates are based
on end-of-trading-day quotes available in New York to insure comparability
of the data. In estimating the parameters, we are careful to take into account
daycount differences among the rates, since Libor rates are quoted on an
actual /360 basiswhile swap rates are semiannual bond equivalent yields. There
are two sources for the swap data. The primary source is the Bloomberg
system, which uses quotations from a number of swap brokers. The data for
Libor rates and for swap rates from the pre-1990 period are provided by
Salomon Smith Barney. As an independent check on the data, we also compare
the rates with quotes obtained from Datastream; the two sources of data are
generally very consistent.

9. For discussions of the implications of “specia” repo rates for Treasury bonds, see Duffie
(2996), Buraschi and Menini (2002), and Krishnamurthy (2002).
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Table 1 presents summary statistics for the Treasury, repo, and swap data,
as well as the corresponding swap spreads. In this article, we define the swap
spread to be the difference between the CMS rate and the corresponding
maturity CMT rate. Figure 1 plots the 2-year, 3-year, 5-year, and 10-year swap
spreads over the sample period. As shown, swap spreads average between 40
and 60 basis points during the sample period, with standard deviations on the
order of 20-25 basis points. The standard deviations of weekly changes in
swap spreads are only on the order of 6-8 basis points. Note, however, that
there are weeks when swap spreads narrow or widen by as much as 45 basis
points. In general, swap spreads are less serialy correlated than the interest
rates. The first difference of swap spreads, however, displays significantly
more negative serial correlation. This implies that there is a strong mean-
reverting component to swap spreads.

IV. Estimating the Term Structure Model

In this section, we describe the empirical approach used in estimating the term
structure model and report the maximum likelihood parameter estimates. The
empirical approach closely parallels that of the recent papers by Duffie and
Singleton (1997), Dai and Singleton (2000), and Duffee (2002). This approach
also draws on other papers in the empirical term structure literature, such as
Longstaff and Schwartz (1992), Chen and Scott (1993), Pearson and Sun
(1994), Duffee (1999), and many others.

In this five-factor model, the parameters of both the objective and risk-
neutral dynamics of the state variables need to be estimated. In addition, we
need to solve for the value of the state variable vector X for each of the 734
weeks in the sample period. At each date, the information set consists of four
points along the Treasury curve, one point on the repo curve, and five points
along the swap curve. Specifically, we use the CMT2, CMT3, CMT5, and
CMT10 rates for the Treasury curve, the 3-month repo rate, and the 3-month
Libor, CMS2, CMS3, CM S5, and CM S10 rates for the swap curve. Since the
model involves only five state variables, using 10 observations at each date
provides uswith significant additional cross-sectional pricinginformationfrom
which the parameters of the risk-neutral dynamics can be more precisely
identified.

We focus first on how the five values of the state variables are determined.
Asin Chen and Scott (1993), Duffie and Singleton (1997), Dai and Singleton
(2000), Duffee (2002), and others, we solve for the value of X by assuming
that specific rates are observed without error each week. In particular, we
assume that the CMT2 and CMT10 rates, the 3-month repo rate, and the 3-
month Libor and CMS10 rates are observed without error. These rates rep-
resent the shortest and longest maturity rates along each curve and are among
the most liquid maturities quoted, and hence, the most likely to be observed
with a minimum of error.



TABLE 1 Summary Statistics for the Data
Levels First Differences
Standard Serial Standard Seria
Mean Deviation Minimum Median Maximum Correlation Mean Deviation Minimum Median Maximim Correlation

Libor 5.817 1.801 1.750 5.688 10.560 .998 -.007 113 —.800 .000 .563 .097
GC Repo 5.509 1.748 1.560 5.450 10.150 .998 —.007 104 —.735 .000 450 .034
CMS2 6.417 1.613 2.838 6.205 10.750 .995 —.007 156 —.555 .000 .638 —.031
CMS3 6.668 1511 3.466 6.395 10.560 .995 —.007 154 —.510 —.010 .681 —.054
CMS5 6.991 1.395 4.208 6.692 10.330 .994 —.006 148 —.464 -.007 .655 —-.070
CMS10 7.369 1.305 4.908 7.053 10.130 .994 —.006 137 —.420 —-.010 .608 —-.081
CMT2 6.019 1.520 2.400 5.895 9.840 .996 —.007 142 —.500 —.010 470 .018
CMT3 6.199 1.443 2.810 6.020 9.760 .995 —.006 143 —.480 —.010 480 .009
CMT5 6.471 1.330 3.580 6.240 9.650 .994 —.006 .140 —.460 —-.010 450 -.021
CMT10 6.767 1.276 4.300 6.530 9.490 .995 —.006 129 —.380 .000 460 -.035
SS2 .399 .198 .040 .398 951 916 .000 .081 —.340 .000 .358 —.450
SS3 470 213 .100 499 1.009 .937 .000 .075 —.300 .000 .380 —.457
SS5 520 .240 120 .523 1121 .954 .000 .073 —.290 .000 457 —.424
SS10 .602 .253 .155 570 1.343 .968 .000 .064 —.280 .000 437 —.435

NotE.—This table reports the indicated summary statistics for both the level and first difference of the indicated data series. The data consist of 734 weekly observations from January
1988 to February 2002. Libor denotes the 3-month Libor rate; GC Repo denotes the 3-month general collateral government repo rate; CMS denotes the swap rate for the indicated maturity;

CMT denotes the constant maturity Treasury rate for the indicated maturity; and SS denotes the swap spread for the indicated maturity, where the swap spread is defined as the difference

between the corresponding CMS and CMT rates. All rates are in percentages.
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Fic. 1.—Plots of weekly time series of swap spreads measured in basis points. The
sample period is January 1988 to February 2002.

Libor is given simply from the expression for a risky zero-coupon bond,
SR

a
Libor = —|——————1
360!C(t,t + 1/4)

(12)
where a is the actual number of days during the next 3 months. Similarly,
the repo rate is given by

Repo

a 1
| a3)

=1
360'A(t, t + 1/4)
Since CMT rates represent par rates, they are also easily expressed as

explicit functions of riskless zero coupon bonds:

1-D(t+T)

CMT; = 2|——————
TS Dt +ir2)

. (14)

Similarly, as in Duffie and Singleton (1997), CMS rates can be expressed as
the par rates implied by the term structure of risky zero-coupon bonds:

1-Ctt+T)

CMS = 27—~
= S Ctt+i12)

. (15)
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Given a parameter vector, we can then invert the closed-form expressions
for these five rates to solve for the corresponding values of the state variables
using a standard nonlinear optimization technique. While this process is
straightforward, it is computationally very intensive, since the inversion must
be repeated for every trial value of the parameter vector utilized by the nu-
merical search algorithm in maximizing the likelihood function.*®

To define the log likelihood function, let R, be the vector of the five rates
assumed to be observed without error at time t and let R,; be the vector of
the remaining five observed rates. Using the closed-form solution, we can
solve for X, from R,,

X, = h(Rl.tve)v (16)

where O is the parameter vector. The conditional log likelihood function for
XI+A[ is

e (S R (A LS S I C A RAUIEY) Ne)

where K is a diagonal matrix with ith diagonal term e ** and Q is a matrix
with ijth term given by

1-— e*(KiiJﬂqj )At
Let ¢., denote the vector of differences between the observed value of
R, ac and the value implied by the model.** Assuming that the e terms are
independently distributed normal variables with zero means and variances
n?, the log likelihood function for ¢, ,, is given by

1 , . 1
- EeH—AtEe €iat Eln ||, (18)

where I, is a diagonal matrix with diagonal elements»?,i = 1, ...,5. Since
Xear @Nd €., &€ assumed to be independent, the log likelihood function for
[Xiiatr €sacd” IS SiMply the sum of equations (17) and (18). The final step in
specifying the likelihood function consists of changing variables from the
vector [X, ]’ of state variables and error terms to the vector [R,,,R,,]" of
rates actually observed. It is easily shown that the determinant of the Jacobian

10. By representing swap rates as par rates, this approach implicitly assumes that both the
floating and fixed legs of a swap are valued at par initially. Since we assume that there is no
counterparty default risk, however, an alternative approach might be to discount swap cash flows
adong a riskless curve. In this case, the value of each leg could be dightly higher than par,
athough both would still share the same value. This aternative approach, however, results in
empirical estimates of the liquidity and default processes that are virtually identical to those we
report.

11. We assume that the e terms are independent. In actuality, the e terms could be correlated.
As is shown later, however, the variances of the e terms are very small, and the assumption of
independence is unlikely to have much effect on the estimated model parameters.
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matrix is given by |J| = | 9h(R,)/0R;, |. Summing over all observations
gives the log likelihood function for the data:
1T*1
= 52K = 0= KO = 0)'2 (K= 0= K(X = 6)
+In| Q| +elaZ tea TINTE | +2IN[ T (19)

Given this specification, the likelihood function depends explicitly on 39
parameters.

From this log likelihood function, we now solve directly for the maximum
likelihood parameter estimates using a standard nonlinear optimization al-
gorithm. In doing this, we initiate the algorithm at a wide variety of starting
values to insure that the global maximum is achieved. Furthermore, we check
the results using an alternative genetic algorithm that has the property of being
less susceptible to finding local minima. These diagnostic checks confirm that
the algorithm converges to the global maximum and that the parameter es-
timates are robust to perturbations of the starting values.

Table 2 reports the maximum likelihood parameter estimates and their asymp-
totic standard errors. As shown, there are clear differences between the ob-
jective and risk-neutral parameters. These differences have major implications
for the dynamics of the default and liquidity processes that we will consider
in the next section. The differences themselves reflect the market prices of
risk for the state variables and also have important implications for the ex-
pected returns from bearing default and liquidity risk. One key result that
emerges from the maximum likelihood estimation is that the five-factor model
fits the data well, at least in its cross-sectional dimension. For example, the
standard deviations of the pricing errors for the CMS2, CMS3, and CMS5
rates and the CMT3 and CMTS5 rates (given by 1., 1,, 13, 14, and g, respec-
tively) are 9.1, 8.1, 7.5, 4.5, and 6.3 basis points, respectively. These errors
are relatively small and are on the same order of magnitude as those reported
in Duffie and Singleton (1997) and Duffee (2002). Note, however, that we
are estimating the Treasury, repo, and swap curves simultaneously.

V. Empirical Results

In this section, we first discuss the empirical estimates of the liquidity and
default components. We then present the results for the liquidity and default
risk premia.

A. The Liquidity and Default Components

Since the instantaneous credit spread applied to swaps in this framework is
equal to the sum +, + \,, it is natural to think of v, and A, as the liquidity
and default components of the credit spread. Summary statistics for the es-
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TABLE 2 Maximum Likelihood Estimates of the Model Parameters
Standard
Parameter Value Error
B, 6.97493 1.60510
B, 43063 .00790
Bs —.00778 .00161
Ba —.08669 .00296
Bs 1.47830 .10616
Ky 2.59781 71490
Ky .25373 .21606
Ks .37843 .19430
Ky 1.79193 52619
Ks 14.39822 1.53849
0, .00124 .00981
0, —.01729 .03886
0, .06726 .02271
0, .00529 .00088
0 .00032 .00089
o, .03209 .00413
O .00019 .00114
Oz .01495 .00076
0 .00000 .00077
[ .00003 .00074
[ .00924 .00051
On .00028 .00023
O —.00006 .00019
O3 .00039 .00017
O .00300 .00007
[ .00029 .00079
O, .00010 .00060
Oss .00037 .00048
Ogy .00030 .00042
O .00895 .00022
8o .00324 .02006
o, —.00458 .00043
3, .00260 .00076
T .00403 .00575
N, .00091 .00000
N, .00081 .00000
N3 .00075 .00000
Na .00045 .00000
Ns .00063 .00000

NotEe.—This table reports the maximum likelihood estimates of the parameters of the five-
factor term structure model, along with their asymptotic standard errors. The asymptotic
standard errors are based on the inverse of the information matrix computed from the Hessian
matrix for the log likelihood function.

timated values of the liquidity and default components are presented in table
3. Figure 2 graphs the time series of the two components along with the time
series of their sum, or equivalently, the total credit spread.

Table 3 shows that the average value of the liquidity component is 7.1 basis
points. In contrast, the average vaue of the default component is 31.3 basis
points. Thus, on average, the liquidity component represents only 18.5% of
the total instantaneous credit spread.

The two components, however, vary significantly over time. The standard
deviation of the liquidity component is 15.9 basis points over the sample
period, while the same measure for the default component is 15.5 basis points.
Figure 2 shows that the liquidity component ranges from about 10 to 20 basis
points during the first part of the sample period. During the middle part of
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TABLE 3 Summary Statistics for the Implied Repo Rate, the Liquidity
Component, and the Default Component
Standard Serial
Mean Deviation ~ Minimum Medium Maximum Correlation
Implied repo rate 5.439 1.807 701 5.420 10.478 .991
Liquidity component .071 159 -.215 .046 .539 .966
Default component 313 155 .012 271 1.210 733

Correlation Matrix

Implied

Repo Liquidity Default

Rate  Component Component
Implied repo rate 1.000

Liquidity component 232 1.000
Default component .255 .182 1.000

Note.—This table reports the indicated summary statistics for the implied repo rate, liquidity component,
and default component. The data consist of 734 weekly observations from January 1988 to February 2002.

the sample period, however, the liquidity component is sightly negative,
ranging from —5 to —10 basis points. The liquidity component is very stable
during this middle period. Beginning with approximately May 1998, the period
just prior to the Russian debt default, the liquidity spread becomes positive
again and rises rapidly to more than 20 basis points by the beginning of the
LTCM (long-term capital management) crisis in August 1998. The liquidity
spread stays high for the remainder of the sample period, reaching a maximum
of nearly 54 basis points in early 2000. As indicated by the serial correlation
coefficient of 0.966, the liquidity component displays a high degree of
persistence.

In contrast, the default component of the spread displaysfar lesspersistence;
the seria correlation coefficient for the default component is 0.733. This is
evident from the time series plot of the default component shown in the middle
panel of figure 2. Asillustrated, the default component ranges from alow of
about 1 basis point (the estimated default component is never negative) to a
high of 121 basis points. The default component is clearly skewed toward
large values and exhibits many spikes. These spikes, however, appear to dis-
sipate quickly consistent with the rapidly mean-reverting nature of the time
series of the default component. The two largest spikes in the default com-
ponent occur in late December of 1990, which was immediately before the
first Gulf War, and in October 1999, which was a period when a number of
large hedge funds experienced major losses in European fixed income posi-
tions. The two components of the credit spread are positively correlated with
each other and with the level of interest rates.

The bottom panel of figure 2 shows the time series of the total instantaneous
credit spread «, + \,. As illustrated, the credit spread averages about 38.4
basis points, but it varies widely throughout the sample period. Near the
beginning of the sample period, the credit spread ranges from about 60 to 80
basis points. During the middle period, however, the credit spread declines
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Fic. 2—The top panel plots the liquidity component of the spread. The middle
panel plots the default component of the spread. The bottom panel plots the sum of
the liquidity and default components, which equals the credit spread. All time series
are measured in basis points. The sample period is January 1988 to February 2002.

to near zero, ranging between zero and about 10 basis points for most of the
1991-98 period. With the hedge fund crisis of 1998, the total credit spread
increases rapidly, reaching a maximum of about 129 basis pointsin 1999, but
it then begins to decline significantly near the end of the sample period. The
standard deviation of the credit spread over the sample period is 24.2 basis
points. Its minimum value is —6.2 basis points, and its first-order seria cor-
relation coefficient is 0.882.

Finally, we note that the estimate of the parameter 7 for the default risk
process A, is 0.00403. This value, however, is not statistically significant. This
small value indicates that, if there is a marginal state tax effect, it is on the
order of .5% or less. Thus, the effect on swap rates of the differential state
tax treatment given to Treasury bonds appears negligible.

B. Liquidity and Default Risk Premia

The primary objective of this article is to examine how the market prices the
default and liquidity risks in interest rate swaps. To this end, we focus on the
premia incorporated into the expected returns of bonds implied by the esti-
mated term structure model. These premia are given directly from the dif-
ferences between the objective and risk-neutral parameters of the model.
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To provide some perspective for these results, however, it is useful to also
examine the implications of the model for the term premiain Treasury bond
prices. Applying 1to’s Lemma to the closed-form expression for the value of
aliquid riskless zero-coupon bond D(t, T) results in the following expression
for its instantaneous expected return:

r.+ b'(1)((B — k)X, + «0)). (20)

The first term in this expression is the riskless rate, and the second term is
the instantaneous term premium for the bond. This term premium is time
varying, since it depends explicitly on the state variables. The term premium
represents compensation to investors for bearing the risk of variation in the
riskless rate, or equivalently, the risk of interest-rate-related changes in the
value of the riskless bond.

Now applying Ito’s Lemma to the expression for the price of a price of a
illiquid riskless zero-coupon bond A(t, T) gives the instantaneous expected
return:

oty + A8 — ©)X, + «6)). (21)

Thefirst term is again the riskless rate. The second term isthe liquidity spread
that compensates the investor for holding an illiquid riskless security. The
third term is the total risk premium, consisting of the term premium and the
liquidity premium, where the liquidity premium compensates the investor for
the risk of liquidity-related changes in the values of bonds that are not as
liquid as Treasury bonds.

It is straightforward to show that the instantaneous expected return of a
risky zero-coupon bond with price C(t, T) is given by

I+ 7+ P8 — )X, + k8)) + N — A, (22)

where \ is the value of the intensity process under the objective measure.
The first two terms in this expression are the same as in equation (21). The
third term can be interpreted as a combined term premium, liquidity premium,
and premium for variation in the default intensity \. The last term A — \ is
the difference between the risk-neutral and objective values of the default
intensity process, and it directly measures the premium for default risk.*
Following standard practice, we refer to the sum of the premia for variation
in the default intensity and for the default event itself simply as the default
premium. R

The objective value of the default intensity N can only be identified by
using additional information. Unfortunately, our econometric approach alows
us to estimate A but not A. Rather than to make a specific identifying as-
sumption about \, however, our approach will be to provide upper and lower
bounds for its value. This has the advantage of allowing us to fully explore

12. For a discussion of this last term, see Yu (2002), Amato and Remolona (2003), and
Jarrow, Lando, and Yu (2005).
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TABLE 4 Summary Statistics for the Premia
Maturity in Years

Premium 1 2 3 4 5 6 7 8 9 10
Mean:

Term premium bS53 98 129 151 167 179 190 198 205 212
Liquidity

premium 05 10 16 22 29 36 4 53 63 .73
Default premium

lower bound -02 -03 -03 -03 —-03 —-03 —-.03 —-.03 —-.03 —.03
Default premium

upper bound 29 29 29 29 29 29 29 29 29 29
Standard deviation:

Term premium 94 135 182 231 280 330 380 431 482 533
Liquidity

premium 31 65 102 143 187 235 283 345 408 476

Default premium
lower bound 104 127 133 134 134 134 134 134 135 135
Default premium
upper bound 119 143 148 149 150 150 150 150 150 150

NortE.—This table reports the means and standard deviations of the annualized term premia, liquidity premia,
and upper and lower bounds for the default premia in zero-coupon bonds of the indicated horizons implied
by the fitted model. The data consist of 734 weekly observations from January 1988 to February 2002.

the range of possible default premia. Clearly, the minimum value that A\ could
take is zero. In this case, the premium for default event is simply A. At the
polar extreme, the most realistic upper bound on the value of \ is \ itself.
In this case, there is no premium at all for the default event. Given the low
probability of the entire Libor basket ever being in default (see Duarte, Longs-
taff, and Fan 2006), our prior would be that the actual value of A would be
much closer to zero than to A.

To identify the liquidity premium separately, we simply take the difference
between the expected returns in equations (21) and (20) (and subtract out the
liquidity component ;). Similarly, to identify the upper bound for the default
premium, we take the difference between the expected returns in equations
(22) and (21), where we assume that A = 0. To identify the lower bound for
the default premium, we again take the difference between the expected returns
in equations (22) and (21), but here we assume that A = \. As shown, all of
these premia are time varying through their dependence on the state variable
vector.

Table 4 reports summary statistics for the term, liquidity, and default premia
for zero-coupon bonds with maturities ranging from 1 to 10 years. Figure 3
plots the average values of these premia. As shown, the average term premia
range from about 53 basis points for a 1-year horizon to 212 basis points for
a 10-year horizon. Figure 3 shows that the average term premia are concave
in the horizon. These estimates of average term premia are similar to those
reported by Fama (1984), Fama and Bliss (1987), and others.

The average liquidity premia are all positive and range from about 5 basis
points for a 1-year horizon to 73 basis points for a 10-year horizon. Thus,
the average liquidity premium can be as much as one-third the size of the
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Fic. 3.—Plots of average term premium, liquidity premium, and upper and lower
bounds for the default premium for zero-coupon bonds with the indicated maturities.
All premiaare measured in basis points. The sample period is January 1988 to February
2002.

term premium for longer maturities. Figure 3 shows that the liquidity premium
is actually dightly convex in the horizon of the zero-coupon bond. Table 4
also shows that the liquidity premium is highly variable.

The results for the average upper and lower bounds for the default premia
are strikingly different. As shown, all of the average lower bounds for the
default risk premiaare slightly negative. Numerically, their values are all close
to —3 basis points. The average upper bounds for the default risk premia are
about 31 basis points higher. For both the upper and lower bounds, the term
structure of default premiais flat. Note that for maturities greater than 5 years,
the majority of the total credit premium is due to the liquidity premium, even
when we use the upper bound as the measure of the default premium.

To give some sense of the time variation in term, liquidity, and default
premia, figure 4 graphs these premia for 1-year maturity zero-coupon bonds.
As illustrated, the term premium displays a significant amount of variation.
The term premium is usualy positive, but it has generally tended downward
and it has occasionaly been negative during the latter part of the sample
period.

The time series of the liquidity premium displays a number of interesting
features. Recall that the average liquidity premium for a 1-year horizon is
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FiG. 4—The top panel plots the conditional term premium for a 1-year zero-coupon
bond. The second panel plots the conditional liquidity premium for a 1-year zero-
coupon bond. Thethird panel plots the upper bound on the conditional default premium
for a 1-year zero-coupon bond. The bottom panel plots the lower bound on the con-
ditional default premium for a 1-year zero-coupon bond. All premia are measured in
basis points. The sample period is January 1988 to February 2002.

about 5 basis points. Figure 4 shows that the conditional liquidity premium
varies significantly over time and is often large in absolute terms. Most sur-
prising, the liquidity premium is negative for nearly one-haf of the sample
period. Theliquidity premium first becomes negative around 1992 and remains
generaly negative until August of 1998. Despite the variation, however, the
liquidity premium isless volatile than the term premium. Although not shown,
a similar pattern holds for liquidity premia in bonds with longer maturities.

Finally, the upper and lower bounds for the default premia show a pattern
similar to that for the default component. In particular, the default premium
displays rapid mean reversion and exhibits a number of large spikes. The
default premium for a 1-year horizon is much more volatile than the term or
liquidity premia. For longer maturities, however, the default premium is less
volatile than the other premia. These results indicate that the conditional
default premium can be substantially different from zero. Thus, there aretimes
when the market price of default risk may be a significant determinant of
swap spreads.
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VI. Conclusion

This article examines how the market prices the default and liquidity risk
inherent in interest rate swaps. A number of key results emerge from this
analysis. We find that the credit spread in swaps consists of both a liquidity
component and a default component. On average, the default component of
the credit spread islarger, but the liquidity component is slightly more volatile.
Both components vary significantly through time. The liquidity component
displays a high level of persistence. In contrast, the default component is
rapidly mean reverting. In addition, the default component exhibits a number
of large but temporary spikes in its level over time.

We find that the liquidity risk inherent in swaps is compensated for by the
market with a significant risk premium. In contrast, the average premium for
default risk is in the range of zero to 30 basis points and the term structure
of default risk premia is flat. Thus, the mgjority of the credit premium built
into the swap curve for horizons beyond afew yearsisdueto liquidity premia.
It is curious, however, that these liquidity premiawere slightly negative during
the mid-1990s.

These results raise a number of intriguing questions for future research. Do
the negative values for the liquidity component of the spread and the associated
risk premia during the 1990s imply that swaps were viewed as even more
liquid than Treasury bonds? Has the flight-to-liquidity phenomenon become
more important in the post-LTCM era, thus explaining the return of the li-
quidity spread and its associated premium to positive values? Findly, is the
default risk premium in the swap curve unique to this market, or isthisfeature
found in corporate, sovereign, agency, or municipal bond markets as well?
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