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Credit derivatives are potentially one of the most

important new types of financial products intro­
duced during the past decade. Many investors
have portfolios with values that are higWy sensi­

tive to shifts in the spread between risky and riskless
yields, and credit derivatives offer these investors an
important new tool for managing and hedging their
exposure to this type of risk.

In this article, we develop a simple framework
for valuing derivatives on credit spreads. It captures the
major empirical properties of observed credit spreads in
that in allows for spreads to be stationary and mean­
reverting. We then use this framework to derive simple
closed-form solutions for the prices of call and put
options on the credit spread.

These closed-form solutions have a number of

interesting implications for the pricing and hedging
properties of credit derivatives. We show that calls and
puts on the credit spread can have prices below their
intrinsic value. We also show that credit spread calls can
have negative convexity, and that the delta of the call
can be higher for out-of-the-money and at-the-money
calls than for in-the-money calls. In addition, we show
that the deltas of both calls and puts converge to zero as
the time until expiration increases, which implies that
long-term credit derivatives may have little ability to
hedge against current shifts in credit spreads.
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6 VAI.UING CREDIT DERIVATIVES

I. CREDIT SPREAD PROPERTIES

Before developing a valuation model for credit
derivatives, it is important to examine first the proper­
ties of actual credit spreads. By incorporating these
properties into the valuation model, the resulting impli-
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EXHIBIT 1 • Summa!}' Statistics for Credit Spreads over Treasuries. Moody's Utility and Industrial
Bond Yield Averages. April 1977-December 1992

Mean ofStd. Dev. ofMean ofStd. Dev. ofNumber of
Credit Spread

Credit SpreadRelative SpreadRelative SpreadObservations
AaaUtilities

0.9300.3491.09750.034180
Aa Utilities

1.2760.4311.13140.038190
A Utilities

1.6600.6671.16960.054190
BaaUtilities

2.0770.7581.21160.057190

AaaIndustrials

0.4810.3731.05600.051190
Aa Industrials

0.8090.4521.08880.059190
A Industrials

1.2310.5801.13210.071190
Baa Industrials

1.8350.6541.19720.084190

cations for pricing and hedging credit derivatives will
be more realistic.

We focus on the spread between a number of
Moody's bond indexes and the long-term U.S.

Treasury bond yield. Data on Moody's Aaa, Aa, A,
and Baa industrial and utility bond indexes provide
monthly observations for the spread over 1977-1992.
Summary statistics for the spreads are presented in
Exhibit 1.

Let X denote the logarithm of the credit spread.
To illustrate how spreads evolve over time, Exhibits 2
and 3 plot the time series of X for the industrial and
utility Baa indexes. The credit spread shown displays a
significant amount of stability, the value of X in both
graphs tends to stay in a fairly narrow range, and is gen-

EXHIBIT 2 • Logarithm of the Credit Spread for
Baa-Rated Industrial Bonds

1.4

erally between zero to one. Note that the variability of
the spread is typically fairly constant.

To formalize these observations, we conduct a
simple regression analysis using the time series of
spreads. Motivated by continuous-time models in
which the process is mean-reverting, we regress the
monthly change in the value of X on the value of X at
the beginning of the month:

(1)

where Yoand Y1 are the intercept and slope coefficients
for the regression. The regression results are reported
in Exhibit 4.

The results provide a number of important

EXHIBIT 3 • Logarithm of the Credit Spread for
Baa-Rated Utility Bonds
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II. THE VALUATION MODEL

where a, b, and c are parameters, and Z1 is a standard

Given these empirical properties, we first assume

that the dynamics of the logarithm of the credit spread
X are given by the stochastic differential equation:

insights about the the behavior of credit spreads. The

slope coefficient is negative in all the regressions - and

significantly negative in all but one or two. This indi­

cates that the logarithm of the credit spread is mean­
reverting. Annualizing the slope coefficient for the

regression implies that the half-life of deviations from

the long-run mean value ranges from about 0.7 to 1.0
years for the industrial bonds to about 1.5 to 4.0 years
for the utility bonds. Note that the credit spreads of the

lower-rated bonds display less mean reversion.
Another interesting implication of the regres­

sion results is that the logarithm of the credit spread
is more volatile for the higher-rated bonds than for

the lower-rated bonds. For example, the standard

error of the regression for the Aaa-rated industrial
bonds is 0.4229, while the same measure for the Baa­

rated industrial bonds is only 0.1560. A similar pat­
tern holds for the utility bonds. Histograms of the

monthly changes in X indicate that the distribution

of changes is generally well-approximated by the nor­
mal distribution.

(3)dr = (a - ~r) dt + cr dZ2

where a, ~, and cr are parameters, and Z2 is also a stan­
dard Wiener process. The correlation coefficient

between dZ1 and dZ2 is p.
In pricing derivative claims on the credit spread,

we allow for the possibility that both interest rate risk

and the risk of shifts in the credit spread are priced by

the market. Rather than developing a full general equi­

librium model, we simply assume that the market
prices of risk premiums are incorporated into the a and

a terms. Thus, a and a are equilibrium- or risk-adjust­

ed parameters rather than empirical parameters. This
assumption is consistent with Vasicek [1977], Longstaff

and Schwartz [1995], and others.
With this framework, standard valuation theory

can be med to show that the price F (X, r, T) of a
European-type claim on the credit spread with payoff
function H (X) and time to expiration T must solve the

partial differential equation:

Wiener process. These dynamics imply that changes in
X are mean-reverting and homoscedastic, consistent

with the empirical data. Furthermore, these dynamics
imply that credit spreads are positive and conditionally

lognormally distributed.
To allow for random interest rates in the model,

we make the simple assumption that the riskless term
structure is determined by the single-factor Vasicek

[1977] model in which the dynamics of the short-term

interest rate r are given by

(2)dX = (a - bX) dt + S dZ1

EXHIBIT 4 • Results from Regressing Monthly Changes in the Logarithm of the Credit Spread on the
Logarithm of the Credit Spread at the Beginning of the Month

YoY1tyotY1
R2S.E.

Aaa Utilities

-0.0085-0.0526-0.77-2.230.0220.1352
Aa Utilities

0.0103-0.05461.14-2.390.0300.1134
A Utilities

0.0151-0.03541.41-1.880.0190.1018
Baa Utilities

0.0139-0.02221.17-1.400.0100.0799

Aaa Industrials

-0.1223-0.1204-2.48-3.520.0640.4229
Aa Industrials

-0.0558-0.1565-2.07-4.080.0770.3080
A Industrials

0.0108-0.11820.66-3.480.0560.2212
Baa Industrials

0.0509-0.09362.56-3.060.0430.1560

The term ~X is the change in the logarithm of the credit spread, X is the logarithm of the credit spread. S.E. is the standard error of
the regression:
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verge to fixed values, and the distribution of X-r con­
verges to a steady-state stationary density.

+ (a - bX) Fx - rF (4)
tn. OPTIONS ON CREDIT SPREADS

where 0 (r, T) is the price of a riskless discount bond
with maturity T, and the expectation is taken with
respect to the "adjusted" risk-adjusted process for X:

subject to the initial condition F (X, r, 0) = H (X).
Following the results in Longstaff [1990], however, the
solution to this partial differential equation can be
obtained in dosed-form using the 'certainty-equivalent
representation:

C (X, r, T) = 0 (r, T) exp (~ + ,,2/2) N (dj) -

Let C (X, r, T) denote the value of a European
call option on the level of the credit spread, where the
strike price of the option is K. Since X denotes the log­
arithm of the spread, the payoff function for this option
is simply H (X) = max (0, eX - K). Applying the cer­
tainty-equivalent valuation operator in (5) results in the
closed-form solution for the value of the call option:

(9)K 0 (r, T) N (d2)

(5)F (X, r, T) = 0 (r, T) E [H (X)]

dX = [a - bX _ pas~x
p

where N (-) is the cumulative standard normal distribu­
tion function and

(1 - exp [-P (T - t)])] dt + sdZj (6)

2
-In K + ~ + "

11

Note that as T ~ 00, the values of~ and 112 con-

~ = exp (-bT) X + ~ (a - p;s) X

Thus, the value of a claim on the credit spread can be
found by first taking the expectation of its payoff, and
then discounting the expectation back to the present by
multiplying by the riskless present value factor 0 (T).

Following Longstaff and Schwartz [1995], the
stochastic differential equation in (6) can be solved by
making a change of variables and then integrating. The
resulting solution implies that ~ is conditionally nor­
mally distributed with respect to (6) with mean ~ and
variance ,,2, where

This option pricing formula has some features
that are similar to the Black-Scholes [1973] option
pricing formula. In particular, both models involve the
cumulative normal distribution. In general, however,
the properties of the two models are quite different.

To illustrate this, Exhibit 5 graphs the value of a
call option as a function of the value of the current
credit spread. The call price is an increasing function of
the credit spread. What is clearly different, however, is
that the value of a call option on the credit spread can
be less than its intrinsic value even when the call option
is only slightly in the money.

The intuition for this surprising result relates to
the mean reversion of the credit spread. When the cred­
it spread is above its long-run mean, the credit spread is
expected to decline over time. In turn, this means that
in-the-money call options are less likely to remain in the
money over time. Hence, the value of an in-the-money
call option can be less than its intrinsic value because of
the expected decrease in the credit spread.

Note that this cannot happen in the standard
Black-Scholes model because the underlying asset must
appreciate like the riSkless rate in the risk-neutral valu-

(7)

(8)
S2[1 - exp (-2bT)]

2b

[1 - exp (-bT)] + pas x

[1 - exp (-(b + P) T)]
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EXHIBIT 5 • Credit Spread Call Prices Graphed as
a Function of the Underlying Credit Spread

As in the Black-Scholes formula. the delta for a call

option on the credit spread is always positive. Because of
the mcan reversion of the credit sprcad. however, the
delta of a call option decreases to zero as the time until
expiration T increases to infinity. This is because
changes in the current value of the credit spread have lit­
tle effect on the expected payoff of the option if the time

0.6

0.50.4

w ~a:a.. 0.3::J() 0.2
0.1

EXHmIT 6 • Credit Spread Call Prices Graphed as
a Function of the Underlying Credit Spread

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
CREDIT SPREAD

- T=.50 - T= 1.00 ••- .. T= 1.50

until expiration is many half-lives in the future; a change
in thc current credit spread is expected to be nearly
completely cancelled out by the effects of mcan rever­
sion if the expiration date of the call is far in the future.

Because of this property, credit sprcad options
with long maturities may not provide a useful vehicle
for hedging the risk of changes in the current credit
spread. This has many important implications for con­
tract design.

While long-term options on credit spreads may
not be useful hedging vehicles, short-term option prices
will move in response to changes in the current credit
spread. To show this, Exhibit 7 graphs the delta of cred­
it spread calls with differing times until expiration.

This graph indicates that, while deltas are posi­
tive, they can also be decreasing functions of the credit
spread. The reason for this is again related to the con­
cavity of the option price in the underlying credit
spread. This implies that, for some credit spread calls.
the option price is most sensitive to changes in the
underlying when the option is out of the money, rather
than in the money.

Similarly, the graph also shows an example of a
credit spread call for which the delta is greatest when
the option is at the money. These results illustrate that
the price of a call option on the credit spread behaves
vcry differently from those for options on traded assets.

The value of a European put option on a cred­
it spread P (X, r, T) is found from the put-call pari­
ty relation:

(10)

1.1 1.2

- T = .10 - T = .20 ----- T = .30

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
CREDIT SPREAD

D (r, T) exp (1.1 + 112/2) N (d1) X

exp (-bT) exp (-X)

o

0.1

0.2

ation framework. Only when the underlying is not the
price of traded asset can the expected change in the
underlying be different from the riskless rate.

To illustrate another important feature of calls on
credit spread. Exhibit 6 graphs call prices for values of T
ranging from 0.50 to 1.50 years. The call price can be a
concave function of the credit spread (negative convexi­
ty). The reason for this is again related to the fact that the
credit spread can be mean-reverting. This means that
expected percentage changes in the value of the credit
spread depend on the current level of the credit spread.
Hence, the dynamics of the credit spread do not satisfY
the first-degree homogeneity property that Merton
[1973] shows is necessary in order for the option price to
be a globally convex function of the underlying.

Differentiating the valuation expression in (9)
with respect to the credit spread gives the expression for
the delta of a call on the credit spread:

wo
a:
a.. 0.3..J
..J
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EXHffiIT 7 • Credit Spread Call Deltas Graphed as
a Function of the Underlying Credit Spread
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P (X, r, T) = C (X, r, T) + D (r, T) K -

D (r, T) exp (11 + 0-2/2) (11)

This put-call parity relation differs from the traditional
put-call parity relation in that the discounted forward
credit spread appears rather than the underlying value.
The reason for this is that when the underlying is the
price of a traded asset, the discounted forward price is
simply the 'current price of the asset. In contrast, the
discounted forward credit spread can be either greater

EXHIBIT 8 • Credit Spread Put Prices Graphed as
a Function of the Underlying Credit Spread

or less than the current value of the credit spread.
Exhibit 8 graphs the value of puts on the credit

spread as a function of the underlying credit spread.
Once again, the value of the put option can be less than
its intrinsic value. The graph also shows that the value
of the put is not always an increasing function of the
time until expiration T. When the put is out of the
money, a longer time until expiration leads to a higher
option price, because it allows the credit spread more
time to move back toward its mean, tending to make
the option move closer to being in the money. The
reverse is true when the put option is in the money.

Exhibit 9 graphs the put option value for values
of T ranging from 0.50 to 1.50 years. The put option
is always an convex function of the credit spread. In this
respect, calls and puts on credit spreads are not sym­
metric. This graph also shows that, as the time to expi­
ration for the option increases, the value of the put
becomes less sensitive to changes in the current value of
the credit spread. The intuition for this result is similar
to that for the call option; mean reversion reduces the
delta of long-term puts to zero as T ~ 00.

lV. CONCLUSION

We have presented simple closed-form valuation
expressions for European calls and puts on credit
spreads. While these are only two of the many possible
types of credit derivatives, these results provide insights
into the reasons why credit derivatives may behave very

EXHffiIT 9 • Credit Spread Put Prices Graphed as
a Function of the Underlying Credit Spread
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differently from derivatives on traded assets.
In particular, the mean-reverting property of

credit spreads has many important implications for the
pricing and hedging behavior of credit derivatives. Our
results suggest that the effects of mean reversion should
be carefully considered in designing credit derivatives.

ENDNOTE

We are grateful for discussions with Andreas
Grunbichler and Stephen Figlewski. All errors are the
responsibility of the authors.
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