Conditioning Information and Variance Bounds on Pricing Kernels

Geert Bekaert1
Columbia University and NBER

Jun Liu
UCLA

Current Version: June, 2001

1Correspondence to Geert Bekaert, Columbia Business School, Uris Hall, Room 802, 3022 Broadway, New York, NY 10027; gb241@columbia.edu. We would like to thank Andrew Ang, Michael Brandt, Qiang Dai, Darrell Duffie, Wayne Ferson, Mark Garmaise, Ming Huang, Jun Pan, seminar participants at Stanford University and especially the Editor John Heaton, for valuable suggestions. Kenneth Singleton and an anonymous referee provided extensive guidance, comments and insights. Geert Bekaert thanks the NSF for financial support.
Abstract

Gallant, Hansen and Tauchen (1990) show how to use conditioning information optimally to construct a sharper unconditional variance bound on pricing kernels. The literature predominantly resorts to a simple, sub-optimal procedure that scales returns with predictive instruments and computes standard bounds using the original and scaled returns. This article provides a formal bridge between the two approaches. We propose an optimally scaled bound, which, when the first and second conditional moments are known, coincides with the bound derived by Gallant, Hansen and Tauchen (GHT bound). When these moments are mis-specified, our optimally scaled bound still yields a valid lower bound for the standard deviation of pricing kernels, unlike the GHT bound. Moreover, the optimally scaled bound can be used as a diagnostic for the specification of the first two conditional moments of asset returns because it only achieves the maximum when the conditional mean and conditional variance are correctly specified. The illustration in this article adds time-varying volatility to the familiar Hansen-Singleton (1983) set-up of an autoregressive model for consumption growth and bond and stock returns. Both an unconstrained version and a version with the restrictions of the standard consumption-based asset pricing model imposed, serve as the data-generating processes to illustrate the behavior of the bounds. In the process, we explore an interesting empirical phenomenon: asymmetric volatility in consumption growth.
1 Introduction

Hansen and Jagannathan (1991) derive a lower bound (the HJ bound) on the standard deviation of the pricing kernel or the intertemporal marginal rate of substitution as a function of its mean. Using only unconditional first and second moments of available asset returns, the HJ bound defines a feasible region on the mean-standard deviation plane of pricing kernels. Whereas initially HJ bounds primarily served as informal diagnostic tools for consumption-based asset pricing models (see Cochrane and Hansen (1992) for a survey), its applications have rapidly multiplied in recent years. They now include formal asset pricing tests (Burnside (1994), Cecchetti, Lam and Mark (1994), Hansen, Heaton and Luttmer (1995)), predictability studies (Bekaert and Hodrick (1992)), mean variance spanning tests (Bekaert and Urias (1996), DeSantis (1996), Snow (1991)), market integration tests (Chen and Knez (1995)), mutual fund performance measurement (Chen and Knez (1996), Ferson and Schadt (1996), Dahlquist and Söderlind (1999)) and more.

HJ bounds are computed by projecting the pricing kernel unconditionally on the space of available asset payoffs and computing the standard deviation of the projected pricing kernel. The larger this standard deviation, the stronger the restrictions on asset pricing models. The standard consumption-based asset pricing model with time-additive preferences dramatically fails to lie inside the feasible region defined by the HJ bounds computed using a variety of asset returns. However, the pricing kernels in more recent models, such as the non-separable utility model in Heaton (1995) or incomplete markets model of Constantinides and Duffie (1996), satisfy the bounds.

In this article, we study the use of conditioning information to effectively increase the dimension of the available asset payoffs and hence, to improve the bounds. Gallant, Hansen and Tauchen (1990) show how to use conditioning information efficiently. The procedure is in principle straightforward. They construct an infinite space of available payoffs combining conditioning information and a primitive set of asset payoffs. The variance of the unconditional projection of the pricing kernel onto that space is the efficient HJ bound, which we will term the GHT bound.

The GHT bound depends on the first and second conditional moments of the asset payoffs. The GHT procedure has not been used very much in practice, and researchers have mostly

\footnote{Other methods have been proposed to improve HJ bounds. Snow (1991) studies the restriction on the higher moments of the pricing kernel. Balduzzi and Kallal (1997) tighten the bounds by using the risk premiums that the pricing kernel assigns to arbitrary sources of risk.}

\footnote{While GHT study both conditional as well as unconditional projections, we will only study unconditional projections.}
resorted to a simpler technique of embedding conditioning information in the computation of HJ bounds. They simply scale returns with predictive variables in the information set, augment the space of available payoffs (and corresponding prices) with the relevant scaled payoffs or returns and compute a standard HJ bound for the augmented space (see, for example, Hansen and Jagannathan (1991), Cochrane and Hansen (1992), Bekaert and Hodrick (1992), and many others). This procedure is much simpler to implement than GHT since it does not require knowledge of conditional moments at all.

In this article, we provide a formal bridge between the optimal but relatively unknown GHT bound and the ad-hoc scaling methods prevalent in the literature. We prove two main results. First, we answer the following question: when scaling a return with a function of the conditioning information, what is the function that maximizes the Hansen-Jagannathan bound? The solution is an application of functional analysis. The resultant optimal scaling factor is decreasing in the conditional variance but is not monotonic in the conditional mean. Second, we show that our bound, which we term the optimally scaled bound, is as tight as the GHT bound when the conditional moments are known.

The optimally scaled bound has three important properties. First, it is efficient. Rather than arbitrarily scaling returns with an instrument, our procedure optimally exploits conditioning information leading to sharper bounds. We also use this property to explore the relation between improvements in HJ bounds due to conditioning information and the presence of return predictability.

Second, it is robust to mis-specification of the conditional mean and variance. Whereas the GHT bound is also efficient, it is only correct when the conditional moments are accurate. If they are mis-specified the resulting bound may be larger than the variance of the true pricing kernel. Since the optimal bound we derive is a standard HJ bound, it always provides a bound to the variance of the true pricing kernel even if incorrect proxies to the conditional moments are used.

Third, the optimally scaled bound is a useful diagnostic for the specification of the first and second moments of asset returns. Our bound only attains the maximum when the first and second conditional moments are correctly specified. If they are not, the Hansen-Jagannathan frontier is not even a parabola, so that mis-specification is visually clear. We also suggest a diagnostic test that can be used to formally compare the fit of alternative specifications of the conditional mean and variance. Given the non-negligible modelling and parameter uncertainty regarding the first and second conditional moments of asset returns, this property of our bound is likely to be important in many finance applications.

We organize the paper into three parts. Section 2 starts by clarifying the relation between
standard HJ bounds, the GHT bound, ad hoc scaled bounds and our optimally scaled bound. We then prove our two main results, deriving an optimal scaling function and showing that the resulting bound reaches the GHT bound when the conditional moments are correctly specified. Section 3 discusses the three main properties of our optimally scaled bound. We end the section by comparing our work to that of Ferson and Siegel (2000a). They derive and study the optimal scaling factor in the setting of mean-variance frontiers. Since there is a well-known duality between Hansen-Jagannathan frontiers and the mean-variance frontier, these results are similar to ours but there are also some important differences.

Section 4 contains an empirical illustration. We estimate an asymmetric GARCH-in-mean model on US consumption growth, bond and stock returns and test the restrictions of the standard consumption-based asset pricing model. This generalization of the Hansen-Singleton (1983) model provides a natural null and alternative model for the first and second moments which we use to explore the role of misspecification in the behavior of the various bounds. We briefly discuss future potential applications of our results in a concluding section.

2 Incorporating Conditioning Information into Variance Bounds

In this section, we first review the standard HJ bound while setting up notation in Section 2.1. In Section 2.2, we briefly review the standard way of using conditioning information whereas section 2.3 reviews the GHT bound. Section 2.4 introduces the optimally scaled bound.

2.1 Unconditional Variance Bounds

Let there be a set of assets with payoff vector \(r_{t+1} \) and price vector \(p_t \). When the payoff is a (gross) return, the price equals one. Let the vector \(y_t \) denote the set of conditioning variables in the economy and let \(I_t \) be the \(\sigma \) algebra of the measurable functions of \(y_t \), that is, \(I_t \) is the information set. The pricing kernel \(m_{t+1} \) prices the payoffs correctly if

\[
E[m_{t+1} r_{t+1} | I_t] = p_t.
\] (1)

By the law of iterated expectations, this implies

\[
E[m_{t+1} r_{t+1}] = E[p_t] \equiv q.
\] (2)

Hansen and Jagannathan (1991) derive a bound on the volatility of \(m_{t+1} \) that can be computed from asset payoffs and prices alone. This bound follows from projecting the kernel onto the set
of payoffs and a constant payoff:

\[m^*_t + 1 = v + \beta'(r^t + 1 - \mu) \]
\[= v + (q - v\mu)'\Sigma^{-1}(r^t + 1 - \mu), \]

(3)
(4)

where

\[v = E[m_t + 1] = E[m^*_t + 1], \quad \mu = E[r_t + 1] \]

(5)

and

\[\Sigma = E[(r_t + 1 - \mu)(r_t + 1 - \mu)']. \]

(6)

The variance bound follows from realizing that \(\text{var}(m_{t+1}) \geq \text{var}(m^*_{t+1}) \). We denote the bound \(\text{var}(m^*_{t+1}) \) as \(\sigma^2(v; r_{t+1}) \) (or \(\sigma^2(v) \)), since it depends on the mean of the kernel and the first two moments of \(r_{t+1} \):

\[\sigma^2(v; r_{t+1}) = (q - v\mu)'\Sigma^{-1}(q - v\mu) \]
\[= A - 2Bv + Dv^2, \]

(7)
(8)

where

\[A = q'\Sigma^{-1}q, \quad B = \mu'\Sigma^{-1}q, \quad D = \mu'\Sigma^{-1}\mu. \]

(9)

The parabola \((v, \sigma^2(v))\) is the HJ frontier. Note that if \(q \) equals 1 and there exists a risk free asset such that \(r^f = (E[m_{t+1}])^{-1} \), then \(\sigma^2(v; r_{t+1}) \) is proportional to the square of the Sharpe ratio on the set of assets. Hence, a sharper HJ bound corresponds to a better risk-return trade-off on the available assets.

To facilitate comparison with the derivations in GHT (1990), we provide an alternative formulation of \(m^*_t + 1 \) in terms of the uncentered moments of \(r_{t+1} \):

\[m^*_t + 1 = (q - w\mu)'(\mu\mu' + \Sigma)^{-1}r_{t+1} + w \]

(10)

with

\[w = \frac{v - q'(\mu\mu' + \Sigma)^{-1}\mu}{1 - \mu'(\mu\mu' + \Sigma)^{-1}\mu} = \frac{v - b}{1 - d}, \]

(11)

where the definition of \(b \) and \(d \) is implicit.\(^3\) That \(m^*_{t+1} \) unconditionally prices the returns follows immediately by substituting (10) into (1). The relation between \(w \) and \(v \) is apparent from taking the expected value of \(m^*_t + 1 \) in (10):

\[v = q'(\mu\mu' + \Sigma)^{-1}\mu + (1 - \mu'(\mu\mu' + \Sigma)^{-1}\mu)w. \]

(12)

\(^3\)Alternatively, equation (10) can be derived from (4) directly using the identity \((F + gg')^{-1} = F^{-1} - F^{-1}g(I + g'F^{-1}g)^{-1}g'F^{-1} \) with \(F = \mu\mu' + \Sigma \) and \(g = \mu \).
The intuition behind equation (10) is rather straightforward. Rewrite the equation as

\[m_{t+1}^* = q'(\mu \mu' + \Sigma)^{-1}r_{t+1} + (1 - \mu'(\mu \mu' + \Sigma)^{-1}r_{t+1})w. \]

The first part of the right hand side expression is the projection of \(m_{t+1} \) onto the original asset payoff space (not augmented with a constant payoff). However, we would like to project \(m_{t+1}^* \) on this space augmented with a constant payoff. The coefficient multiplying \(w \) is the residual of the projection of a unit payoff onto the \(r_{t+1} \)-space and hence orthogonal to that space. Consequently, \(w \) is the projection coefficient of \(m_{t+1}^* \) onto that residual. The two parts together constitute the projection of \(m_{t+1}^* \) onto the \(r_{t+1} \) space augmented with a constant payoff.

2.2 Scaled Variance Bounds

The presence of the conditioning variables \(y_t \) allows construction of an in principle infinite dimensional payoff space (see Hansen and Richard (1987)). Let \(z_t = f(y_t) \), where \(f \) is a measurable function, and \(z_t \) is a \(n \times 1 \) vector. Scaled returns are simply assets with payoffs equal to \(z_t'r_{t+1} \) and prices \(z_t'J \) (where \(J \) is a \(n \times 1 \) vector of ones), and do not raise any difficulty in computing standard HJ bounds.

Such scaling has an intuitive interpretation when excess returns, \(r_{t+1}^e = r_{t+1} - r^f \), are scaled as in Bekaert and Hodrick (1992) and Cochrane (1996). The gross ”scaled” return, \(r_{t+1} = z_t'r_{t+1} + r^f = z_t'r_{t+1} + (1 - z_t'J)r^f \) can then be interpreted as a ”managed” portfolio with \(z_t'J \) being the time-varying proportion of the investment allocated to the risky assets.

Scaling likely only improves the HJ bound if the weight \(z_t \) has information on future returns. In the literature, one sets \(z_t = Gy_t \) where \(G \) is a selector matrix of 1’s and zeros selecting the variables in \(y_t \) believed to predict \(r_{t+1} \) or to capture the time-variation in the expected returns.

Most studies stack actual returns with scaled returns (see for example Bekaert and Hodrick (1992) and Cochrane and Hansen (1992)), considering the system

\[
\begin{bmatrix}
\begin{array}{c}
\hat{r}_{t+1} \\
r_{t+1} \otimes y_t
\end{array}
\end{bmatrix}.
\]

This amounts to considering many different \(z_t \)’s where each \(z_t \) is represented by a selection matrix with only one non-zero element, selecting a particular instrument out of the available instruments. It is fairly unlikely that this is the optimal way to select from the set of information variables. Therefore we sometimes refer to the bounds resulting from this ad hoc approach to scaling as ”naive bounds”.

5
2.3 The GHT Variance Bound

GHT (1990) show how to use conditioning information efficiently. Recall that a scaled asset is a one dimensional asset, \(\tilde{r}_{t+1} = z_t'r_{t+1} \), where \(z_t \) is a n-dimensional vector whose entries are measurable functions of \(y_t \) (so they belong to \(I_t \)). The space of all such scaled payoffs is an infinite dimensional conditional Hilbert space \(P = \{z_t'r_{t+1} : \forall z_t \} \). Gallant, Hansen and Tauchen directly project the pricing kernel onto this space augmented by a riskless payoff. They show that the projected pricing kernel is

\[
m^*_{t+1} = (p_t - w\mu_t)'(\mu_t'\mu_t + \Sigma_t)^{-1}r_{t+1} + w
\]

(13)

where \(\mu_t \) is the conditional mean vector and \(\Sigma_t \) the conditional variance-covariance matrix of the returns and \(w \) is given by

\[
w = \frac{v - b}{1 - d'},
\]

(14)

Here the symbols \(b \) and \(d \) are the conditional analogues of the definitions in 2.1:

\[
b = \mathbb{E}[\mu_t'p_t'](\mu_t'\mu_t + \Sigma_t)^{-1}p_t]
\]

(15)

and

\[
d = \mathbb{E}[\mu_t'\mu_t' + \Sigma_t)^{-1}]\mu_t].
\]

(16)

The GHT bound by definition is

\[
\sigma^2_{GHT}(v) = \text{var}(m^*_{t+1}).
\]

(17)

It is a lower bound to the variance of all valid pricing kernels. The result in GHT is not surprising given our alternative derivation of the standard pricing kernels in 2.1. The GHT kernel is identical, replacing unconditional with conditional moments, and expected prices with actual prices. (Compare equations (10) and (13)). This is because the kernel now prices all payoffs conditionally. There is an equivalent representation of the GHT kernel to the standard kernel representation in equation (4), but it involves the conditional mean of the pricing kernel, \(v_t = \mathbb{E}_t[m^*_{t+1}] \),

\[
m^*_{t+1} = (p_t - v_t\mu_t)'(\mu_t'\mu_t + \Sigma_t)^{-1}(r_{t+1} - \mu_t) + v_t.
\]

(18)

Hence, \(v_t \) is the price of a conditionally risk-free asset and \(v = \mathbb{E}[v_t] \).

\[\text{Note that the projection is an unconditional not a conditional projection.}\]
2.4 The Optimally Scaled Variance Bound

The approach in this paper is different. Consider the family of infinitely many one dimensional scaled payoff spaces \(P_x = \{ \alpha z_i^i r_{t+1} : \alpha \in R^1 \} \) indexed by \(z_i \). There is a Hansen-Jagannathan bound \(\sigma^2(v; r_{t+1}) \) associated with each scaling vector \(z_i \), which only depends on the unconditional moments of \(z_i^i r_{t+1} \).

\[
\sigma^2(v; z_i^i r_{t+1}) = \frac{(E[z_i^i p_t] - vE[z_i^i r_{t+1}])^2}{\text{var}(z_i^i r_{t+1})}.
\] (19)

Equation (19) simply applies equation (7) to the single scaled return \(z_i^i r_{t+1} \). The optimally scaled bound is the highest such Hansen-Jagannathan bound:

\[
\sigma_{OSB}^2(v; z_i^i r_{t+1}) = \sup_{z_i} \sigma^2(v; z_i^i r_{t+1}).
\] (20)

The question we answer is: what \(z_i \) yields the best (largest) HJ bound? Since \(z_i = f(y_i) \), this is a problem of variational calculus.

Proposition 1 The solution to the maximization problem

\[
\sigma_{OSB}^2(v; z_i^i r_{t+1}) = \sup_{z_i} \sigma^2(v; z_i^i r_{t+1}).
\] (21)

is given by

\[
z_i^* = (\mu_i \mu_i' + \Sigma_i)^{-1} (p_i - w \mu_i)
\] (22)

where

\[
w = \frac{v - b}{1 - d},
\] (23)

with \(b \) and \(d \) are as defined in (15) and (16). Furthermore, the maximum bound is given by

\[
\sigma_{OSB}^2(v; z_i^i r_{t+1}) = \sigma^2(v; z_i^* r_{t+1})
\] (24)

\[
= \frac{a(1 - d) + b^2 - 2bw + dv^2}{1 - d},
\] (25)

where \(a \) is as defined as follows:

\[
a = E[p_i^2 (\mu_i \mu_i' + \Sigma_i)^{-1} p_i].
\] (26)

Proof: The Appendix contains a formal proof. The proof proceeds in two steps. First, the optimal functional form is solved for. Second, the remaining constant parameter characterizing the function is solved for in a separate maximization.
Not surprisingly, the optimal scaling factor depends on the conditional distribution function only through the first and second conditional moments. Whereas the optimal scaling factor is decreasing in the conditional variance Σ_t, it is not monotonic in the conditional mean μ_t. The non-monotonicity is easy to understand using the duality with the mean-variance frontier. Consider two independent risky assets with a different expected return but identical variance. In this case, the minimum variance portfolio is the equally weighted portfolio. Also, the inefficient part of the frontier goes through a point where the expected return is the return on the lowest yielding asset and all funds are invested in that asset. When, without loss of generality, the expected return on the best yielding return is raised, the minimum variance point is raised as well, but the inefficient part of the frontier still intersects the point where all is invested in the lowest yielding asset. The part of the new frontier beyond that point is below the old frontier.

Both bounds $\sigma^2_{GHT}(v)$ and $\sigma^2_{OSB}(v)$ depend on the conditional mean and the conditional variance of the payoffs. When these moments are known to researchers, the relation between $\sigma^2_{GHT}(v)$ and $\sigma^2_{OSB}(v)$ is described by the following proposition:

Proposition 2 For a n-dimensional payoff r_{t+1} with price vector p_t, conditional mean μ_t, and conditional variance-covariance matrix Σ_t,

$$\sigma^2_{OSB}(v) = \sigma^2_{GHT}(v) = \frac{a(1-d) + b^2 - 2bv + dv^2}{1-d},$$

(27)

where b, d, and a are defined in equations (15), (16), and (26).

Proof: Since $P_z \in P$ (the GHT bound represents the most efficient way of using conditional information), it follows:

$$\sigma^2(v; z^*_t r_{t+1}) \leq \sup_x \sigma^2(v; z^*_t r_{t+1}) = \sigma^2_{OSB}(v) \leq \sigma^2_{GHT}(v).$$

(28)

From Proposition 1, we know that $\sigma^2(v; z^*_t r_{t+1})$ has the form described in the proposition. Now consider the variance of m^*_{t+1}:

$$\sigma^2_{GHT}(v) = \text{var}(m^*_{t+1}) = E[(z^*_t r_{t+1})^2] - (E[z^*_t r_{t+1}])^2.$$

(29)

Using the expression for z^*_t, the law of iterated expectations and simplifying algebra, it follows

$$\sigma^2_{GHT}(v) = \text{var}(m^*_{t+1}) = E[(p_t - w \mu_t)'(\mu_t \mu_t' + \Sigma_t)^{-1}(p_t - w \mu_t)]$$

$$- E[(p_t - w \mu_t)'(\mu_t \mu_t' + \Sigma_t)^{-1} \mu_t].$$

(30)

Using the definition for a, b and d, the result follows.
This result is at first surprising. Our optimally scaled bound is a standard HJ bound for a scaled return. Since the scaling factor depends on \(v \), the mean of the pricing kernel, the optimally scaled bound is the ratio of a quartic polynomial in \(v \) over a quadratic polynomial in \(v \) which is generally not a quadratic polynomial in \(v \). Nevertheless, when evaluated at the true conditional moments, the quartic polynomial in the numerator becomes the square of the quadratic polynomial in the denominator, and the optimally scaled bound becomes quadratic in \(v \). The optimal scaled frontier becomes a parabola, identical to the GHT frontier. Since this insight is useful later on, we prove it explicitly.

Corollary 1 Let

\[
\sigma_{OSB}^2(v) = \sigma^2(v; z_t^*, r_{t+1}) = \frac{A}{B},
\]

with

\[
A = (E[z_t^* p_t] - vE[z_t^* r_{t+1}])^2 \\
B = \text{var}(z_t^* r_{t+1})
\]

If the conditional moments are known, then \(A = B^2 \).

Proof: First note that \(B = \sigma_{GHT}^2(v) \), the GHT bound. Hence, from Proposition 2 we know that

\[
B = \frac{a(1-d) + b^2 - 2bv + dv^2}{1-d}.
\]

But \(A \), the numerator is the square of:

\[
E[(p_t - w\mu_t)'(\mu_t \mu_t' + \Sigma_t)^{-1}(p_t - w\mu_t)] = a - w(b - dv) - bv.
\]

Substituting for \(w = \frac{v-b}{1-b} \), and collecting terms the result follows. This corollary provides the basis for a diagnostic test in section 3.3.

3 The Optimally Scaled Bound: Discussion

Three important properties make the optimal scaled bound very useful in applied work. First, if there is time-variation in expected returns and volatility, the optimally scaled bound should be sharper than standard ad hoc bounds. In Section 3.1 we explore the relation between predictability and the optimally scaled bound. Second, Section 3.2 discusses how the optimally scaled bound is robust in that it always is a valid lower bound to the pricing kernel, which is not the case for the GHT bound. Third, Section 3.3 suggests how the optimally scaled bound could form the basis of a diagnostic test for the correct specification of the first and second moments. Finally, we discuss how our work relates to two recent articles by Ferson and Siegel (2000a and b).
3.1 Efficiency and Predictability

Whereas the optimally scaled bound uses conditioning information efficiently, it would be useful to derive conditions under which scaling improves the bound. In particular, one would hope that predictable variation in returns would result in sharper HJ bounds. Unfortunately, it is difficult to derive sufficient conditions but it is straightforward to derive a necessary condition. Let us, without loss of generality, focus on a univariate return space. If the scaling factor z_t is uncorrelated with the first and second conditional moment of r_{t+1} (that is, $\text{cov}(p_t, z_t) = \text{cov}(r_{t+1}, z_t) = \text{cov}(r^2_{t+1}, z^2_t) = 0$, then scaling the return with z_t will decrease the HJ bound. To see this, note that

$$\sigma^2(v; z, r) = \frac{\text{E}^2(z)(\text{E}(p) - v \text{E}(r))^2}{\text{E}(z^2)\text{E}(r^2) - \text{E}^2(z)\text{E}^2(r)}$$

$$= \frac{(\text{E}(p) - v \text{E}(r))^2}{\text{E}(r^2) - \text{E}^2(r)} \times \frac{\text{E}^2(z)(\text{E}(r^2) - \text{E}^2(r))}{\text{E}(z^2)\text{E}(r^2) - \text{E}^2(z)\text{E}^2(r)}$$

$$= \sigma^2(v; r) \times \frac{\text{E}(r^2) - \text{E}^2(r)}{(\text{E}(z^2)/\text{E}^2(z))\text{E}(r^2) - \text{E}^2(r)} \leq \sigma^2(v; r),$$

where we omitted the time subscripts. The last inequality follows since $\frac{\text{E}[z^2]}{\text{E}^2[z]} \geq 1$. Intuitively, scaling by an independent random variable just adds noise to the return. Conversely, the scaling factor has to be correlated with the future return for the scaled HJ bound to improve relative to the standard bound. In other words, when the return is scaled with a conditioning variable (for example, a stock return with its lagged dividend yield) the variable must predict the return in order for the HJ bound to improve. This is intuitively clear: when a variable predicts an asset return, it may be possible to create managed portfolios that improve the risk-return trade off as measured by the Sharpe Ratio and it is well-known that HJ bounds and Sharpe ratios are closely related.

This intuition remains intact for the case where two-dimensional spaces of the form

$$\begin{pmatrix}
 r_{t+1} \\
 z_t' r_{t+1}
\end{pmatrix},$$

where $z_t = G y_t$, are considered. In this case, since $r_{t+1} \in \{r_{t+1}, z_t' r_{t+1}\}$, we know for sure

$$\sigma^2(v; r_{t+1}) \leq \sigma^2(v; (r_{t+1}, z_t' r_{t+1})), \quad \forall z_t.$$

(34)

Even in this case, for the bound to strictly improve, predictable variation in the conditional mean or variance is a necessary condition. To see this, first note that the optimal scaling factor remains the same for this ”stacked” return and scaled return case, which we show in the next proposition.
Proposition 3 Suppose there is an asset vector with payoff r_{t+1}, price p_t. Let I_t denote the σ algebra of the measurable functions of the conditioning variables y_t. Then the solution z_t^* to the maximization problem

$$\sup_z \sigma^2(v; (r_{t+1}, z_t' r_{t+1}))$$

is given by

$$z_t^* = (\mu_t \mu_t' + \Sigma_t)^{-1} (p_t - w \mu_t).$$

The proof is given in the appendix.

Now, suppose μ_t and σ_t are constants (that is, there is no predictable variation in conditional means or variances), then z_t^* is a constant and r_{t+1} and $z_t'' r_{t+1}$ are linearly dependent. It follows that $\sigma^2(v; (r_{t+1}, z_t'' r_{t+1})) = \sigma^2(v; r_{t+1})$. But since our bound is optimal, this implies $\sigma^2(v; (r_{t+1}, z_t'' r_{t+1})) \leq \sigma^2(v; r_{t+1})$. Conversely, for the bound to improve, z_t must predict r_{t+1}. In the empirical illustrations below, we will use standard scaling in the "stacked" space as indicated above. Apart from our optimally scaled bounds, we will also report "stacked" optimally scaled bounds, $\sigma^2(v; (r_{t+1}, z_t'' r_{t+1}))$, which ought to be identical to the optimally scaled bounds when the conditional moments are known.

Our work here is related to Kirby (1998), which is the only paper we are aware of that provides an explicit link between linear predictability and HJ bounds. More specifically, he shows that the Wald test of the null of no predictability in a linear regression is proportional to the standard HJ measure. He then uses this insight to investigate whether several asset pricing models are consistent with the evidence on predictability. Our work suggests that if the predictability is correctly described by a linear predictive model, our optimally scaled return should lead to a sharper HJ bound, and hence sharper restrictions on these asset pricing models.

3.2 Robustness

The GHT bound is given by $\text{var}(m_{t+1}^*)$, where m_{t+1} depends on the conditional mean μ_t and the conditional variance Σ_t of the returns. In practice, these conditional moments are not known. We use a proxy for them and thus a proxy \tilde{m}_{t+1}^* for m_{t+1}^*. In that case, the proxy for the GHT bound, $\text{var}(\tilde{m}_{t+1}^*)$, may either underestimate or overestimate $\text{var}(m_{t+1}^*)$. When it overestimates, $\text{var}(\tilde{m}_{t+1}^*)$ fails to be a lower bound for the variance of valid pricing kernels. On the other hand, the optimally scaled bound is $\sigma^2(v, z_t'' r_{t+1})$, where z_t depends on the first two conditional moments. When the conditional moments are unknown z_t^* is unknown and so is $z_t'' r_{t+1}$. However, for every z_t, $\sigma^2(v, z_t' r_{t+1})$ remains a lower bound to the variance of all pricing kernels.
since $\sigma^2(v, z_t' r_{t+1})$, is a HJ bound. Hence, even when using a proxy for the conditional moments to get a proxy \hat{z}_t^* for z_t^* the resultant optimally scaled bound remains a valid lower bound to the variance of pricing kernels.

This robustness property is important since conditional moments are notoriously difficult to estimate from the data. GHT (1990) propose to use the SNP method to estimate conditional moments. The SNP method approximates the conditional density using a Hermite expansion, where a standardized Gaussian density is multiplied with a squared polynomial. In their preferred model, the leading term is a linear vector-autoregressive (VAR) model with ARCH volatility. In GHT’s application on stock and bond returns, the conditioning set is restricted to contain only past returns, and SNP estimation may be adequate. However, when the data generating process for returns contains jumps or regime-switches, and involves other predictive variables, such as dividend yields, or term spreads, it is not clear that the SNP approach provides a good approximation.\footnote{There is more and more research that reveals that some of the predictable patterns detected in returns, even in linear settings, may be spurious, for one example, see Kirby (1997).}

The risk of over-estimating the variance bound can be avoided by applying our method.

Given an empirical specification for the conditional moments, our ”optimally” scaled bound is as easy to implement as the original Hansen-Jagannathan bounds, since we only need to compute unconditional moments. For example, if we deem the time-variation the conditional mean to be more important than the time-variation in the conditional variance, we obtain valid bounds by just replacing the conditional variance with the unconditional variance. The resulting bound will not be optimal if there truly is time-variation in the conditional variance. However, if the time-variation in conditional variances is minimal, it may still be sharper than using arbitrary scaling.

3.3 Diagnostics

The fact that optimally scaled bounds computed from mis-specified conditional moments remain valid bounds which are best when the true conditional moments are used, suggests an interesting application of our procedure. We can use the optimally scaled bound to diagnose the accuracy of competing models for the first two conditional moments. There are several ways in which mis-specification of the the conditional moments may manifest itself. First, it need not be the case that $\sigma^2(v; r_{t+1}) \leq \sigma^2(v; z_t^* r_{t+1})$. Hence, mis-specified conditional moments may reveal themselves through poorly performing optimally scaled bounds relative to the conditional, “naively” scaled or stacked optimally scaled bounds.
Second, and most strikingly, the HJ bound need not be a parabola, since its numerator is a quartic in \(v \) and its denominator a quadratic in \(v \). That is, mis-specification should be visibly clear from graphing the optimal bound and we will illustrate this behavior in the empirical section below.

This reasoning also makes it possible to develop a general diagnostic test for the first and second conditional moments of asset returns.\(^6\) To develop such a test, let’s revisit Corollary 1 in Section 2.4. The optimally scaled bound can be written as \(A^2 = B \), where \(B \) is the GHT bound, and correct moment specification implies \(A = B \). This suggests a simple diagnostic test. The GHT bound is a quadratic in \(v \) where the coefficients are non-linear functions of the three unconditional moments \(a, b, \) and \(d \), defined above. For the parabola \(A \) to coincide with \(B \) for all \(v \)’s, it should be the case that its coefficients are equal to the coefficients in \(B \). Re-write \(A \) as \(E[f_{1t} + f_{2t}v + f_{3t}v^2] \), and denote the estimated constants \(a, b \) and \(d \) by \(\hat{a}, \hat{b}, \) and \(\hat{d} \). It is straightforward to derive:

\[
\begin{align*}
f_{1t} &= p_t'\left(\mu_t\mu_t' + \Sigma_t\right)^{-1}\mu_t + \frac{b}{1-d}p_t'\left(\mu_t\mu_t' + \Sigma_t\right)^{-1}\mu_t, \\
f_{2t} &= -\frac{p_t'\left(\mu_t\mu_t' + \Sigma_t\right)^{-1}\mu_t}{1-d} - p_t'\left(\mu_t\mu_t' + \Sigma_t\right)^{-1}r_{t+1} - \frac{b}{1-d}p_t'\left(\mu_t\mu_t' + \Sigma_t\right)^{-1}r_{t+1}, \\
f_{2t} &= -\frac{p_t'\left(\mu_t\mu_t' + \Sigma_t\right)^{-1}r_{t+1}}{1-d}.
\end{align*}
\]

To test the equality of \(A \) and \(B \), we use the following orthogonality conditions:

\[
g_t = \begin{bmatrix}
p_t'\left(\mu_t\mu_t' + \Sigma_t\right)^{-1}\mu_t - a \\
p_t'\left(\mu_t\mu_t' + \Sigma_t\right)^{-1}\mu_t - b \\
p_t'\left(\mu_t\mu_t' + \Sigma_t\right)^{-1}\mu_t - d \\
p_t'\left(\mu_t\mu_t' + \Sigma_t\right)^{-1}r_{t+1}(1-d) + (p_t'\left(\mu_t\mu_t' + \Sigma_t\right)^{-1}r_{t+1})b - b \\
p_t'\left(\mu_t\mu_t' + \Sigma_t\right)r_{t+1} - d
\end{bmatrix},
\]

where the first three conditions estimate and define the fundamental constants, the fourth condition is a re-write of \(E[f_{2t}] = -2b \), including a re-scaling by \(1 - \hat{d} \) that ensures that all orthogonality conditions are of similar order of magnitude and the fifth condition is the re-scaled version of \(E[f_{3t}] = \hat{d}/(1 - \hat{d}) \). The restriction \(E[f_{1t}] = \hat{a} + \hat{b}^2/(1 - \hat{d}) \) does not yield any conditional moments restrictions since returns do not enter this expression.

There are three parameters to be estimated, so that there are 2 over-identifying restrictions, which can be tested using the usual statistic \(Tg'_T W g_T \), where \(g_T \) is the mean of \(g_t \), \(T \) is the number of observations, and \(W \) is a suitable weighting matrix for example obtained from a

\(^6\)We thank the referee for stimulating our thinking on this issue.
Newey-West estimate (1987) of the inverse of the spectral density matrix of g_t at frequency zero. Note that whatever the dimensionality of returns, the test is always a $\chi^2(2)$ and can be used to compare the performance of non-nested models for the first and second conditional moments. Of course, in a formal application, the sampling error in the parameters generating μ_t and Σ_t should be taken into account. In a GMM context, this can be easily accomplished employing a sequential GMM procedure, as in Bekaert (1994), Heaton (1995) and Burnside (1994).

The economic intuition for the test is straightforward. In a standard unconditional HJ framework, the HJ bound, which is the variability of the projected pricing kernel, can be viewed as a quadratic form in the deviations from risk neutral pricing (see Hansen and Jagannathan (1991)). Let’s consider A: $A = E[z_t'p_t] - vE[z_t'r_{t+1}]$. If a risk free asset exists than v is the inverse of the risk free rate and A can be seen as the deviation from risk neutral pricing for the portfolio with weights z_t (the optimally scaled portfolio), since the first term is the expected actual price and the second term is the risk-neutral price. Note that the portfolio weights do not need to add up to one. B on the other hand is simply the variability of the optimally scaled portfolio and at the same time the variability of the GHT kernel. If the scaling is done with the correct moments, the variability of the scaled return exactly equals the deviation of risk neutral pricing.

This suggests another useful diagnostic statistic that could be used to compare alternative models. One could simply select two economically relevant v’s (v_1 and v_2, say) and create a quadratic form using the following orthogonality conditions:

$$
g_t = \begin{bmatrix}
z_t(v_1)'p_t - v_1 z_t(v_1)'r_{t+1} - B(v_1) \\
z_t(v_2)'p_t - v_2 z_t(v_2)'r_{t+1} - B(v_2)
\end{bmatrix},
$$

where $B(v_i)$ is the GHT bound evaluated at v_i and $z_t(v_i)$ is the optimal scaling function evaluated at v_i. This statistic ignores the sampling error in a, b, and d and the original model parameters, but can be viewed as a distance measure to rank alternative models.

To fully explore the properties of diagnostic tests based on the optimally scaled bound is outside the scope of the present paper. In our empirical illustration, we report the test developed in equation (37) above for a number of different cases, including cases with simulated data where the true first and second moments model is known.

3.4 Relation to Ferson and Siegel (2000a and 2000b)

Ferson and Siegel have two contemporaneous articles that are related to the present paper. Ferson and Siegel (2000a) solve for unconditionally minimum variance portfolios while using conditioning information efficiently. They provide explicit solutions for the portfolio weights as
a function of the conditional means and volatilities of the available asset returns, both when a risk free asset exists and when it does not. Since there is a duality between HJ frontiers and mean-standard deviation frontiers, the Ferson and Siegel portfolios have some similarities to our optimally scaled returns, as Ferson and Siegel note in a final section. However, there are also many differences between our respective analyses so that our respective articles should really be viewed as complements rather than substitutes.

First, the HJ bounds derived from the Ferson and Siegel procedure are not as sharp as our bounds, because of the restriction that the portfolio weights have to sum to 1. To appreciate the potential effect of this restriction, consider the extreme case where a researcher examines HJ bounds using one asset return (the equity return for example) and multiple instruments (dividend yields, default spreads and short rates for example). One would imagine that conditioning information should be very valuable in increasing the HJ bound, but the Ferson and Siegel bound would equal the unconditional bound, since the conditioning information is useless with only one return, which forces the weight to be one for all t. Second, the optimality proof in Ferson and Siegel basically guesses the right solution for the optimal portfolio weight and verifies that it is correct, so no functional analysis is used. Third, Ferson and Siegel do not attempt to link their results to the GHT optimal HJ bound and finally, they assume the conditional moments to be correctly specified.

Whereas our focus is mostly on the relation between GHT bounds and our optimally scaled bound, Ferson and Siegel extensively analyze the form of the weight function. In particular, they provide extensive intuition on the non-linear relation between the optimal portfolio weight and the magnitude of the expected return. In particular, extreme values for the expected return for a risky asset decrease the optimal weight on that asset, providing an interesting form of conservativeness to optimal scaling. This result applies to our bounds too, since it derives from the influence of the expected return on the uncentered second moment.

Ferson and Siegel (2000b) is a purely empirical paper that provides useful information about the small sample properties of alternative methods to embed conditioning information into HJ bounds. They compare the naively scaled (multiplicative) bounds, the GHT bound, and a bound based on their unconditionally efficient portfolios. Perhaps not surprisingly, all bounds suffer from significant biases that increase the bounds relative to their true values. They conclude that the parsimony of the Ferson and Siegel (2000a) bounds enhances their attractiveness in small samples and that they are often close to optimal (that is close to the GHT bound). The analysis in Ferson and Siegel (2000b) also assumes correct specification of the conditional moments. In a sense, our results strengthen their conclusions since we show that the use of optimally scaled bounds is robust to misspecification.
4 Empirical Application

4.1 The Econometric Model

Let R_i^s be the logarithm of the stock return ($i = s$) and the bond return ($i = b$) and let X_t be the logarithm of gross consumption growth. Define

$$Y_t = [X_t, R_t^s, R_t^b]' .$$

Hansen and Singleton (1983, henceforth HS) assume that y_t follows a vector-autoregressive (VAR) process with normal disturbances. HS then examine the restrictions imposed by the standard consumption-based asset pricing model with time-additive Constant Relative Risk Aversion (CRRA) preferences on the joint dynamics of the variables. A critical assumption is the time-invariance of the conditional covariance matrix of y_t. It is well known that in this log-normal version of the consumption-based asset pricing model, time-variation in expected excess returns is driven by the time-variation in this covariance matrix. To accommodate predictability in excess returns, a natural extension of the HS framework is to allow for heteroskedasticity using the GARCH-in-Mean framework of Engle, Lilien and Robins (1987). Surprisingly, apart from an application to international data (Kaminsky and Peruga (1990)), there is little work in this area. Two reasons may be the parameter proliferation that occurs with multivariate GARCH models and the lack of heteroskedasticity in consumption growth (which may be due to a temporal aggregation bias). Nevertheless, we will use this familiar framework to illustrate the properties of our “optimally scaled bound”.

Our specification has two important features. First, we impose a parsimonious factor structure on the conditional covariance matrix inspired by Engle, Ng and Rothschild (1990). Second, we allow negative shocks to have a different effect on the conditional variance than positive shocks, that is, we accommodate asymmetric volatility as in Glosten, Jagannathan and Runkle (1993) and Bekaert and Wu (2000). The presence of asymmetry in stock volatility is well known but in a previous version of this paper (Bekaert and Liu (1998)) we also document asymmetry in the conditional variance of quarterly consumption growth. While it is intuitively plausible that uncertainty about future consumption growth is higher in a recession than in a boom, we could not find articles in the business cycle literature that document this phenomenon. In the finance literature, the available empirical evidence is mixed. Ferson and Merrick (1987) report U.S. consumption volatility to be higher in a non-recession sample relative to a recession sample. Kandel and Stambaugh (1990) find peaks in the standard deviation of U.S. consumption growth to occur at the end of recessions or immediately after them.

7See Bekaert (1996) for an elaboration of this point
For the multivariate set-up, we begin by parameterizing an unconstrained model:

$$Y_t = c_{t-1} + AY_{t-1} + \Omega_{t-1}e_t$$

where

$$c_t = \begin{pmatrix} c_{xt} \\ c_{st} \\ c_{bt} \end{pmatrix},$$

and $e_t|I_{t-1}$ is $N(0, H_t)$ with H_t a diagonal matrix where the diagonal elements, h_{iit}, follow

$$h_{iit} = \delta_i + \alpha_i h_{iit-1} + \kappa_i e_{iit-1}^2 + \eta_i (\max(0, -e_{iit-1}))^2.$$

If $\eta_i > 0$, volatility displays the well-known asymmetric property. The e_t-vector contains the fundamental shocks to the system. The error terms of the system are linked to e_t through Ω_t. A parsimonious factor structure arises by assuming that Ω_t is time-invariant and upper triangular:

$$\Omega_t = \Omega = \begin{pmatrix} 1 & 0 & 0 \\ f_{xb} & 1 & 0 \\ f_{xs} & f_{bs} & 1 \end{pmatrix},$$

To further limit parameter proliferation, we set $f_{bs} = 0$ and let the consumption shock be the only factor. This is consistent with the standard consumption-based asset pricing model, where consumption growth is the only state variable. In addition, we set

$$\alpha_b = \kappa_b = \eta_b = \alpha_s = \kappa_s = \eta_s = 0.$$

All the time-variation in volatility of the Y_t-system is driven by time-varying uncertainty in consumption growth. The covariance of the error terms becomes

$$\Sigma_t = \Omega H_t \Omega'.$$

We denote its elements by σ_{ijt} with $i, j = x, b, s$. Since the consumption-based asset pricing model introduces elements of the conditional variance-covariance matrix in the conditional mean, the unconstrained model should allow the conditional covariance matrix to affect the conditional mean as well. Therefore, we let

$$c_{it} = v_i h_{xt} + c_i,$$

where i is either b or s. This simple expression for the constant arises because of the one-factor structure of the conditional covariance matrix. The parameter vector to be estimated is

$$\Theta = [\text{vec}(A)', c_x, c_b, c_s, v_b, v_s, f_{xb}, f_{xs}, \delta_x, \alpha_x, \kappa_x, \eta_x, \delta_b, \delta_s]'.$$
Hence, there are a total of 22 parameters and it is clear that relaxation of some of the parameter restrictions we impose would be stretching the data too far. This unconstrained model serves as a natural alternative to the model constrained by the consumption-based asset pricing model. Let γ be the CRRA and let β be the discount factor. The model implies

$$E_t[R^d_{t+1}] = -1/2\sigma_{iit} - 1/2\gamma^2\sigma_{xt} + \gamma\sigma_{ixt} + \gamma E_t[x_{t+1}] - \ln \beta.$$

If conditional variances are constant, the time variation in the conditional means of asset returns and consumption growth is proportional and the proportionality constant is the CRRA. The restriction also shows the role of γ as the price of risk with the risk being the covariance with consumption. With our particular GARCH structure, the model further simplifies to

$$E_t[R^d_{t+1}] = -(\ln \beta + 1/2h_{ii}) - 1/2(\gamma - f_{xi})^2h_{xt} + \gamma E_t[x_{t+1}].$$

Note h_{ii} does not depend on t for $i = b, s$ because of equation (43). Our particular parameterization has the implication that increased uncertainty about future consumption growth always decreases expected returns. This seems at odds with the data where the price of risk has been shown to move countercyclically. The model does predict that, if shocks to returns depend positively on consumption shocks, an increased covariance with consumption will drive up expected returns. Furthermore, the covariance with consumption increases when consumption volatility increases because of the factor structure. However, this effect is swamped by the Jensen’s inequality terms which depend negatively on consumption volatility. As a result, this comparative static is not necessarily true for gross returns:

$$E_t[\exp(R^d_{t+1})] = \exp(-\ln \beta - \gamma/2(\gamma - 2f_{xi})h_{xt} + \gamma E_t[x_{t+1}]).$$

Depending on the relative size of the sensitivity to consumption shocks, f_{xi} and the CRRA, higher consumption volatility may now increase the gross expected asset return. Empirically, our unconstrained model potentially allows for a positive relation between consumption volatility and expected log returns and so we can test whether this feature of the model is a source for rejection. The restricted parameter vector Θ^R contains 14 parameters,

$$\Theta = [c_x, A_{11}, A_{12}, A_{13}, \beta, \gamma, f_{xb}, f_{xs}, \delta_t, \alpha_x, \kappa_x, \eta_{ls}], \quad i = x, b, s.$$

4.2 Data and Estimation Results

Our consumption measure is the sum of per capita real non-durables and services consumption in the US. These data were downloaded from DATASTREAM. The stock return is the quarterly
value-weighted dividend-inclusive index return on the NYSE, taken from Wharton’s web site (http://wrdsx.wharton.upenn.edu). The interest rate is the U.S. 3 month Treasury Bill rate taken from the Federal Reserve web site. We use a data set on weekly secondary market rates (averages of daily) and use the rate closest to the end of the month. All data run from the second quarter in 1959 to the end of 1996.

Table 1 shows the results from the unconstrained estimation. Despite the presence of very large coefficients on the GARCH-in-mean term, consumption growth and bond returns show strong autocorrelation as they do univariately. Although the standard errors for the GARCH-in-mean coefficients seem very small, they should be interpreted with much caution. Standard errors computed from the cross-product of the first derivatives of the likelihood are quite large and more adequately represent the uncertainty regarding these parameter estimates. In fact, the likelihood function is very flat with respect to these parameters, and a number of locals exist where the GARCH-in-mean parameters are in fact positive. This is not that surprising. Much work on GARCH-in-mean models for stock returns (see Bekaert and Wu (2000) for a survey) has stressed the weakness of a positive relation between stock return volatility and its conditional mean. In this model, stock and bond returns are linked to consumption volatility which in turn drives asset return volatility. The much smaller magnitude of consumption volatility relative to stock return volatility explains the large coefficients we find relative to the GARCH-in-mean literature for stock returns. When we estimate a univariate GARCH-in-mean model for stock returns we find a GARCH-in-mean parameter of 6.29 with a large standard error of 5.23. Note that there is virtually no GARCH in the volatility dynamics but strong asymmetry with the coefficient on positive shocks being slightly negative. This is somewhat problematic since the conditional variance may theoretically become negative although it never does in sample.

The constrained model (see Table 2) is not surprisingly rejected by a likelihood ratio test. The χ^2 test statistic is 75.32 with a p-value of 0.000 (there are 8 restrictions). The CRRA is estimated to be 14.675 and the discount factor β is 1.071. Although the latter is above 1, we know from Kocherlakota’s (1996) work that the economy remains well defined and in fact our parameter values are quite close to the ones he uses to explain the equity premium puzzle. The estimation results reveal that the key parameter the model attempts to match is the autoregressive coefficient in the bond equation, which is almost perfectly matched. Given the proportionality restrictions imposed by the model on expected returns, this causes a bad fit for both stock returns and especially consumption dynamics. Because the GARCH-in-Mean parameters are pretty similar, and are imprecisely estimated, it is very likely that the model rejection is driven by this phenomenon.
4.3 The HJ Bounds

This section illustrates the performance of our optimally scaled bound along the three dimensions that we discussed in section 3: efficiency, robustness and diagnostics.

The setting is the log-normal model for stock and bond returns and consumption growth estimated before. The model, in its unconstrained and constrained form, yields two candidates for the computation of the conditional moments we need in deriving the optimally scaled and GHT bounds. We will also use these models as data generating processes in simulations. Simulations both serve to illustrate the effect of mis-specifications where the conditional moments are known, and to help interpret data results that may be sensitive to sampling error in our short sample. Simulations use 10,000 observations.\(^8\) Table 3 provides a complete guide to the Figures we produce. Importantly, we always focus on both stock returns and bond returns and naive scaling uses the past bond and stock returns as instruments for both returns.

4.3.1 Efficiency

Figure 1 uses the unconstrained model for the conditional moments in the computation of the GHT and optimally scaled bounds. Two results stand out. First of all, the difference between the unconditional and scaled bounds reveals considerable predictability. The main source of the predictability is the autoregressive component in bond returns. Second, the difference between the various scaled bounds is small, but the arbitrarily scaled bound is even somewhat sharper than the optimally scaled and GHT bounds. This can be due to either mis-specification of the conditional moments or chance (sampling error). In any case, for this particular example, the naive scaling method suffices to get a sharp, valid bound.

To examine this issue closer, we first produce the same graphs for a long simulated sample from the unconstrained model in Figure 2. As should be the case, the GHT and optimally scaled bounds are now on top of one another and dominate ad-hoc scaling, but only slightly. In other words, in a world where the unconstrained model generates the data, naive scaling will closely approximate the efficient use of the conditioning information. In fact, since our model describes the data rather well, the dominance of the naively scaled bound in Figure 1 may be simply due to sampling error, which we confirmed by performing simulations using 151 data points only.

It is no mystery why the use of the true conditional moments adds little in this setting. The

\(^8\)We simulate 10,100 observations but discard the first 100 observations to reduce dependence on initial conditions. Such dependence is unavoidable in the graphs using short sample data. Our sample estimates of the HJ bounds may also be subject to the finite sample bias documented in Ferson and Siegel (2000b), but the number of asset returns we use is much smaller than theirs.
feature of the data that arbitrary scaling would most likely fail to capture is the GARCH-in-mean feature, which happens to be weak in quarterly data. The importance of optimal scaling in generating sharper Hansen-Jagannathan bounds is likely more dramatic when strong non-linearities are present.

4.3.2 Diagnostics

In Figure 3, which uses the constrained model to generate the conditional moments, again two results stand out. First, the stacked optimally scaled bound gets pretty close to the naively scaled bound, despite the mis-specification of the conditional moments. Of course, the constrained model manages to reproduce the most important aspect of the predictability, namely the autoregressive component in bond returns, so this result is not so surprising. What may strike some readers as surprising is the second main fact: the optimally scaled bound is not a parabola. As we indicated above, if the moments are correctly specified it ought to be. Since we know the model is rejected, the optimally scaled bounds seem to provide a striking alternative specification test. Of course, it is again possible that some quirk in the constrained model coupled with sampling error generates this result. This is not the case. Figure 4 uses data simulated from the constrained model. Since the model for conditional moments is correctly specified in this case, we now do obtain smooth parabola. We also produced these bounds for a number of simulated samples of length 151 and never found the same “strange” behavior.

To illustrate the diagnostic power of the optimally scaled bound more starkly, we can use simulations and our two data generating processes to generate mis-specified bounds. Figure 5 uses data simulated from the unconstrained model, but the conditional moments are erroneously generated from the constrained model. Figure 6 reverses the roles of the unconstrained and constrained model, generating data satisfying the constrained model and computing the optimally scaled bound using moments according to the unconstrained model. In both cases, the optimally scaled and naively scaled bounds are close and the bounds are uniformly higher when the data satisfy the unconstrained model (that is, the constrained model misses some of the predictable components the unconstrained model generates). Strikingly, in both cases, the optimally scaled bound shows non-parabolic behavior near the trough of the graph.

Finally, Table 4 produces the diagnostic test of section 3.3 (see equation (37)), ignoring the sampling error in the original parameters, but taking the sampling error in estimating the a, b and d constants into account. All test values are $\chi^2(2)$ and the p-values are in between parentheses. We first produce the test for the data, both when the constrained and unconstrained model are used to compute the conditional moments. The test rejects the constrained model, as
did the likelihood ratio test, at the 1% level. However, the diagnostic test also provides a test of the first and second moment specification embedded in the unconstrained model. Here the test fails to reject with a p-value of over 90%.

Our simulated samples provide a controlled environment to examine the performance of the test. We consider 4 cases simulating from either the constrained or unconstrained model and computing the moments according to either the constrained or unconstrained model. Given the size of the simulated samples (10,000 observations), we expect to reject when the moments are mis-specified. This indeed happens with very large test values. When the moments are correctly specified we do not reject in both cases. We conclude that the test behaves reasonably and that the unconstrained model provides a good description of the first and second moments of bond and stock returns.

4.3.3 Robustness

We have so far not focused on the GHT bounds very much. Generally, optimally scaled bounds do not perform much worse or better than the GHT bound. Moreover, our simulations reveal that the GHT bounds quite often over-estimate the variance of the true pricing kernel. A first example is in Figure 7. In Figure 7, we generate data from the unconstrained model. We show two GHT and two optimally scaled bounds: one bound uses the actual, true conditional moments, the other mis-specified moments from the constrained model. When the moments are mis-specified, the GHT bound generates too high values for the bounds on the right-hand side. When we reverse the roles of the unconstrained and constrained models in Figure 8, a similar phenomenon appears. This time, the GHT bound over-estimates at the left hand side of the graph. The optimally scaled bound never exceeds the true GHT bound but manages to be quite close to it. Importantly, when the moments are mis-specified, the optimal scaled bound remains below the true bounds and the mis-specification shows up in non-parabolic behavior of the bound. The latter is particularly apparent in Figure 8.

5 Conclusions

With the continued interest of the finance profession in the use of (unconditional) HJ bounds on the one hand, and the growing evidence of time-variation in conditional means and variances of asset returns on the other hand, it becomes important to optimally incorporate conditioning information in these bounds. Our paper provides a bridge between the insightful but complex analysis of GHT (1990), and the simple but sub-optimal practice of arbitrarily scaling of re-
turns with instruments that predict them. The advantage of the latter approach is that it always produces valid bounds to the variance of the pricing kernel, whereas the GHT bound may overestimate the variance of the pricing kernel when the conditional moments are mis-specified. In this article, we derive the best possible scaled bound, the optimally scaled bound. As does the GHT bound, this bound requires specifying the conditional mean and variance of the returns and we show that the optimally scaled bound is as good as the GHT bound when these moments are correctly specified. When they are mis-specified our bound is robust, in the sense that it will always produce a valid bound to the variance of the pricing kernel since it is a HJ bound.

There are potentially many interesting applications of our framework. First, the bounds can be used to re-examine the predictability of asset returns and to examine which instruments yield the sharpest restrictions on asset return dynamics. In our application here, using the optimally scaled bound does not sharpen the bounds dramatically. However, Ferson and Siegel (2000b) show cases where the efficient use of conditioning information substantially increases the efficient volatility bound.

Second, the bounds can also yield information on expected return and conditional variance modeling and serve as a diagnostic tool to judge the performance of dynamic asset pricing models. The reason is that the optimal scaling function depends on the conditional mean and conditional variance of the returns and that the resulting HJ bound is best when they represent the true conditional moments. We use this property of the optimally scaled bound to develop a GMM-based specification test for the first and second moments, but much more needs to be done. We ignored the sampling error in the parameter estimates of the original models, and did not examine the small sample properties of the test.9

Third, using the duality with the mean-variance frontier, the optimally scaled bound can be used in dynamic models of optimal asset allocation that seek to maximize an unconditional mean-variance criterion. Fourth, the bounds could be used in developing performance measures for portfolio managers. In the standard mean-variance paradigm, there is no role for a portfolio manager since the optimal portfolio weights are fixed over time. In a dynamic setting, with changing conditional information, the role of the portfolio manager is to adjust the portfolio weights according to the arrival of information, preferably optimally.

9See Hansen, Heaton and Yaron (1996) for a study of the small sample properties of GMM estimators.
6 Appendix

Proof of proposition 1: The problem we would like to solve is
\[
\sup_z \sigma^2(v; z'r_{t+1}) = \sup_z \frac{(E[z'_t p_t - v z'_t r_{t+1}])^2}{E[(z'_t r_{t+1})^2] - E^2[z'_t r_{t+1})].}
\]
This is a well defined problem since \(\sigma^2(v; z'_t r_{t+1})\) is bounded from above by the GHT bound \(\sigma_{GHT}^2(v)\) and from below by 0. Note that
\[
E[z'_t p_t] = E[f'(y_t)p_t],
E[z'_t r_{t+1}] = E[f'(y_t)r_{t+1}] = E[f'(y_t)\mu_t],
E[(z'_t r_{t+1})^2] = E[f'(y_t)E_t[r_{t+1}r'_{t+1}] f(y_t)] = E[f'(y_t)(\mu_t \mu'_t + \Sigma_t) f(y_t)],
\]
where \(\mu_t\) and \(\Sigma_t\) are the conditional mean and conditional variance of the return respectively.

So the above problem is reduced to the problem (we omit the subscript \(t\) in the derivation),
\[
\sup_{f(y)} \frac{(E[(p - v \mu)' f(y)])^2}{E[f'(y)(\mu \mu' + \Sigma) f(y)] - E^2[f'(y)\mu]}, \quad (46)
\]
where
\[
E_i(p - v \mu)' f(y) = \int (p - v \mu)' f(y) \rho(y) dy, \quad (47)
E[f'(y)(\mu \mu' + \Sigma) f(y)] = \int f'(y)(\mu \mu' + \Sigma) f(y) \rho(y) dy, \quad (48)
E[f'(y)\mu] = \int \mu' f(y) \rho(y) dy, \quad (49)
\]
where \(y\) is a multi-dimensional vector and \(\rho(y)\) is the multi-variate distribution function of \(y\).

This is a variation-like problem and we adapt the calculus of variation technique to solve it. Let \(g(y) = f(y) + \epsilon h(y),\) where \(\epsilon > 0,\) the first order condition with respect to \(\epsilon\) gives
\[
E \left[\frac{(p - v \mu)' h}{E[(p - v \mu)' f]} \right] = E \left[\frac{(f'((\mu \mu' + \Sigma) - E[\mu' f]) h}{E[f'(\mu \mu' + \Sigma) f] - E^2[\mu' f]} \right], \quad \forall h,
\]
where we write \(f\) or \(h\) instead of \(f(y)\) or \(h(y)\) whenever there is no confusion. This implies that
\[
\frac{(p - v \mu)}{E[(p - v \mu)' f]} = \frac{((\mu \mu' + \Sigma) f - E[\mu' f]) \mu}{E[f'(\mu \mu' + \Sigma) f] - E^2[\mu' f]} \quad (50)
\]
Note that the probability density function \(\rho(y)\) of \(y\) does not appear explicitly. Solving for \(f\) from equation (50), we obtain:
\[
f = (\mu \mu' + \Sigma)^{-1} \left(\frac{E[f'(\mu \mu' + \Sigma) f] - E^2[\mu' f]}{E[(p - v \mu)' f]} (p - v \mu) - E[\mu' f] \mu \right). \quad (51)
\]
This completes our solution for the functional form of \(f(y) \), since the expectations on the right-hand side of (51) only depend on \(y \) through some constant parameters, representing unconditional moments. Hence, we obtain,

\[
f = (\mu' + \Sigma)^{-1}(\alpha \mu + \lambda \mu),
\]

where \(\alpha \) and \(\lambda \) are constants. Further, note that the scaling by a constant does not change the Hansen-Jagannathan bound, so we can solve \(f \) only up to a constant. We can thus let \(\alpha = 1 \).

With the functional form of the scaling factor known, we can determine the constant \(\lambda \) (note that \(-\lambda\) is \(w \) in equation (10)) by solving a standard maximization problem (instead of a functional problem):

\[
\sup_{\lambda} g(\lambda) = \max_{\lambda} \frac{(E[(p - \nu \mu)'(\mu' + \Sigma)^{-1}(p + \lambda \mu)]^2}{E[(p + \lambda \mu)(\mu' + \Sigma)^{-1}(p + \lambda \mu)] - E^2[\mu'(\mu' + \Sigma)^{-1}(p + \lambda \mu)]}
\]

(52)

So we have

\[
g(\lambda) = \frac{(a - vb + \lambda b - \lambda vd)^2}{(a + 2\lambda b + \lambda^2d) - (b + \lambda d)^2}
\]

(53)

where

\[
a = E \left[p'(\mu' + \Sigma)^{-1}p \right],
\]

\[
b = E \left[p'(\mu' + \Sigma)^{-1}\mu \right],
\]

\[
a = E \left[\mu'(\mu' + \Sigma)^{-1}\mu \right].
\]

(54)

Now we can just use the standard first order conditions to determine \(\lambda \). The first order condition in \(\lambda \) gives

\[
0 = \frac{2(a - vb + \lambda b - \lambda vd)(b - vd)}{(a + 2\lambda b + \lambda^2d) - (b + \lambda d)^2} - \frac{2(a - vb + \lambda b - \lambda vd)^2(b + \lambda d - (b + \lambda d)d)}{(a + 2\lambda b + \lambda^2d) - (b + \lambda d)^2}.
\]

(55)

Factoring out \((a - vb + \lambda b - \lambda vd)\) (this is not a problem because \(\lambda = \frac{w-a}{b-vd} \) is a minimum since it leads to \(\sigma_{OSB}^2(v) = 0 \), we have

\[
(b - vd)((a + 2\lambda b + \lambda^2d) - (b + \lambda d)^2) - (a - vb + \lambda b - \lambda vd)(b + \lambda d - (b + \lambda d)d) = 0.
\]

Solving this equation gives

\[
\lambda = \frac{b - v}{1 - d}.
\]
So the optimal scaling factor is

$$z^*_t = (\mu_t \mu'_t + \Sigma_t)^{-1} (p_t + \lambda \mu_t),$$

(57)

and the optimal scaled asset is

$$r^*_t = (p_t + \lambda \mu_t)' (\mu_t \mu'_t + \Sigma_t)^{-1} r_{t+1},$$

(58)

Substituting the optimally scaled returns into equation (7), we obtain the optimally scaled bound

$$\sigma^2_{OSB} = \sigma^2(v; z^*_t r_{t+1}) = \frac{a - ad + b^2 - 2bw + bv^2}{1 - d}.

(59)

We should remark that the above formulas constitute solutions to the first order condition which is only a necessary condition for optimality. We need to verify that the solution is a maximum. We can argue that the first order condition is sufficient in the following way. Note that in the problem of equation (46),

$$\sup_{f(y)} \frac{(E[(p - v \mu)' f(y)])^2}{E[f'(y)(\mu \mu' + \Sigma) f(y)] - E^2[f'(y) \mu]},$$

is homogeneous of degree zero in $f(y)$, so it is equivalent to the problem\(^\text{10}\):

$$\inf_{f(y)} E[f'(y)(\mu \mu' + \Sigma) f(y)] - E^2[f'(y) \mu]$$

s.t.

$$(E[(p - v \mu)' f(y)])^2 = 1.$$

Because both $E[f'(y)(\mu \mu' + \Sigma) f(y)]$ and $(E[(p - v \mu)' f(y)])^2$ are convex in $f(y)$ and there is an interior point, this is a convex programming problem and there is a minimum. In fact, one can easily verify that the solution is the one we obtained above.

Proof of proposition 3: Note that the pricing kernel written in terms of scaled assets formed using r_{t+1} and $z^*_t r_{t+1}$ can always be written as $\tilde{z}^t r_{t+1}$ for some \tilde{z}_t. So we have

$$\max_{\tilde{z}_t \in \mathcal{H}} \sigma^2(v; r_{t+1}, z^*_t r_{t+1}) = \max_{\tilde{z}_t \in \mathcal{H}} \sigma^2(v; \tilde{z}^t r_{t+1}) = \max_{\tilde{z}_t \in \mathcal{H}} \sigma^2(v; z^*_t r_{t+1}).$$

But

$$\sigma^2(v; z^*_t r_{t+1}) \leq \sigma^2(v; z^*_t r_{t+1}).$$

Combining the above two expressions, we get

$$\sigma^2(v; r_{t+1}, z^*_t r_{t+1}) = \sigma^2(v; z^*_t r_{t+1}).$$

\(^\text{10}\)We would like to thank Darrell Duffie for suggesting this proof
Table 1: Unconstrained GARCH-In-Mean Model

<table>
<thead>
<tr>
<th>Equations</th>
<th>Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_t</td>
<td>Constant</td>
</tr>
<tr>
<td>X_t</td>
<td>0.00295</td>
</tr>
<tr>
<td></td>
<td>(0.00047)</td>
</tr>
<tr>
<td>R^h_{t}</td>
<td>0.00555-162.65h_{xxt}</td>
</tr>
<tr>
<td></td>
<td>(0.00059)</td>
</tr>
<tr>
<td>R^e_{t}</td>
<td>0.0188-58.02h_{xxt}</td>
</tr>
<tr>
<td></td>
<td>(0.0083)</td>
</tr>
<tr>
<td>Constant</td>
<td>α_i</td>
</tr>
<tr>
<td>h_{11t}</td>
<td>0.000019</td>
</tr>
<tr>
<td></td>
<td>(0.000018)</td>
</tr>
<tr>
<td>h_{22t}</td>
<td>0.000014</td>
</tr>
<tr>
<td></td>
<td>(0.000002)</td>
</tr>
<tr>
<td>h_{33t}</td>
<td>0.006134</td>
</tr>
<tr>
<td></td>
<td>(0.00103)</td>
</tr>
<tr>
<td>f_{xb}</td>
<td>-0.0564</td>
</tr>
<tr>
<td></td>
<td>(0.1425)</td>
</tr>
<tr>
<td>f_{xs}</td>
<td>3.182</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
</tr>
</tbody>
</table>

Notes: The model estimated is described in equations (39) to (45). Standard errors are in parentheses and are robust to mis-specification of the error distribution in the sense of White (1982). Parameter values without standard errors reflect constrained parameters.
Table 2: Constrained GARCH-In-Mean Model

<table>
<thead>
<tr>
<th>Equations</th>
<th>Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Constant</td>
</tr>
<tr>
<td>(X_t)</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>(0.0005)</td>
</tr>
<tr>
<td>(R_t^b)</td>
<td>0.0053-108.97(h_{xx,t})</td>
</tr>
<tr>
<td>(R_t^c)</td>
<td>0.0021-82.086(h_{xx,t})</td>
</tr>
<tr>
<td>(\gamma =)</td>
<td>14.675</td>
</tr>
<tr>
<td></td>
<td>(0.0376)</td>
</tr>
<tr>
<td>(h_{11,t})</td>
<td>0.000022</td>
</tr>
<tr>
<td></td>
<td>(0.000006)</td>
</tr>
<tr>
<td>(h_{22,t})</td>
<td>0.000013</td>
</tr>
<tr>
<td></td>
<td>(0.000002)</td>
</tr>
<tr>
<td>(h_{33,t})</td>
<td>0.006457</td>
</tr>
<tr>
<td></td>
<td>(0.001009)</td>
</tr>
</tbody>
</table>

Notes: The model estimated imposes the following constraint on the unconstrained model reported in Table 1:

\[
E_t [R_{t+1}^t] = -(\log \beta + \frac{1}{2} h_{ii}) - \frac{1}{2} [\gamma - f_{xx}]^2 h_{xx,t} + \gamma E_t [X_{t+1}^i]
\]

The table reports all parameters, including parameters constrained by the model. Robust standard errors are in parentheses.
Table 3: Guide to Figures

<table>
<thead>
<tr>
<th>Figure Number</th>
<th>Data Generating Process</th>
<th>Model for (μ, Σ)</th>
<th>Illustration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Data</td>
<td>UC</td>
<td>Efficiency</td>
</tr>
<tr>
<td>2</td>
<td>Simulation, UC</td>
<td>CO</td>
<td>Efficiency</td>
</tr>
<tr>
<td>3</td>
<td>Data</td>
<td>CO</td>
<td>Diagnostic</td>
</tr>
<tr>
<td>4</td>
<td>Simulation, CO</td>
<td>CO</td>
<td>Diagnostic</td>
</tr>
<tr>
<td>5</td>
<td>Simulation, UC</td>
<td>CO</td>
<td>Diagnostic</td>
</tr>
<tr>
<td>6</td>
<td>Simulation, CO</td>
<td>UC</td>
<td>Diagnostic</td>
</tr>
<tr>
<td>7</td>
<td>Simulation, UC</td>
<td>UC/CO</td>
<td>Robustness</td>
</tr>
<tr>
<td>8</td>
<td>Simulation, CO</td>
<td>UC/CO</td>
<td>Robustness</td>
</tr>
</tbody>
</table>

Notes: The data generating process column records the origin of the data in the construction of the optimally scaled and GHT bounds: actual data ("data"), simulated data from either the unconstrained ("simulation, UC"), or constrained model ("constrained, CO"). The simulated samples are of length 10,000. The Model column records either the unconstrained ("UC") or the constrained ("CO") model. The last column identifies the property of the optimally scaled bound the Figure purports to illustrate. Figures 1 to 6 graph the unconditional bound, the naively scaled bound, the optimally scaled bound, the stacked optimally scaled bound and the GHT bound, using both stock and bond returns. For the scaled bounds, the instruments are the past returns for both returns. Figures 7 and 8 graph the GHT bound and the optimally scaled bounds put together on one graph.
Table 4: Diagnostic Test

<table>
<thead>
<tr>
<th></th>
<th>Unconstrained Model</th>
<th>Constrained Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>0.117 (0.9433)</td>
<td>14.97 (0.0006)</td>
</tr>
<tr>
<td>Simulated</td>
<td>510.19 (0.0000)</td>
<td>0.543 (0.762)</td>
</tr>
<tr>
<td>(Constrained)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulated</td>
<td>1.77 (0.4128)</td>
<td>761.55 (0.0000)</td>
</tr>
<tr>
<td>(Unconstrained)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: This table produces the diagnostic test proposed in section 3.3 for 6 different environments, depending on which models were used to construct the conditional moments (unconstrained versus constrained) and which data were used (actual data, a simulated sample of 10,000 observations according to the unconstrained or constrained model). All statistics are $\chi^2(2)$ distributed and p-values are in parentheses.
Figure 1: Hansen-Jagannathan bounds for real data with conditional moments calculated from the unconstrained model.
Figure 2: Hansen-Jagannathan bounds for simulated data according to the unconstrained model with conditional moments calculated from the unconstrained model.
Figure 3: Hansen-Jagannathan bounds for real data with conditional moments calculated from the constrained model.
Figure 4: Hansen-Jagannathan bounds for simulated data according to the constrained model with conditional moments calculated from the constrained model
Figure 5: Hansen-Jagannathan bounds for simulated data according to the unconstrained model with conditional moments calculated from the constrained model.
Figure 6: Hansen-Jagannathan bounds for simulated data according to the constrained model with conditional moments calculated from the unconstrained model.
Figure 7: Hansen-Jagannathan bounds for simulated data according to the unconstrained model with conditional moments for "optimal stacked" and "ght" calculated from the unconstrained model and conditional moments for "bptimal stacked-m" and "ght-m" calculated from the constrained model.
Figure 8: Hansen-Jagannathan bounds for simulated data according to the constrained model with conditional moments for "optimal stacked" and "ght" calculated from the constrained model and conditional moments for "optimal stacked-re' and "ght-m" calculated from the unconstrained model.
References

[38] Kirby, Chris (1998), “The restrictions on predictability implied by rational asset

Economic Literature, v34, n1, 42-71.

ity and Autocorrelation Consistent Covariance Matrix”, Econometrica, v55, n3, 703-708.

Econometrica, v50, n1, 1-25.