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SESSION TOPIC: OPTIONS
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THE VALUATION OF AMERICAN PUT OPTIONS
MIcHAEL J. BRENNAN AND EDUARDO S. SCHWARTZ**

I

WHILE THE PROBLEM OF PRICING European put options on non-dividend paying
stocks was solved under certain conditions by Black-Scholes {2] in their seminal
article on option pricing, no closed form solution exists for the valuation of
American put options which permit exercise prior to maturity, except for the case
of a perpetual put option on a non-dividend paying stock: this was treated by
Merton {6]. In this paper we present an algorithm for the put pricing problem when
the put has a finite life and may or may not be protected against dividend
payments on the underlying stock. The algorithm is then used to evaluate the
pricing of put contracts traded in the New York dealer market. Black and Scholes
[1] have previously examined the pricing of calls in this market, while Gould and
Galai [3] have documented violations of put call parity. A recent paper by
Parkinson [7] applies numerical integration to the pricing of puts.

11
Define:

S—the market price of one share of stock on which the put is written
E—the exercise price of the put at time ¢
P(S,t)—the value at time ¢ of a put to sell one share of stack at the exercise price
E_ (r=1,...,T) until expiration, T.
r—the continuously compounded risk free rate of interest.
D,—the amount of the discrete dividend payment on the underlying stock at
time ¢.

In between dates of dividend payments the stock price is assumed to follow the
stochastic process

%S —pdi+ads (1
where dz is a Gauss-Wiener process. Then, as shawn by Black-Scholes [2] and
Merton [6], arbitrage considerations dictate that the value of the put must obey the

partial differential equation
16?S%P +rSPs—rP+ P,=0 (2)

* Massachusetts Institute of Technology.
** The University of British Columbia. M. J. Brennan is grateful for financial support from the Leslie
Wong Research Fellowship.
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where the subscripts denote partial differentiation.
In addition, P(S,1) must satisfy certain further conditions:

P(S,Ty=max[ Ep— §,0] 3)

The value of the put at expiration is equal to the greater of its exercise value and
ZEra.

P(S,1) > max{ E,— $,0] 0

The possibility of early exercise prevents the value of an American put falling
below the exercise value.

P(S,0)<E, ()

(5) holds if the exercise price is a non-decreasing function of time to maturity.
Then the maximum value the put can attain is the current exercise price, if the
stock price falls to zero. Simple considerations of stochastic dominance indicate
that the value of the put can never exceed this maximum value.

P(S,0)>0 (6)

Since the put contract is an option its value can never fall below zero, as shown
by (4).

Further, like a warrant, the value of a put is a convex function of the stock price.
Writing the put value explicitly as a function of the stock price and the exercise
price, the put price must satisfy.

AP(SLE)+(1-NP(S,E)2 P(AS+(1-M)S,E), 0<A<] N
To see this, let §,=h,E,§;=h,E. Then we wish to establish that
AP(h E,EY+(1-NP(hE,E)> P(MYE+(1-NE,E) (%)

Assuming that the option price is homogeneous of degree one in the stock price
and the exercise price (Cf. Merton {6, p. 1461}, then (8) is equivalent to

N P(E, E/ b))+ (1 =Ny P(E, E/ hy) > (A, + (1 = N y)P(E, E/ (M, + (1 =N hy))
)

Then consider farming a portfolio consisting of Ak, puts with an exercise price of
E/hy, and (1 —A)h, puts with an exercise price of E/h,. The value of this portfolio
when the stock price is equal to E is given by the left hand side of (9). Correspond-
ingly, the right hand side of (3) is the value of a portfolio of (Ak,+(1 —A)h,) puts
with an exercise price of E/(Ah +(1—A)h,), when the stock price is E. Then,
following Smith {8] it is readily shown that the returns on the first portfolio exhibit
first degree stochastic dominance over the returns on the second portfolio. Hence
the value of the first portfolio must exceed that of the second which implies (9) and

.
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The convexity of the put price together with the upper and lower bounds on the
value of the put given by (4) and (5) imply:

lim Py(8,0)=0 (10)

Since the put is a convex function of the stock price, it may be shown that the
equilibrium put price is an increasing function of the riskiness of the stock. The
proof of this proposition is not offered here since it parallels Merton’s [6] proof that
the value of a warrant is an increasing function of the riskiness of the stock.

Figure | illustrates the boundary conditions which must be satisfied by the put
price prior to maturity and shows the relationship between the put price and the
stock price for two stocks with different variance rates. S, is the critical stock price,
to be discussed below.

Finally, the possibility of discrete dividends on the underlying stock and of
changes in the exercise price introduce a further boundary condition. Thus,
suppose that at time ¢ there is change in the exercise price, and a discrete dividend
D, is paid. Let = denote the instant before the dividend /exercise price change,
and ¢* the instant after. Then the put value must satisfy

P(S,i7)=max] E-— S,P(S—D,t*)] (an

where P(S,t") is the put value when the exercise price changes to E,.. Equation
(11) reflects the fact that the put value before the dividend/exercise price change is
equal to the greater of its immediate exercise value (E,- — §) and the value after the
dividend /exercise price change, P(S§—D,t"). If a dividend is paid with no
offsetting change in the exercise price,' then it will never pay the put holder to
exercise immediately before the dividend for then

P(S—D,t"Y> E—(S—D,)>E-S§

PS5, 1)
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FrauURe [.  Relationship Between Put Price and Stock Price

1. Ci. Merton {6] for 2 discussion of the exercise price adjustment which will leave the put-holder
indifferent to the amount of the dividend.
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and the ex-dividend value of the put exceeds its pre-dividend exercise value.

The problem of valuing the put is then that of solving the differential equation
(2) subject to the boundary conditions (3), (4), (3), (6), (10) and (11). A numerical
procedure is employed to obtain an approximate solution to the equation. First
re-write (2) using the variable 7, time to maturity, instead of ¢, calendar time

La?S?Ps +rSPg—rP— P, =0 )

Then approximating the partial derivatives in (2°) by finite differences, (2) may
be written as?

a, P, +b‘.P‘.‘J.+c‘.P.+,J=P,

Py, , i =l =), j=laam o (12)

where
a =4Lrki— io%i®
b=+ rk+ a%i’

— 1 s 122
¢;=—grki—s0°%ki

P(S,1)y=P(S, *rj) =P(ih jk)= F;,

k and k are the discrete increments in the stock price and time to maturity
respectively. m and » are the number of discrete increments in the time to maturity
and stock price respectively; the former corresponds to the time to expiration of the
put, while the latter is chosen so that the boundary condition (10) is well approxi-
mated at the highest stock price value considered.

The boundary condition (10) which holds for all values of j is approximated by

Po_i= P, =0 (j=1L...,m) (13)

(12) and (13) constitute a set of » linear equations in the (#+1) unknowns P, ;
(i=0,1,...,n) and with the addition of one further equation enable us ta solve for
P, ;in terms of P, ;_,. Since P, 4 is given by the condition governing the value of the
put at expiration (3), the whale set of P, ; may be solved for by repeated solution of
the set of equations.

Note that the solutions to the differential equation must satisfy the boundary
condition (4) which may be written as

P >E—ih  (i=0,1,...,n) (14)

where E; is the exercise price ruling at time increment j (7=jk); the differential
equation holds only for those values of P, for which (14) holds as a strict
inequality. The maximum stock price for which (14) holds as an equality, the
“critical stock price” is the price at which the put should rationally be exercised.
The problem then is to determine the value of i,i,, corresponding to the critical
stock price S,.(i h=35,). The system of equations (12-13) then holds for values of
iri.

First, note that by successive subtraction of each equation of (12-13) from a

2. See McCracken and Daorn [5] for further discussion.
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suitable multiple of its predecessor (i.e. subtract the last equation from a multiple
of equation n; subtract the transformed n™ equation from equation (1 — 1) etc.), the
system (12~13) may be transformed into:

&P\ TP =5 (i=1,...,n) (15)

where ¢, f,, g. are coefficients of the transformed system.

Let Py ;= EJ from (4) and (5), and use the first equation of (15) to solve for PLJ.
If P, <E—hlet P ,=E —hand solve for P, ;; if P\ ;> E,—h solve the remain-
ing equations for P, , (i=2,...,n). Continue in this manner until a complete set of
P, ; are obtained which satisfy the differential equation and the boundary condi-
tion. The maximum value of i for which P, ;= E,— ih is the critical value of i, and
the critical stock price is S, =/ h.

Finally, on the date of a dividend, D, or change in conversion terms, condition
(11} is written

Pi-=P_pnie for P._D/h‘f)%--—z‘k

i

[

=E-—ih, for Pi_p,<E-—ik (16)

In the application of the model to empirical data on 6 month puts the time
increment k& was set equal to one day, and the stock price increment, &, was set
equal to 1% of the striking price. As a crude test of the accuracy of the above
procedure several puts were valued assuming a zero rate of interest, and the result
compared to the corresponding Black-Scholes solution.® The numerical method
was accurate to within about 0.1%, at option prices corresponding ta the exercise
price.

IiL

The model was used to evaluate 55 put options traded in the New York dealer
market between May 1966 and May 1969.* These were all the put contracts for
which a call contract of the same maturity was traded on the same day, and for
which the rates of return on the underlying security were available on the Wells
Fargo Daily Return file. The risk free rate of interest for each contract was
constructed by taking the price of the Treasury Bill maturing closest to the
expiration date of the option and computing the continuously compounded rate of
return per trading day. A synthetic stock price series was constructed by taking the
closing stock price on the day the option was written, and treating the return
relatives on the Wells Fargo file as price relatives to generate a stock price series
throughout the life of the contract. This procedure is equivalent to assuming that
no dividends were paid and is appropriate if the options are perfectly protected
against dividends by adjustment of the strike price. In fact, as Merton [6] has
pointed out, the actual adjustment of the strike price is not quite the correct one.

3. If the interest rate is non-positive the value of a European put always exceeds its exercise value
prior to maturity, so that it is equivalent to that of an American put. To sce this note that the put-call
parity thearem holds for European options [2], so that p=c— S+ Ee™" > E— S if r <0 where p and ¢
are the values of a Eurepean put and call.

4. The authors are most grateful to Myron Scholes for making this data available to them.
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1. Model and Market Put Prices

The only parameter of the valuation model which is not directly observable is the
variance rate on the stock. While this may be estimated from historical data, such
estimates are necessarily subject to error. Therefore in this paper we restricted our
sample to put contracts for which an equivalent call contract was written on the
same day. The put pricing model employed here is based on exactly the same set of
assumptions as the Black-Scholes option pricing model which may be used to price
call contracts. Therefore, if these assumptions correctly describe the option pricing
process, the put and the call should be priced on the basis of the same variance
estimate.® Therefore for each put contract we used the associated call contract to
estimate the implied variance rate, which is defined as that variance rate for which
the Black-Scholes valuation of the call is equal to the market price’ We also
obtained an historical variance estimate using the prior 250 trading day returns and
an estimated variance rate over the life of each contract (the “actual variance
rate”).

Then, for each of the 53 put options an estimate of the equilibrium price at the
time of issue was computed using the numerical method described eatlier and the
three different estimates of the variance. Additionally, the options were valued as if
they were European options by using the Black-Scholes [2] model for pricing
European put options. Table [ contains the frequency distributions of the ratios of
the model prices to the market prices at time of issue, where the model price is
derived using both the numerical solution technique (NS) and the Black-Scholes
model (BS) for all three variance estimates.

TABLE t

FrEQUENCY DISTRIRUTION OF MODEL TO MARKET PUT PRICE RATIOS

Ratio of Historical Variance Implied Variance Actual Variance
Model Price BS NS BS NS BS NS
to Market Price 1 2 3 4 5 &
= 1.80 10.91 12.73 7.27 10.91 127 1.27
>1.70 545 545 545 1.82 0.0 0.0
> 1.60 3.64 3.64 9.09 10.91 364 545
=>1.50 j.64 3.64 2.09 7.27 7.27 9.09
== 1.40 727 545 1.82 3.64 9.09 7.27
> 1.30 727 12.73 27.27 310.91 545 545
>1.20 14.55 12.73 18.18 21.82 10.91 16.36
=1.10 727 9.09 18.18 9.09 23,64 21.82
> 1.00 9409 9.09 0.0 0.0 12.73 9.09
>0.90 18.18 1273 1.82 1.82 10.9¢ 12.73
=080 7.27 127 0.0 040 3.64 1.82
< 0.80 5.45 545 1.82 1.82 543 3.64
Std. Err. 0.44 0.46 0.47 0.50 0.4t 0.43
Mean ratio [.257 1.287 1.390 1.420 1.249 1.278
t-statistic 433 4.63 6,16 6.23 4.51 4.80

5. Even if the Black-Scholes model is incorrect, both options will appear to be priced on the basis of
the same variance if the options are European and the put-call parity theorem haolds.

6. Latane and Rendleman [4] also derived implied variances from the Black-Scholes model.
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Using the implied variance rate, the numerical solution model value exceeds the
market price by 42% on average, and the ¢-statistic for the null hypothesis that the
mean model to market put price ratio is unity is 6.23; the model put value is less
than the actual market value in less than 4% of the cases. Based on this evidence it
is easy to reject the hypothesis that puts and calls are priced consistently and in
accordance with this model, and our results confirm the findings of Gould and
Galai [3] of frequent violations of put-call parity.” The puts appear to be signifi-
cantly underpriced relative to the calls.

Even when the historical or actual variance estimate is used in the numerical
solution, the model prices the puts significantly higher than the market price, the
mean excess of the model price over the market price being 28.7% and 27.8%
respectively. The ¢-ratios for the null hypothesis that the mean ratio is unity are
4.63 and 4.80, and the model overprices 75% and 82% of the contracts depending
on whether the historical or actual variance rate is used.

Much the same distribution of price ratios is obtained when the Black-Scholes
model for European options is used to price the contracts. Indeed the magnitude of
the discrepancies between the Black-Scholes (European) option values and the
numerical solution (American) option values is surprisingly small as shown in
Table 2. As is to be expected, the European option value is always less than the
corresponding American option value, but the small differences in the computed
values suggest that the right to early exercise contained in the American option is
not of great economic value, so that the Black-Scholes model may reasonably be
used to value 6-month dividend protected American puts. The discrepancies will of
course be greater for unprotected puts, for puts of longer maturity or when the
stock is selling for below the striking price.

The mode! prices were further compared with the market prices by cross-section
regression of the market price of the put on the model prices, both prices being

7. To see the relationship between these results and those of Gould and Galai consider the second
column of their Table 5 (p. 118) which gives values of ¢, the violation of put-call parity, defined by:
cC-P i

vV {1+

£=

Taking as the model price, the put-call parity price, P, defined by

c=F i _
vV {1+1i)

and combining these two expressions, the ratio of madel price to market price is
p_V

F =€ P +1

Using the average ¢ from Table 5 (.0349) and the average P/ V {085) we obtain

=141

"l:lhb;

Now the madel price derived from put call parity should be identical ta that derived using BS model
with the implied variance. Hence the mean ratio of model ta market price for BS (implied variance)
should be about 1.41. In fact from our Table | the mean ratio is 1.39. The differences may be accounted
for by sample correlation between € and V/P and by the fact that our sample contains 6 more
observations than Gould and Galai.
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TARLE 2

DisTRIBUTION OF DIFFERENCES (1)) AETWEEN EUROPEAN (E) AND AMERICAN (A) PuT VALUES
(HISTORICAL VARIANCE ESTIMATE)

DE(E~A)/A
De=-10] D2=-02 D e—-03 Dz—-04
D<—-01 D —.02 D<—.03 D —-04
] 17 27 5 6
Mean Difference — 025
TABLE 3

REGRESSION OF NORMALIZED MARKET PRICE,
P/ &, oN NoRMALIZED MODEL PRICE USING
HISTORICAL VARIANCE NS{H}, IMPLIED YARIANCE
NS(I), AND ACTUAL VARIANCE NS(4)

P/§= 059 + 245 NS(H)/S R?=.16
(680)  {3.15)
P/S= 031 + A4 NS({)/S R?=43
(3.56)  {6.33)
P/S= 050 + 331 NS(4)/S R2=26
(585)  (4.30)
11 groups on ¥S(N/S
$= .03 + 431 NS(H)/S 1= 50
P/ (uug) (301 St/ R
11 groups on ¥S{H)/§
P/§= 036 + 411 NS(I)/S R*=78
(318)  (5.16)
1 groups on ¥S(H)/ S
P/S= 043 + 390 NS(A)/S RI=2382
(660)  (6.43)

£-ratios m parenthesis.

measured as a fraction of the striking price. The results are given in Table 3. While
these regressions should be evaluated with care, since we have no assurance that
the relationship is linear or that the errors are normally distributed, it is clear that
the slope coefficient is far from its theoretical value of unity. One reason for this is
that the independent variable, the numerical solution value, impounds errors in the
variance estimate. To mitigate this problem, the observations were grouped on an
instrumental variable, the numerical solution based on one of the other variance
estimates: even with the grouping procedure the slope coefficient is still less than
0.5. We have argued that both puts and calls should be priced on the basis of the
same variance, so that the problem of errors-in-variables bias does not arise with
the implied variance, and indeed we find that the slope coefficient does not
improve with grouping when the implied variance is used to derive the model value.
These results indicate that not only are market put prices in general lower than the
model prices but that, accepting the model prices as equilibrium prices, put prices
on high variance stocks (those with a high ratio of put price to striking price) are
systematically underpriced relative to put prices on low variance stocks. This latter
result is in accord with the Black-Scholes [1] finding that call prices on high
variance stocks are underpriced relative to those on low variance stocks. However,
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while Black-Scholes found some slight evidence that call contracts in general
tended to be overpriced, our evidence thus far is that puts tend to be underpriced,
at least relative to madel prices. However the real test of the model is its ability, not
to predict market prices, but to yvield prices which are equilibrium in the sense that
they yield no arbitrage profits: such tests are discussed below. First however we
discuss the optimal exercise strategy.

2. The Exercise Strategy

An integral part of the numerical algorithm for valuing American put options is
the determination of the optimal exercise strategy to be followed. This is described
by a time series of critical stack prices, such that the put is exercised optimally as
soon as the stock price drops belaw the critical stock price. Figure 2 shows the time
series of critical stock prices expressed as a fraction of the striking price for a 131
day put on Atlas Chemical Industries, using the three different variance estimates.
Since the equilibrium put price is an increasing function of the variance rate, the
critical stock price is a decreasing function of the variance rate as shown in Figure
l; consequently, the historical variance rate, which is the lowest of the three
variance estimates for this company, yields the uniformly highest critical stock
price series. The general pattern of critical stock prices indicates that the optimal
strategy is to pursue an aggressive policy at first by requiring a high exercise value
(low stock price) before exercising, but that as time runs out on the contract to
reduce rapidly the minimum required exercise value so that immediately before
expiration it becomes optimal to exercise so long as the exercise value is pasitive.

Table 4 shows the distributions of exercise dates relative to maturity for the
sample of 55 put options. The first column shows the timing of exercise by the
actual purchasers of the options as recorded in the option dealer’s diary. Only 15 of
the 55 contracts were actually exercised and of these, 14 were exercised at maturity.
We then calculated when the options would have been exercised had the optimal
policy been followed, by comparing the time series of eritical stock prices with the
time series of actual stock prices adjusted for dividends, and assuming that the
option was exercised the first time the stock price fell below the critical stock price.
The second and third columns of Table 4 show the distribution of optimal exercise
times assuming that the optimal exercise policy 1s determined using the historical
and implied variance estimates respectively. Under either estimate of the optimal
policy 20 contracts would have been exercised, of which only seven would have
been exercised at maturity. kt is of interest to note that the optimal policy using the
historical variance resulted in a higher exercise value than was actually achieved by
the purchasers of the puts for 16 contracts, while the reverse was true for only 3
contracts; when the optimal policy was derived from the implied variance, the
corresponding figures were 13 contracts and 3 contracts.

As a further measure of the departure of the actual exercise strategies followed
from the optimal strategies of the model, we calculated for each contract a
“maximum return differential.” The return differential for a contract on a particu-
lar day is defined as the difference between the return the option purchaser would
have carned if the contract were exercised at the prevailing stock price and the
return the purchaser would have earned if the contract were exercised at the critical
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TABLE 4

DIsTRIBUTION OF EXERCISE DATES RELATIVE TO MATURITY

Actual Palicy Optimal
Palicy Historical Variance Implied Variance
At expiration 14 7 7
1-3 days before expiration 0 2
6-10 days before expiration 1 1 2
11-20 days before expiration ] 2
21-40 days befare expiration 3 5
> 40 days before expiration 3 2
Number of contracts exercised 15 20 20

stock price for that day. For example, if the put were originally sold for $5, the
striking price were $50, the critical stock price were $40 and the stock price were
only $35, the return if the put were exercised at the prevailing stock price would bhe
(50—35)/5=300%, and the return if the put were exercised at the critical stock
price would be (50—40)/5=200%, so that the return differential would be 100%.
The maximum return differential is the maximum of these daily return differentials
over the time the contract was unexercised. The maximum return differential will
be zero if the contract is exercised optimally, and positive if it is exercised too late.
The magnitude of the positive differential is an indication of the holder’s reluctance
to exercise relative to the optimal policy. The distribution of the maximum return
differentials for the 535 contracts is shown in Table 5 where the optimal palicy is
derived using both the historical variance estimate and the implied variance.

TABLE 5

DISTRIRUTION OF “MaAXIMUM RETURN [DHFFERENTIAL™

Histarical Variance Implied Variance
No discrepancy 39 39
< 0% I 3
11-30% 1 1
31-50% 5 3
51-100% 3 4
101-150% 4 3
> 150% 2 2

The evidence from the distributions of both the exercise dates and the maximum
return differentials indicates that the option purchasers were markedly reluctant to
exercise their options prior to maturity even though the model indicated that it was
optimal to do so. This may be attributable, first, to the failure of the model to value
the puts correctly: this seems unlikely since, as we have seen, the model values the
puts more highly than does the market and would therefore tend to set the critical
stock price too high, delaying exercise. Secondly, it may be attributable to gamb-
lers’ greed which causes put purchasers to hold out against exercise in the hope of
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higher profits in the future. However, a more probable explanation is the tax
system with its preferential treatment for long term capital gains.

3. The Model Prices as Equilibrium Prices

We have found that the model tends to systematically over-value the put
contracts relative to the observed market prices. The question then arises as to
whether the model prices are equilibrium prices in the sense that they yield no
arbitrage profits, for if they are, then the market prices are not equilibrium and
present the opportunity for arbitrage profits, at least in a world without transaction
costs. To determine whether or not the model prices are equilibrium prices we
employ a test procedure based on that used by Black and Scholes [1]. That is, we
simulated a strategy of purchasing all the put contracts at the model prices and
selling short each day Pg(S,1) shares of the underlying stock to obtain a hedged
position. Values of Py (S5,f) were obtained from the matrix of P(S,r) values
generated by the valuation model. Excess dollar returns were computed daily for
each contract from the date it was written to the date it was exercised according to
the optimal exercise policy, in a manner similar to that described by Black-Scholes.
The excess dollar returns were aggregated each day over all contracts outstanding
that day to yield a series of portfolio returns for 710 trading days from June 10,
1966 to April 16, 1969.2 To avoid giving excessive weight to contracts on high
priced stocks we assumed that instead of purchasing one put contract for 100
shares, we purchased a put contract with a striking price of $1,000; so if the
striking price was $50 we assumed that we bought 1/5 of a contract ($5,000/8$1,
000).

In addition to computing the total dollar returns per day from this strategy we
computed the dollar returns per day per contract by dividing the total dollar
returns for each day by the number of unexercised contracts outstanding that day.
The total dollar returns per day and the dollar returns per day per contract were
then regressed on the rate of return on the market portfolio to allow for systematic
risk in the returns due to imperfect hedging. The systematic risk estimates were all
insignificantly different from zero and in Table 6 we report only the constant terms
from these regressions as estimates of the excess returns. To overcome the problem
of heteroscedasticity caused by the different numbers of contracts outstanding on
each day, we also employed a weighted regression procedure, which weighted the
total dollar returns by ¥1 /N, and the dollar returns per contract by \/N_, , where N,
was the number of contracts outstanding on day £. The weighted regression results
are reported in the lower half of Table 6.

From the weighted regression results we see that the excess total dollar return per
day using the implied variance was —$0.59 while the excess dollar return per
contract was — $0.086 per day. The associated z-statistics indicate that these are
both significantly different from zero and that therefore the mode! values obtained
using the implied variance are in excess of the equilibrium values. Assuming that
the average contract was outstanding for about 125 days the daily loss per contract

8. The sample period was actually two days shorter when the implied variance was used, since the
optimal strategy derived using the implied variance caused the final put contract to be exercised twa
days earlier.



TABLE 4

The Valuation of American Put Options

461

Excess RETURNS FROM PURCHASING CONTRACTS AT MoDEL PRICES AND FOLLOWING OPTIMAL EXERCISE STRATEGY

Implied Variance

Total Dollar Returns per day
Historical YVariance

Dollar Returns per day per contract
Emplied Variance

Historical Variance

o I ] a - 4] o {— p & (— 'l

Unweighted x10™! x107! xlo~?

Tatal Period —-1.02 -476 a1 -3 - 17 AL - 53 =205 15 48 27 12
First Half 0.4 0.25 17 97 64 08 82 1.89 14 6.90 1.67 12
Second Half —-208 =531 a7 -171 - A2 Al —188 -7.10 a9 - 557 19 A1
First Quarter 66 296 0 440 222 A6 245 .03 09 16.64 217 10
Second Quarter — 58 -276 Jé =233 —-10 08 - 79 -1381 A8 -~ 268 — B9 16
Third Quarter —-2.30 —4.61 02 -230 - 4 -—-01 -130 498 ~00 - 164 — 58 —-.01
Fourth Quarter —1.88 —3.11 A2 14 - 22 20 —248 3540 A1 — 961 —1.98 3
Weighted

Total Period - .59 518 12 -0 - 09 Al — 86 2127 dé — 12 — .03 12
First Half 8 1.67 A7 [.78 1.75 08 42 74 .14 4.19 78 12
Second Half -175 -—9.01 07 —-293 —-145 11 —1466 337 A0 — 284 — 55 11
First Quarter 63 3169 10 4,19 276 06 240 2.36 09 15.97 1.69 .10
Second Quarter — 56 —440 A6 —2407 —L50 08 - 78 -1M A8 - 293 -~ &0 .16
Third Quarter -~230 =966 —-02 —-2464 —1¥4 -02 -[28 -135 —-.00 - 142 - 24 -—-0I
Fourth Quarter - 1l46 —4.77 J2 -3310 —1.05 J0 =223 =172 AL - 520 — .60 15

p—Serial Correlation of Residuals.

per day corresponds to a total loss per contract of $10.57. This measure of the
extent to which the implied variance model overprices the contract may be
compared with a mean model price of $118.77 which is therefore about 9% above
the equilibrium price.

However, when we simulate a policy of buying at the model prices derived from
the historical variance and hedging on the same basis, the excess total dollar
returns and dolilar returns per contract rise to —$0.01 and —$0.0012 per day
respectively, and the associated t-values become very small, so that we cannot
reject the null hypothesis that the model values are equilibrium values. Note that
the excess dollar returns per contract per day are equivalent to only about — $0.15
over a 125 day life contract; this may be compared with an average model put
premium of $106.68 on a contract with a striking price of $1,000. For individual
subperiods the magnitude of the absolute excess dollar returns per contract per day
are somewhat larger, but in no case are they statistically significant. The largest
excess dollar return per contract per day is $0.016 which is equivalent to $2.00 over
the life of the average contract. Hence the average model price obtained using the
historical variance estimate appears to be very close to the equilibrium price.

Since the market prices tend to be below the model prices we may infer that the
market prices are below the equilibrium prices, and therefore give rise to profit
opportunities. To evaluate these profit opportunities further, we calculated the
incremental profit to be derived by purchasing the puts at the market prices rather
than at the model prices derived from the historical variance estimate. This was
done by converting the dollar profits (losses) for all the contracts due to the
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difference between market and model prices into an equivalent daily annuity over
the whole sample period. The incremental daily profit was $1.68 per day or $0.19
per day per contract.? These incremental profits are respectively 170 and 160 times
the average daily losses on the hedge portfolio constructed using the model prices.
Combining the annuitized profits from purchasing at market rather than model
prices with the daily returns on the hedge portfolio, the resulting returns yield
t-tatios of 14.5 on a tatal dollar basis and 4.6 on a dollar per day per contract basis.

While further tests could be employed to evaluate the ability of the model to
discriminate between under-priced and over-priced contracts, the above results
leave little doubt that this sample of put contracts was on average under-priced and
offered the opportunity for profit by following the naive strategy of purchasing all
the put contracts. However, as Biack and Scholes [1] have pointed out the very high
level of transactions costs in this market would almost certainly render it impos-
sible to profit by this evidence of market inefficiency.
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9. $0.19 per day per contract is equivalent to $23.80 aver the whole life of an average contract,
compared with an average market price per contract of §84.97.



