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Interest Rate Volatility and the Term
Structure: A Two-Factor General
Equilibrium Model

FRANCIS A. LONGSTAFF and EDUARDOC 8. SCHWARTZ*

ABSTRACT

We develop a two-factor general equilibrium meodel of the term structure. The
factors are the short-term interest rate and the volatility of the short-term interest
rate. We derive closed-form expressions far discount bonds and study the praperties
af the term structure implied by the model. The dependence of vields on volatility
allows the model to capture many ohserved properties of the term structure. We
also derive closed-form expressions for discount bond options. We use Hansen's
generalized method of momenta framework to test the cross-sectional restrictions
imposed by the madel. The tests support the twa-factor model.

THERE ARE ESSENTIALLY TWO approaches to the modeling of the term structure
of interest rates in continuous time. The equilibrium approach pioneered by
Cox, Ingersoll, and Ross (CIR 1981, 1985a, and 1985b) starts from a descrip-
tion of the underlying economy and from assumptions about the stochastic
evolution of one or more exogenous factors or state variables in the economy
and about the preferences of a representative investor. General equilibrium
considerations are used to endogenously derive the interest rate and the price
of all contingent claims. The arbitrage approach starts from assumptions
abhout the stochastic evolution of one or more interest rates and derives the
prices of all contingent claims by imposing the condition that there are no
arbitrage opportunities in the economy (for example, see Vasicek (1977) and
Brennan and Schwartz (1979)). A variation of this approach looks at the
initial yield curve and considers movements in the yield curve (Ho and Lee
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(1986)), or changes in forward rates (Heath, Jarrow, and Morton (1988))
consistent with no arbitrage possibilities.

The equilibrinm approach has several clear advantages over the arbitrage
approach. For example, both the term structure and its dynamics are endoge-
nously determined in the equilibrium approach. Furthermore, the functional
forms of the factor risk preminums (market prices of risk) are also obtained as
part of the equilibrium. In contrast, the arhitrage approach provides no
guidance as to the form of the factor risk premiums. Moreover, the arbitrary
choice of the functional form can lead to internal inconsistencies or arbitrage
opportunities.'

In this paper, we develop a two-factor general equilibrium maodel of the
term structure of interest rates using the CIR (1985a) framework and apply
it to the valunation of discount bonds and other interest-rate-sensitive contin-
gent claims. In particular, we derive closed-form expressions for discount
bond prices and for discount bond option prices. The two factors of the model
are the short-term interest rate and the instantaneous variance of changes in
the short-term interest rate. This feature has the important advantage of
allowing contingent claim values to reflect both the current level of interest
rates as well as the current level of interest rate volatility. Furthermore,
recent evidence by Dybvig (1989) suggests that these variables are the two
most important factors in explaining movements in the term structure.

One of the primary motivations for developing a multifactor model of the
term structure is that single-factor models imply that the instantaneous
returns on bonds of all maturities are perfectly correlated—a property that is
clearly inconsistent with reality. Two-factor arbitrage models have heen
suggested by Brennan and Schwartz (1979) who use the short-term and
long-term interest rates, by Schaefer and Schwartz (1984) who use the
long-term interest rate and the spread between the long-term and short-term
interest rates, and by Heath, Jarrow, and Marton (1988} who use two
unspecified factors that affect all forward rates. Closer to our approach is the
two-factor equilibrium model suggested by Cox, Ingersoll, and Ross (1985b),
who use an exogenously specified process for uncertain inflation in addition
to the gshort-term interest rate. The CIR model has the advantage of allowing
nominal securities to be priced. Our maodel, however, has the advantage that
the second factor (interest rate volatility), its dynamics, and its factor risk
premium are all endogenously determined. Furthermore, using interest rate
volatility as the second state variable is intuitively appealing since volatility
is a key variable in pricing contingent claims such as interest rate options
and bends. The explicit dependence of yields on interest rate volatility allows
the model to capture many of the cbserved properties of the term structure
such as humps, troughs, and the relation between term premia and interest
rate volatility.

We test the cross-sectional restrictions imposed on the term structure by
the two-factor model using the generalized method of moments (GMM)

! For a mare detailed discussion of this issue, see Cox, Ingersoll, and Ross (1985b), Section 5.
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approach of Hansen (1982). Using Treasury-bill yields ranging from three
moanths to five years in maturity, we find that these cross-sectional restric-
tions cannot be rejected. We also test the restrictions imposed by the CIR
(1986b) single-factor madel, which is nested within the twa-factor model as a
special case.

The plan of our paper is as follows. In Section I, we develop the general
equilibrium framework using a two-state variahle version of the model devel-
oped in Cox, Ingersoll, and Ross (1985a). In Section II, we obtain closed-form
expressions for discount bond prices and examine the properties of the term
structure obtained. Closed-form expressions for discount bond options are
derived in Section III. In Section IV, we provide the empirical results of the
paper, and we conclude in Section V.

I. The General Equilibrium Framework

In this section, we develop a general equilibrium framework for valuing
interest-rate-sensitive contingent claims using a two-state-variable version of
the continuous-time economy madeled hy Cox, Ingersoll, and Ross (1985a). In
deing this, we make the following assumptions about production and prefer-
ences. First, all physical investment is performed by a single stochastic
constant-returns-to-scale technology which produces a good that is either
consumed or reinvested in production. The realized returns on physical
investment are governed by the stochastic differential equation

%?:(@X+ 8Y)dt + oVY dZ,, (1)

where u, 6, and o are positive constants, X and Y are state variables, and
Z, is a scalar Wiener process. In this specification, expected returns are
driven by two economic factors, X and Y. The first factor X represents the
.component of expected returns that is unrelated fo production uncertainty,
while Y represents the component common to both. An advantage of this
specification is that expected returns and production volatility are not re-
quired to be perfectly correlated. This feature is consistent with the empirieal
evidence of Merton (1980), French, Schwert, and Stambaugh (1987}, and
others.? The dynamics of the state variables X and Y are governed by

dX = (¢ — bX) dt + ¢¥X dZ,, 2
dY = (d —eY) dt + /Y dZ,, (3)

where a, b,¢,d,e, f > 0, and Z, and Z; are scalar Wiener processes. Since
changes in X are assumed to represent technological changes that are
unrelated to production uncertainty, we require that Z, be uncorrelated with

2 Using stock market data, Merton (1980} and French, Schwert, and Stambaugh (1987) find
that variation in expected returns is not due entirely to return volatility.
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Z, and Z,. Follawing Cox, Ingersoll, and Ross (1985b), we also require that
8 > o?, which guarantees that the riskless rate is non-negative.’

" We assume that there is a fixed number of identical individuals with
time-additive preferences of the form

w

E[ [ exp(—ps)n(C,) ds|, (4)

where E[:] ia the conditional expectation operator, p is the utility discount
factor, and C, represents time-s consumption. Finally, we assume the exis-
tence of perfectly competitive, continuous markets for riskless borrowing and
lending as well as other types of contingent claims.
In this setting, the representative investor’s decision problem is equivalent
to maximizing (4) subject to the budget constraint
dQ
dw = W— — Cdt, (5)
Q
where W denotes wealth, by selecting an optimal level of consumption and
reinvesting unconaumed wealth in physical production. As in Merton (1971),
the investor’s derived utility of wealth function (value function) is partially
separable and has the simple form

J(W,X,Y,t) = @mm) +G(X,Y,1). (6)

Standard results can be used to show that optimal consumption is pW.*
Substituting optimal consumption and (1) into (5) gives the following equilib-
rium dynamics for wealth:

dW = (uX + Y — p)Wdt + o WVY dZ,. )

Together, W, X, and ¥ form a joint Markov process—the current values of
W, X, and ¥ completely describe the state of the economy and the joint
distribution of future investment returns. Note that the CIR (1985b) single-
factor setting can be nested within this framework by imposing the restric-
tion g = 0 in (1},

A simple rescaling of the state variables gives x = X /e and y = Y/f2. Let
H(x,y,7) denote the value of a contingent claim with maturity = and
boundary conditiong that do not depend on wealth. Given this framework,
Thearem 3 of Cox, Ingersoll, and Ross (1885a) can be applied to obtain the
fundamental partial differential equation satisfied by the contingent claim

(x/2)H. + (y/2)H,, + (y - 3z} H,
+(n— &y — (~dyw/dy)Cou(W,Y)H, —rH=H,,  (8)

? See Cox, Ingersoll, and Hoss (1985h) footnote 6.
* Far example, let ¢* — < in Cox, Ingersoll, and Ross (1985b) footnate 5.
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where y = a/ct, § = b, 5 =d/f?, £ = e, r is the instantaneous riskless rate,
and Covw(W,Y) is the instantaneous covariance of changes in W with changes
in Y. The utility-dependent term in the coefficient of I, represents the
market price of the risk of changes in the level of production uncertainty
which is governed by Y.*> Because of the separable form of the derived utility
of wealth function, however, {3), (6}, and (7) can be used to show that

(—dww/dw)Cov(W,Y) = Ay, 9)

where A is a constant. Thus, the market price of risk is proportional to y. It is
important to observe that this form of the risk premium is endogenously
determined by the model, rather than exogenounsly imposed. This feature
ensures that the risk premium is consistent with the absence of arbitrage—a
property which cannot be guaranteed for partial equilibrium models that
assume a specific functional form for the risk premium. Once r is specified in
terms of the state variables, the value of the contingent claim can be
determined by solving the partial differential equation in (8} with respect to
the appropriate boundary and initial conditions.

This approach results in contingent claim values that are expressed in
terms of the unchservable state variables. Rather than leaving contingent
claim walnes in this form, however, we make a simple change of variables
that allows us to express contingent claim prices in terms of two intuitive and
readily estimated economic variables. These factors are the short-term inter-
est rate » and the variance of changes in the short-term interest rate, which
we designate by V.% An important advantage of expressing contingent claim
values in terms of these two variables is that it allows contingent claim prices
to reflect both the current level of interest rates as well as the current level of
interest rate volatility.” This enables us to use more information about the
tarm structure than the current level of » in pricing contingent claims.
Furthermore, since the volatility of interest rates is a key determinant of
many contingent claim values, this approach has the potential to lead to
valuation expressions that are more consistent with actnal prices than mod-
elg that exclude interest rate volatility.

The equilibrium riskless interest rate can be obtained by applying Theorem
1 of Cox, Ingarsoll, and Ross {(1985a) or the results in Breeden {1986) which
relate the riskless rate to the expected rate of change in marginal utility.
Because of the logarithmic form of the derived utility of wealth function, the
short-term interest rate is simply the expected return on production minus

® Because Z, is uneorrelated with Z, and Z,, changes in X cannat he hedged and their risk is
unﬂpriced,

The instantaneous variance is actually Vdt. Consistent with standard usage, however, we
omit the 4t term in discussing the instantaneous variance aince the implicit time horizon is clear
from. the cantext.

? This change of variables is similar to that used in the atock index futures model of Hemler
and Longstaff (1991). However, their mode] uses the volatility of stock market returns rather
than the volatility of changes in the riskless rate.
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the variance of production returns
r=ax+ By, (16)

where @ = uc? and B =(8 — o?)f?, which is non-negative for all feasible
values of the state variables.? The instantaneous variance of changes in the
riskless rate V can be obtained by applying Ito’s Lemma to the expression for
r in (10) and taking the appropriate expectation. The resulting expression is

V=oalc+ 8%y, (11)

which is also non-negative for all feasible values of the state variables.®
Together, (10) and (11) form a simple system of two linear equations in x and
y. Provided that o # 8, this system is glohally invertible and we can solve for
x and y in terms of » and V, obtaining

gr -V
T et (12)
B V- ar 13
YT BB a) (13)

This mapping allows us to make the change of variables from x and y to r
and V.

The dynamices of r and V can be obtained by applying Ito’s Lemma to (10)
and (11) and making the corresponding change of variables

Bé — aé &E—- 4
dr = ey + Bn — ,B—ar_,ﬁ—av]dt
y Br YV _ iz By Voo oz (14)
+ oy ——— + By ——— dZ,,
Va(p—a) 7 B(B=a) 77

dV=(a2y+,62n— “ﬁ(a_g)r—ﬁg_“av)dz
B-a B-a
Bgr -V V—ar
2 2
oty sy Wt 8N T 9 (15)

The requirement that the original parameters be positive implies that «, S,
v, 8, n, and & are also positive.'?

8 Since the single good in the economy can he used for consumption or investment, it is
appropriate to view the commodity as storable. Hence, a lower hound of zero for the riskless rate
is consistent with the basic properties of this economy.

% If 2a > ¢? and for 2d > f?, zero is an inacecessible value for X and for Y. In this situation,
the riskless rate and the instantaneaus variance are atrictly positive rather than just non-nega-
tive. See Feller (1951) for a derivation of these conditions.

Y Only six parameters are necessary to describe the evolution of the interest rate and
volatility processes. This is because the parameters u, 8, o2, a, ¢, d, and f affect the dynamies
only through the parameters «, #8, ¥, and 7.



Interest Rate Volatility and the Term Structure 1265

These dynamies, in conjunction with {10) and (11), have a number of
important implications for r and V. For example, the two processes are
interdependent. Specifically, the stochastic evolution of r depends on V, and
vice versa. Together r and V form a joint Markov process. Focusing first on
r, observe that (10) implies that r can take any value in the range from zero
to infinity since both of the original state variables follow square root
processes. The riskless rate, however, has a long-run stationary (uncondi-
tional) distribution with mean

@y By
E = — + — 16
[rl =+ (16)
and variance
a’y B
Var[r] =W+2—§2. (17)

The stationary density of r corresponds to the density of a linear combination
of independent gamma variates. The distribution and properties of linear
combinations of gamma variates are described in Johnson and Kotz (1970},
Chapter 29, pp. 154-168. From (14), the instantaneous variance of changes in
ris(aBr — oV + BV — aBr)dt/( 8 — @) = Vdt as expected.

A similar analysis shows that V can also take any value from zero to
infinity. From (14) and (15), it can be shown that changes in r and in V are
positively correlated. Furthermore, the actual value of the correlation coeffi-
cient can range from zero to one. This feature is consistent with the well-
known positive relation between interest rates and interest rate volatility.'
Because of this positive correlation, however, the values of » and V are
linked. For example, if r equals zero, then V must also equal zero. This is
becanse r can enly equal zero if both X and ¥ equal zero, which implies that
V must also equal zero. Because of this link, the value of V is constrained to
be between the values ar and Br. This condition also ensures that the terms
under the square root gigns in (14) and (15) are non-negative. The fact that V
can take any value within these upper and lower bounds illustrates one of the
important advantages of this two-state-variable framework over single-state-
variable settings. In many single-state-variable term structure models, the
variance of changes in r is proportional to r—the variance V is completely
determined by the value of r.'* In contrast, our framework allows V to
depend on more than the current value of r. As hefore, V also has a
stationary distribution with mean

E[V] =

a% B
5 + = (18)

' Rop example, see Chan, Karolyi, Longstaff, and Sanders (1991},
2 For example, see Vasicek (1977), Brennan and Schwartz (1977), Dothan (1978), Cox,
Ingersoll, and Ross (1985b), and Longataff (1989).
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and variance

aty B
Var[V] = m + 2—‘52 (19)
The unconditional distribution of V is also that of a linear combination of
gamima variates.

II. The Equilibrium Term Structure

In this section, we obtain closed-form expressions for discount bond prices
and examine their implications for the properties of the term structure. Let
F(r,V, 1) denote the value of a riskless unit discount bond with r periods
unti] maturity. The equilibrium value of F{(r,V, 1) can be determined by
solving (8), subject to the maturity condition that the bond value equals one
when = 0, and then making a change of variables to r and V. A separation
of variables approach results in the following solution for F(r,V, 1)

F(r,V,r) = A%(r)B*(r)exp(xr + C(r)r + D(1)V), (20)
where
2¢
Alm = (8 + d)(exp(pr) — 1) + 24°
B(r) = id
(v + @r)exp(yr) — 1) + 24
ey = ag(exp(ypr) = 1)B(r) — By(exp(¢r) — 1)A(f)’
Y B — a)
D(r) — f(exp(p7) — 1) A(7) — d(exp(pr) — 1)B(T)
PP B — a) -
and

r=§4+ A,
¢ =V2a+ 5%,
b=v2p+ 07,
k=y(8+ &)+ nlv+¢).
The discount bond price is a function of the variables », V, and r, and

depends on the six parameters «, 8, v, 8, n, and v."® The exponential form of
(20) makes the closed-form solution tractable and easy to compute. Substitut-

¥ The market price of risk parameter A and the parameter ¢ enter the equation only through
their sum « and need not be separately specified. Not only does this reduce the number of
parameters needed to specify contingent claim prices, but it eliminates the need to estimate the
market price of risk as a separate parameter.
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ing 7 = 0 into (20) shows that the maturity condition. F(r,V,0) = 1 is satis-
fied. The discount hond price does not equal one when r = V = 0.* This is
because the dynamics for r and V imply that these variables immediately
return to positive values if they ever reach zero. Thus, the forward rate must
be strictly positive if » = V = 0, which implies F{0,0,7) < 1 for ¢ > Q. Fi-
nally, although no boundary condition is imposed as the state variables
approach infinity, the discount bond has the economically realistic feature of
converging to zero as r — w and V — oo,

This equilibrium model has many important implications for the behavior
of discount bond prices and the term structure. For example, the partial
derivative of F(r, V, 1) with respect to r can be either negative or positive. In
particular, this partial derivative is always negative for small values of 7, but
can become positive for bonds with longer maturities. This property contrasts
with single-state-variable models of the term structure such as Vasicek
(1977), Dothan (1978}, the CIR (1985h) madel in which bond prices are
always decreasing functions of the short-term riskless interest rate. Intu-
itively, the reason for this property is that an increase in r—holding V fixed
— can imply a decrease in the level of production uncertainty. In turn, this
can imply a reduction in the required term premium, a corresponding reduc-
tion in the expected rate of return for the bond, and, therefore, an increase in
the price of the hond.

Differentiating F{(r,V,7) with respect to V shows that the sign of this
partial derivative is also indeterminate. Specifically, this partial derivative
can be positive for all 7, negative for all 7, or can take on opposite signs for
different 7. The reason for this property is again related to the effect of a
change in V an the term premium. It is straightforward to show that this
derivative approaches zero as 7 — 0. Thus, the prices of instantanecusly
maturing bonds are unaffected by changes in V. This makes sense, of course,
since we would expect the yields of these bonds to be determined only by r.
The partial derivative of F(r,V, 1) with respect to 7 is negative. This implies
that forward rates are uniformly positive in this model.

From {20), we abtain the following expregsion for the vield on a 7~maturity
bhond Y,:

Y = —(kr+2yIn A(7) + 29 In B(r) + C{r)yr + D(0YV) /7. (21

For a given maturity, the yield is a linear function of » and V. Using
IHéapital’s rule, it can be shown that the limit of ¥_ as 7 > 0 is r. As 7 —> o,
the yield to maturity converges to a constant independent of the current
value of r and V

v($—8) + n(d—v). (22)

Intuitively, this is because both » and V have long-run stationary distribu-
tions. Thus, as T = =, the influence of current values of r and V becomes less

¥ The properties af » and V imply that » cannot reach zero unless V alsa reaches zero.
Similarly, » eannot approach infinity unleas V alaso approaches infinity.
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relevant for their future value—the present value of infinitely distant future
cash flows is unaffected by the current term structure.

Because discount bond prices depend on both the short-term interest rate
and the current volatility of interest rates, the yield curve can take a greater
variety of shapes than is possible for single-factor models of the term struc-
ture. For example, (21) allows the yield curve to be manotone increasing, to
be monotone decreasing, to have a hump, to have a trough, and to have both
a hump and a trough. Since the sign of the partial derivative of F(r,V, 1)
with respect to r is indeterminate, changes in the short-term rate can have
very complex effects on the overall yield curve. An increase in r can dramati-
cally increase the slope of the yield curve for some maturities, while decreas-
ing the slope for other maturities. In some cases, changes in » may induce
“twists” into the yield curve such as when a monotone increasing yield curve
becomes inverted for intermediate maturities.

Since V can vary even when r is held fixed, changes in the level of interest
rate volatility can alse have significant effects on the slope and volatility of
the yield curve. This is important because an often-cited failing of single-fac-
tor term-structure models is that they lead to term structures that are too
flat or do not capture the variation in longer-maturity yields. Changes in V
can also have dramatic effects on the shape of the term structure. For
example, varying V while holding r fixed can result in term structure that
change from humped to monotonic. Generally, changes in V have the largest
effect on intermediate-maturity yields.

From (8) and (9), the instantaneous expected return for a discount bond
equals r + AyF, /F. Using the chain rule and changing variables, this can be
re-expressed as

A(exp(lﬁ‘f) - 1)B(1)
(B~ a)

(ar = V). (23)

The instantaneous term premia for discount bonds can be obtained directly
from this expression by simply subtracting r. For fixed r, the resulting term
premia are linear functions of both r and V. It is easily shown that term
premia are always non-negative when A < 0. For small 1, term premia are
increasing functions of r. For large values of 7, however, the opposite can be
true. Similarly, the relation between term premia and V is indeterminate. If
the market price of risk parameter A is zero, term premia are zero and the
Local Expectations Hypothesis holds. This is consistent with Cox, Ingersoll,
and Ross (1981), who show that the Local Expectations Hypothesis holds in a
continuous-time economy if production returns are uncorrelated with changes
in the state variables. Since the original state variable X is by assumption
uncorrelated with production returns, the restriction A = 0 implies that the
state variable ¥ is also uncorrelated with production returns. If both state
variables are uncorrelated with production returns, » and V must also be
uncorrelated with production returns, and the Local Expectations Hypothesis
holds. In general, if A # 0, then there are two sources of variation in term
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premia. This is consistent with recent empirical evidence by Shiller (1979),
Startz (1982), Shiller, Campbell, Schoenholtz (1983), Fama (1984), Mankiw
(1986), Shiller (1986), and Froot (1989) who document the existence of time
varying term premia. The dependence of term premia on V is particularly
consistent with the findings of Campbell (1986), Engle, Lilien, and Robins
(1987), Lauterbach (1989), and Simon (1989}, who show that excess returns
on bonds are related to term-structure volatility.

A number of recent papers have addressed the topic of the term structure
of interest rate volatility. For example, Schaefer and Schwartz (1987) explic-
itly mode] the term structure of bond-return volatility in developing a model
of bond option prices. The term structure of bond-return volatility implied by
our model can be determined by first applying Ito’s Lemma to (20} and then
taking the appropriate expectations of the stochastic component of bond
returns. The resulting expression for the instantaneous volatility of bond
returns is

(MM%“M¢ﬂ—1f¥UO—M%%am¢ﬂ—lf3%ﬂ

222 (B — o) §
2 _22,},_2 7_22
(B exptor) = "B (r) — a*(exp(4m) ~ 1) A‘(T))mn 2
G B - @)

This variance depends on the maturity of the bond as well as the state
variables r and V. This explicit dependence on both factors is important
becanse it implies a greater variety of possible term structures of volatility
than can be generated from single-factor models. Holding r fixed, the vari-
ance of returns converges to zero as 7 — 0. As 7 — 0, the variance of returns
converges to a fixed value. The partial derivative of the variance with respect
to r is always positive, which implies that the volatility is an increasing
function of the maturity or duration of the bond.

IIL. Discount Bond Options

The general equilibrium framework also allows us to derive closed-form
expressions for other contingent claims such as bond options. In recent years,
many single-factor models of discount bond option prices have appeared in
the literature. These include Brennan and Schwartz (1977), Courtadon (1982},
Ball and Torous (1983), CIR (1985b), Schaefer and Schwartz (1987), and
Jamshidian (1989). In this section, we use the general equilibrium framework
to obtain an explicit two-factor model of discount bond option prices. The
resulting model has the advantage of allowing option prices to depend
explicitly on the current level of interest rate volatility. This is important
because volatility is a fundamental determinant of option values. This model
can be used to value a number of common types of interest-rate-sensitive
contingent claims such caps and floors.
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Let K denote the strike price of a Eurapean call option on a discount bond.
Let r denote the time until expiration of the option. If the option is in the
money at expiration, the callholder exercises the call by paying X and
receives a discount bond with a maturity date T periods later. Thus, the
payoff function for the call option at maturity is

max(0, F(r,V,T) - K). (25)

We require that F(0,0,7) > K. Otherwise, F(r,V,T) < K for all r and V,\
and the option is worthless since it will never be exercised. Denote the value
of the call option C(r,V,7; K, T). Since the payoff function does not depend
on the level of aggregate wealth, the call price satisfies the partial differential
equation (8) suhject to the maturity condition (25). A factorization technique,
in conjunction with multiple separations of variables, leads to the following
solution for C(r,V,; K, Tk
C(ry V) T; K: T) = F(?‘,V, T + T)‘F(GLJ 82;4'}'1 41:"9 wl) m‘Z)
—KF(r,V,'r)‘P(83,94;4'}:,413,(03,&)4), (26)
where
419’
alexp(¢r) — YW A(r+T)'
40p?
Blexp(yr) — 1)*B(r+ T)’
47¢*
afexp(¢r) — ) A(T)A(T)’
4z°
Bexp(yr) — 1Y*B(r)B(T)’

8,

8, =

and

dpexp(Ppr)A(r+ T)(Br—V)
a( B — a)(exp(or) - DAT) '
4 exp(Yr)B(r+ TV — ar)
B(B — a)(exp(yr) — 1}B(T) "’
_ Adexp(¢r)A(r)(Br - V)
“ 7 Ta(p - a)(exp(4r) — 1)
o 4 exp(Yr)B(r WV — ar)
* B(B—a)exp(yr) - 1)
¢ =«T +2y1In A(T) + 291n B(T) — In K.

wy =

ity =
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The function W¥(6,, 8,; 4y, 47, o, wy) is the hivariate noncentral chi-square
distribution function

8 By—f8,u/8,
[ x2(us 4y, o) x*(v; 4, 0,) dvdu, (27)
Lo ]

where y2(-; p,q) is the noncentral chi-square density with p degrees of
freedom and noncentrality parameter g. The density function of the noncen-
tral chi-square distribution is given in Johnson and Kotz (1970), Chapter 28,
p. 133. Note that the product of the densities for the noncentral chi-square
variates z and v in (27) is actually the joint density since the two variates
_are independent of each other. This feature dramatically reduces the compu-
tations that are required to calculate the value of the distribution function.
The integral is evaluated over the triangular region in the u X v plane
defined by the points (0,0), (8,,0), and (0, #,). The function
W(6,, 8,; 4y, 47, wy, 0,) is defined similarly. Johnson and Kotz ((1970), Chap-
ter 28) also discuss a number of transformations of noncentral chi-square
variates which are approximately normally distributed. Applying one of these
transformations simplifies the problem of estimating the integral in (27) to
one of estimating a cumulative bivariate normal distribution funetion. The
value of a European discount bond put can be cbtained directly from (26) by
the put-call parity relation.

Since the variance of the riskless rate is stochastic in this general equilib-
rium framework, this bond option valuation model provides an important
extension to the recent literature on option pricing with stochastic volatili-
ties. Examples of stochastie-volatility option pricing models include Scott
(1987), Wiggins (1987), Hull and White (1987), Johnson and Shanno (1987),
and Bailey and Stulz {(1989). It is important to observe, however, that none of
these stochastic-volatility models provides a closed-form expression for option
prices. In this respect, the closed-form expression for discount bond calls
given in (26) is unique.*® .

"As is the casge for discount bond prices, many of the comparative statistics
results for discount bond ecall values are indeterminate. For example, an
increase in r can either increase or decrease the call value. This contrasts
with the Black-Scholes option pricing formula in which calls are increasing
functions of the riskless rate. Intuitively, the reason for the indeterminate
sign is that while an increase in r reduces the present value of the strike
price and thus increases the value of the call, it can also reduce the value of
the underlying discount bond. The net effect depends on which effect domi-
nates. This feature also explains why the properties of option prices implied
by this model will differ from those implied by the Black-Scholes formula—the
Black-Schales model assumes that changes in the value of the underlying

15 The expression in (26) is a closed-form solution in the same sense as the Black-Schales
formula, although computation of the enmulative distribution functions can be more cumher-
some. In some circumstances, however, we have found that numerically solving the partial
differential equation for the diseount bond option price is as easy as evaluating (26) directly.
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asset are unrelated to changes in the interest rate. The partial derivative of
the call price with respect to V is also indeterminate, The intuition for this
result is that while an increase in volatility tends to increase the value of the
call, it can either increase or decrease the value of the underlying discount
bond. Again, the actual sign of the partial derivative depends on which effect
dominates. Finally, it is straightforward to show that the call price is a
decreasing function of the strike price K.

IV. The Empirical Tests

Since contingent claim prices depend explicitly on r and V|, the two-factor
model is able to capture hoth the level of interest rates and the level of
interest rate volatility. The two-factor model, however, goes beyond this and
places strong cross-sectional restrictions on the evolution of the term strue-
ture. Specifically, (21) implies that changes in yields are known functions of
changes in r and V. In this section, we propose a simple way of estimating
the volatility of the riskless interest using the generalized autoregressive
conditional heteroskedasticity (GARCH) framework introduced by Bollerslev
(1986). We then use these estimates to test the cross-sectional restrictions
imposed by the model using the generalized method of moments (GMM) of
Hansen (1982). The results indicate that the two-factor model not only
captures the level and volatility of the term structure, but also the cross-sec-
tional structure of yield changes.

A. The Data

The model developed in this paper deals only with the real economy since it
is beyond the scope of this research to introduce the additional elements
required to provide a valid role for money.'® Consistent with other empirical
werk in this area, however, we proceed to test the model using nominal
yields.'” We note that if nominal yields are inconsistent with the implications
‘of the model, the croas-sectional restrictions are more likely to be rejected hy
the data.

In estimating the volatility of the short-term riskless rate we use data for
one-month U.8. Treasury bill yields.!® The tests of the cross-sectional restric-
tions are then conducted using the volatility estimates and yields for U.5.
Treasury bhills and notes with maturities ranging from three months to five
years. The T-bill yield data is obtained from the data set originally con-

1% A5 examples of the additional structure required to introduce money inteo the analysis in a
meaningful way, see Gibbons and Ramaswamy (1987} and Foresi (1990).

1 For example, see Brown and Dybvig (1986) and Pearson and Sun (1989).

% The one-month data is the shortest-maturity data avaijlable to us. Ideally, we would like to
use a measure of the instantaneous riskless rate in estimating V. This is because, if the
instantaneous riskless rate is strongly mean-reverting, estimates of V from one-month yields
could differ slightly from estimates obtained from the instantaneous riskless rate. The effect of
this, however, would prabably be to bias the tests against the two-factor model.
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structed by Fama (1984) and subsequently updated by the Center for Re-
gearch in Security Prices (CRSP). These yields are based on the average of
bid and ask prices for Treasury bills and are normalized to reflect a standard
month of 30.4 days. The yield data for one- to five-year maturity bonds are
obtained from the Fama and Bliss (1987} data set which is also updated by
CREP. These yields are hased on the term structure for taxahle, non-callable
1.8, Treasury bonds with maturities up to five years. Fama and Bliss
compute these yields by first constructing a step-function term strocture of
forward rates in which forward rates are assumed to be the same hetween
successive-maturity Treasury bonds, and then interpolating to compute im-
plied discount bond prices and yields. The data iz monthly and covers the
period from 6/64 to 12/89. All yields are expressed in annualized form.
Table I presents summary statistics for the variables used in the tests.

B. Estimating Interest Rate Volatility

There are many approaches that could be used in practice to obtain
estimates of the volatility of the short-term riskless rate. For example, actnal
bond or bond option prices can be set equal to their theoretical valnes and
then solved as a system of nonlinear equations for the parameter values and
the “implied volatility” V—similar to the procedure used for stock options.
Since our focus is on testing the model, however, we use an estimation
approach that is independent of the functional form of prices implied by the
model to avoid the possihility of biasing the results in favor of the model.

In estimating V, we use the well-known GARCH framework of Bollerslev
(1986). This framework is an extension of the ARCH class of processes. ARCH

Table I

Summary Statisties for the One-Month U.S. Treasury-Bill
Yield and for Monthly Changes in the One-, Three-, Six-, Nine-
Moanth U.S, Treasury-Bill and One-, Twao-, Three-, Four-, and

Five-Year Fama and Bliss (1987) U.S. Treasury Bond Yields
p; denotes the ith order autocorrelation. The data are monthly and the sample period is 6 /64 to
12/89. (306 ohservations)

Variahle Mean Std. Dev. o i 2
One-month yield 0.06717 0.02679 0.951 (1.909 0.860
One-month yield change 0.00008768 0.008211 —0.080 0.073 —0.124
Three-month yield change 0.00013965 0.006950 0.108 —0.087 —0.055
Six-month. yield change 0.00013572 (.006629 0.152 —0.089 —0.105
Nine-month yield change 0.00012654 0.006563 0.160 —0.100 —0.125
One-year yield change 0.00413153 0.006568 0.103 —0.112 —0.079
Twa-year yield change 0.00012922 (.005541 0.143 —{.108 -0.110

IThree-year yield change 0.00012646 {1.005042 0.103 —0.108 —-0.115
Faur-year vield change 0.00412395 (.004863 0.048 —0.119 —~0.028

Five-year yield change 0.00012431 0.004451 0.058 —0.089 —0.069
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and GARCH processes have been used successfully to model a wide variety of
economic time series including inflation, foreign exchange rates, stock re-
turns, and interest rates.’® Specifically, we model discrete changes in the
riskless rate by the following econometric specification:

Fopr — 1= g +oonr + agV, + g, (28)
ey ~N(O,V,), and (29)
Vi=Bo+ Byr, + BV + 333:2- (30)

This specification allows unexpected changes in r to he conditionally het-
eroskedastic through their dependence on the value of V. In turn, V follows
an autoregressive process since its enrrent value depends on its lagged value.
This discrete-time specification parallels the continuous-time dynamics given
in (14) and (15} sinece (28) implies that changes in » depend on r and V and
are conditionally heteroskedastic. On the other hand, it is important to
acknowledge that this discretized specification iz only an approximation of
the continuous-time model.2? If the GARCH model is mis-specified, however,
the likely effect will be to hias the tests against the two-factor model in the
tests of the croas-sectional restrictions.

We estimate the GARCH system in (28), (29), and (30} using the Berndt-
Hall-Hall-Hausman (1974) numerical algorithm to find the maximum likeli-
hood parameter estimates. In doing thiz, we used a variety of different
starting values to ensure that the volatility estimates were robust and that
the algorithm converged to the global maximum. Fig. 1 plots the estimated
standard deviations of changes in the riskless rate (the square root of V)
during the 1964-1989 study period. For comparison, Fig. 1 also plots the
absolute changes in r which serves as an ex post measure of volatility. As
shown, the GARCH estimates are positive and appear to be successful in
capturing the patterns of volatility evident in the ex post estimates.

C. Tests of the Two-Factor Model

The two-factor model developed in this paper places a number of strong
cross-sectional restrictions on the term structure. To see this, note that (21)
implies that changes in observed values of Y, can be expressed as linear
functions of changes in » and V

AY,=a,+b, Ar +c, AV, (31)

18 Far example, see Engle (1982, 1983), Bollerslev (1987), French, Schwert, and Stambaugh.
(1987), Engle, Lilien, and Robbina (1887), Hsieh {1988), Baillie and Bollerslev (1989), Hsieh
(1989), and Engle, Ng, and Rothschild (1990). Nelson (1991) studies the relation hetween
GARCH processes and diffusion processes.

# Because of this, the parameters of the GARCH model need nat map directly into the
parameters of the continuous-time process. A more sophisticated approach might involve esti-
mating V and its dynamics jointly with the tests of the cross-sectional restrictions of the
two-factor model. This appraach, however, would be comptutationally very difficult to implement
and would require methods that would take us far heyond the acope of this paper.
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Figure 1. The monthly changes in the one-month Treasury bill yield. The solid line is
the yield implied by the GARCH model and the dotted line is the absolute value of monthly
changes in the one-month Treasury hill yield.

where a_, b,, and ¢, are maturity-specific constants, and A represents the
difference operator. Next, consider a system of equations of the form (31) for
n different maturities. In the absence of any cross-sectional restrictions, this
system would include 3n different constants or parameters. The cross-sec-
tional restrictions of the two-factor model, however, dramatically reduce the
dimensionality of the parameter space. From (21), the constants a_, b,, and
¢, equal

w, = 0,
br = _C(T)/T: (32)
e, = —D(r} /T,

where C(7) and D(7) are as in (20). For a given 7, however, C(r} and D(1)
are completely determined by the four constants a, 8, 8, and ». Thus, the
two-factor model places 3n — 4 restrictions on the 3n parameters of the
system. Note that these restrictions are much more stringent than simply
requiring changes in r and V to have explanatory power for yield changes—we
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requijre that changes in r and V have explanatory power in a very specific
way which depends on only four parameters.?!

Our econometric approach is to test these cross-sectional restrictions as a
set of over-identifying restrictions on a system of moment equations using the
GMM approach of Hansen (1982). This approach has a number of important
advantages which make it an intuitive and logical choice for testing these
restrictions. First, the GMM approach does not require that yield changes bhe
normally distributed. The asymptotic justification for the GMM pracedure
requires only stationarity, ergodicity, and existence of relevant expectations.
Second, the GMM estimators and their standard errors are consistent even if
error terms in the moment equations are conditionally heteroskedastic, seri-
ally correlated, or correlated across maturities. Finally, the GMM technique
has been used in other empirical tests of term-structure models by Gibbons
and Ramaswamy (1987), Harvey (1988), Longstaff (1989), Chan, Karolyi,
Longstaff, and Sanders (1991), and Flesaker (1991).

Let &, denote the deviation of the observed value of AY, from the theoreti-
cal value implied by (31)%

e, =AY, —a,— b, Ar —c, AV, (33)

In a regression framework, the three constants a,, b,, and ¢, would be
chosen so that the expected values of ¢, ¢, Ar, and € AV equal zero. This
follows since regression residuals are constrained to he mean zero and
orthogonal to the independent variables. In implementing the GMM tests, we
choose moment conditions that parallel those implied by the regression
framework. This makes the results more intuitive and easier to interpret
since the GMM approach can be viewed as testing nonlinear restrictions on
the parameters of a system of regression equations. In this sense, our
estimation approach clogely parallels generalized least squares.

Define 8 to be the parameter vector with elements «, 8, §, and v and let
the vector £ (6) be

£

R(8) = | AT (34)
£, AV

Let £{8)be the 3n-vector formed by stacking the h (8) vectors for n different
maturities. Under the null hypothesis that the restrictions implied by (32)
are true, E[ £,(8)] = 0. The GMM procedure consists of replacing E[ f,(8)] by

2l This approach has the potential to provide powerful teats for the specification of the model.
For example, if the underlying state variahles, preferences, or production dynamics are not
correctly specified, it is likely that the model's strong cross-sectional restrictians will be rejected
hy the data.

2 Gtambaugh (1988} argues that quotation errors, the averaging of bid and ask prices, and
other imperfections in the data make it important to use statistical tests which allow for the
possibility of measurement error in the data.
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its sample counterpart, g,(8), using the T' ohservations where

1 T
gr(8) = T Y £.(6), (35)
t=1

and then choosing parameter estimates that minimize the quadratic form
Jr(8) = g7 (6)Wr(6)g,(8), (36)

where W,(6) is a positive-definite symmetric weighting matrix. Hansen
(1982) shows that choosing Wy(8) = S1(8), where

S(9) = E[f(6)f.(8)], (37)

results in the GMM estimator of 8 with the amallest agymptotic covariance
matrix. .

The minimized value of the quadratic form in (36) is distributed as a x?
variate under the null hypothesis that the cross-sectional restrictions are
true. In our tests, we use eight different maturities: the three-month, six-
month, nine-month, one-year, two-year, three-year, four-year, and five-year
maturities. Thus, we estimate the four-parameter vector 6 from a system of
24 moment equations, resulting in 20 over-identifying restrictions—the test
statistic is y;, under the null hypothesis.?® A high value for the test statistic
means that the cross-sectional restrictions of the two-factor model are re-
jected. The estimation technique uses a Newton-Raphson algorithm to find
the parameter vector that minimizes the quadratic form in (36).24

Table IT reports the GMM minimized criterion { ¥2) value, and its associ-
ated p-value. As shown, the GMM test statistic is 17.02 with a p-value of
0.651. Hence, the cross-sectional restrictions imposed by the two-factor model
cannot be rejected by the data at conventional significance levels. These
results are particularly striking given that the cross-sectional restrictions are
impaosed on yields with maturities up to five years. Thus, the model holds for
both short-term and intermediate-term maturities. Previcus empirical work
often finds that the explanatory power of equilibrium term-structure models
drops rapidly for maturities in excess of one year (see Longstaff (1989)).2°

These results indicate that changes in r and V not only have explanatory
power for yield changes, but that they have explanatory power in the way
predicted by the model. Although these results support our two-factor model,
it is important to point out that they do not necessarily provide evidence

2 Gince § is a vector of four parameters, it is not possible to estimate @ for individual
maturities. Hence, we cannot compare parameter estimates across maturities.

2 Gimulation evidence by Flesaker (1991) suggests that the minimized value of the GMM
quadratic form in a term-structure application similar to ours conforms well to its asymptatic
distribution.

% The point estimate of @ in Table II is negative. This is consistent with the model if 4 in
-equation (1) is allowed to be negative. If u is negative, however, it ia poasible that r can take on
negative values. This is clearly an undesirable property for a model of nominal interest rates
{although not. necessaarily for a model of real rates).
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Tahle I1

GMM Tests of the Cross-sectional Restrictions on Monthly
Yield Changes Implied by the Two-Factor Madel

The yields included in the tests are the three-, six-, and nine-month, and the one-, twa-, three-,
four-, and five-year U.8. Treasury yields. The four parameters o, 8, 4, and » are estimated from
a system of 24 moment conditions, resulting in 20 overidentifying restrictions. The data are
manthly and are expressed in annualized form. The sample period is 6/64 to 12/8% (304
chservations).

a A & v Test Statistic
Value —0.0438 0.0814 0.3299 14.4227 17.02
t-statistic —5.65 6.00 15.08 4.18 —
p-value 0.000 0.00¢ 0.000 0.000 0.652

against other two-factor models such as Brennan and Schwartz (1979},
Schaefer and Schwartz (1984}, CIR (1985b), and Heath, Jarrow and Morton
(1988). This is becanse our approach focuses on the over-identifying condi-
tions of the model rather than the relative explanatory power of alternative
two-factor maodels. In order to provide diagnestics for the model, we examine
how well the model fits the term structure of interest rate volatility. This is
done by comparing the unconditional standard deviations of yield changes
implied by the model—evaluated at the point eatimates of the parameters—to
the actual unconditional standard deviations reported in Table 1. Note that
the GMM estimation does not impose the restriction that these moments
match. Despite this, however, the fit between the actual and model atandard
deviations is very close. For example, Table I shows that the actual atandard
deviations range from 82 basis points for monthly changes in the three-month
yvield to 45 basis points for monthly changes in the five-year yield. The
standard deviations implied by the model range from 76 basis points for
changes in the three-month yield to 45 basis peints for changes in the
five-year yield. The mean difference between the actual and model standard
deviations is only five hasis points. '

Finally, since only four of the six parameters of the model are estimated in
our tests, the point estimates given in Table II may differ from those obtained
by procedures that estimate all six parameters simultanecusly. The reason
for this is simply that the parameters are highly correlated—estimating a
subset of the parameters ignores the correlation between these parameters
and the remaining parameters.?® This poses no problem to the tests of the
cross-sectional restrictions which are our primary focus in this section. In

% The high carrelation of the parameters and the existence of local minima make the point
estimates of the parameters somewhat dependent on the choice of starting values. The mini-
mized value of the GMM eriterion function, however, is not sensitive to the choice of starting
values. A referee pointed out that the test of the aver-identifying conditions may lack power in
small samples because of the correlation of the orthogonality conditions across maturities.
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applied work, however, we recommmend that parameters be estimated using
techniques that take the correlations of all six parameters into account.

D. Tests of the CIR Single-Factor Model

Recall from Section I that the single-factor CIR (1985b) model can be
nested within the two-factor model. This ia done by imposing the restrictions
a=8=vy=0 in (8) and (10) and rederiving equilibrium discount bond
prices.”” As with the two-factor model, the single-factor CIR maodel also places
testable cross-gectional restrictions on the coefficients of the expression in
(31). Using our notation, these restrictions are

a =0,

C exp(yr) — /7
b= Tt w)(exp(dr) — 1) = 29 (38)
c.=0.

As before, we test these cross-sectional implications as over-identifying
restrictions using the GMM methodology. Since a and § equal zero, the
parameter vector 6 consists of just 8 and v. Using the same set of 24 moment
equations to estimate the parameter vector 4 results in 22 aver-identifying
restrictions. Hence, the GMM test statistic is x4, under the null hypothesis.

The test results for the single-factor model are reported in Table III. As
shown, the data provide evidence against the single factor model. In particu-
lar, the cross-sectional restrictions imposed by the model can be rejected at
the 10 percent level, although not at the five percent level. The GMM test
statistic is 32.86 with a p-value of 0.064. To examine the reasons for the poor
performance of the single-factor model, we regressed changes in yields on
changes in r and V. Although the single-factor model implies that changes in
V should have no explanatory power for vield changes, we found that changes
in V were significant for all maturities. In particular, the #-statisties for
changes in V from simple OLS regressions range from —2.5 for three-month
yield changes to — 3.1 for five-year yield changes. These results indicate that
one important reason for the rejection of the single-factar model is that it
does not allow yield changes to depend on changes in V.

V. Conclusion

In this paper, we have developed a two-factor general equilibrium model of
the term structure of interest rates. We use this model to derive closed-form
expressions for discount bond prices and discount bond option prices. The
factors used—the short-term interest rate and the volatility of the short-term

# Imposing the parameter restrictions directly on the discount bond pricing function (24} is
not feasible since the change of variables employed results in terms that invelve division by zero.
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Table IIT

GMM Tests of the Cross-sectional Restrictions on Monthly
Yield Changes Implied by the Cox, Ingersoll, and Ross (1985b)
Single-Factor Model

The yields included in the tests are the three-, six-, and nine-month, and one-, twa-, three-, four-,
and five-year U.8. Treasury yields. The four parameters o, 8, 8, and v are estimated from a
system of 24 moment conditions, resulting in 20 overidentifying restrictions. The data are
monthly and are expressed in annualized form. The sample period is 6/64 ta 12/89 (306
abservations),

g v Test Statistic
Value —0.1350 0.5234 32.86
t-statistic -2.39 8.07 —
p-value 0.004 0.004 0.064

interest rate—are intuitively appealing and readily obtainable. The cross-sec-
tional restrictions imposed by the model on the evolution of the term strue-
ture appear consistent with the data.

In addition to its theoretical appeal, the model has the potential of becom-
ing a useful practical tool for the valuation and hedging of interest rate-con-
tingent claims. Its advantage over the two-factor arbitrage models of the term
structure is that the functional form of the market price of interest rate risk
is endogenous to the model and consistent with general equilibrium. Also, the
flexibility obtained by having one interest rate factor and one volatility factor
might be important in the practical applications of the model.

However, more extensive empirical work on the use of the model in the
valuation of contingent claims will be necessary to ascertain its superiority
relative to alternative models. In many of the more complex applications,
closed-form sclutions may not exist and numerical solutions may be required.
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