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Time-Dependent Variance and the Pricing of Bond
Options

STEPHEN M. SCHAEFER and EDUARDO 8. SCHWARTZ*

ABSTRACT

In this paper, we develop a madel for valuing debt optians that takes inta account the
changing characteristics of the underlying bond by assuming that the standard deviation
aof return is proportional to the bond's duration. The resulting model uses the bond price
as the single state variable and thus preserves much of the simplicity and robustness of
the Black-Scholes approach. The paper provides comparisons between option prices
computed using this model and those using the Black-Scholes and Brennan and
Schwartz maodels.

THE LAST DECADE HAS seen a dramatic increase in the volatility of bond markets,
leading to a growing interest in financial instruments that can be used to hedge
this risk. Thus, in the U.85., Canada, and the U K., there has been a proliferation
of new interest rate-dependent securities such as bond futures, options on bonds,
options on bond futures, swap agreements, and bonds with option features such
as callahility, putahility, retractability, and so forth.

With the development of these markets, the problems of valuation and the
derivation of the hedging strategies have become subjects of increasing impor-
tance to both practitioners and academics. Several valuation methods have been
suggested in the literature, but, so far, no consensus has emerged as to the hest
solution to these problems.

The simplest approach to the valuation of deht options, and probably the most
widely used in practice, is the Black-Scholes model [3]. This method, originally
developed for the valuation of stock options, assumes that the variance of the
rate of return on the underlying security is constant. While this assumption is
plausible for common stocks, it is clearly unreasonable for bonds with a finite
maturity. The distinctive feature of the problem of debt-option valuation is that
the characteristics of the underlying asset change over time because the price is
constrained to converge to the face value of the bhond at maturity. A second
drawhack of the Black-Scholes approach is that it assumes a constant short-term
interest rate, an assumption that is clearly inconsistent with stochastic returns
on bonds. In spite of these problems, the Black-Scholes madel has been frequently
used in practice to value debt options because of its overwhelming simplicity in
comparison with other available methods.

* London Business Schoaol and University of California, Los Angeles, respectively. This paper was
written during the period that Stephen M. Schaefer spent at the Faculty of Commerce and Business
Administration of the University of British Columbia as the Leslie Wong Summer Visitor. He is very
grateful to the Faculty at UBC for their generous invitation and their warm hospitality. The authors
are most grateful to Hoare Govett and Company, Londan, for providing the data used in this study
and to Walter Tarous and Mark Rubinstein (the referee) for helpful comments.
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The second approach to the valuation of debt options derives from the equilib-
rium theories of the term structure. Cox, Ingersoll, and Ross [10], Vaszicek [17],
Brennan and Schwartz [4], and others have derived equilibrium models of the
term structure assuming that one or more interest rates follow exogenously given
stochastic processes.! Courtadon [7] has used a single-state-variable model based
on the short rate to value debt options. Even though the single-state-variable
approach allows for changes in the variance of bond returns over time and a
stochastic short rate, it has the undesirable properties that the returns on bonds
of all maturities are perfectly correlated and that the long-term zero-coupon yield
is a constant. The Brennan and Schwartz two-state-variable model, based on the
consol rate and the short rate, overcomes these difficulties while preserving the
desirable properties of a stochastic short rate and time-dependent variance of
bond returns. This is achieved at the cost of substantially increased computa-
tional complexity.

There are, however, three significant practical difficulties in applying the
equilibrium approach. First, it requires the estimation of the stochastic process
for either one or two interest rates. Second, it requires the estimation of a utility-
dependent parameter: the market price of short-term interest rate risk. Third,
because the underlying bond is not a state variable in the model, the bond price
in the boundary conditions for an option must he computed from the interest
rate state variables, thus adding both to complexity and to the possibility of error
in the valuation.

Ball and Torous [1] have proposed a model for the valuation of Eurcpean
options on discount bonds based on the assumption that the rate of return on
the underlying discount bond follows a Brownian bridge process. This ingenious
idea allows the bond price to converge to its face value at maturity but does so
in such a way that the variance of the rate of return on the bond is constant over
time. This allows Ball and Torous to use Merton’s [14] stachastic interest rate
option model to derive a closed-form solution for the option value. A significant
weakness of this approach, however, is that a constant variance of return implies
that the variability of the yield to maturity increases without bound as the bond
approaches maturity.

In this paper, we develop a model for valuing debt options that takes into
account the changing characteristics of the underlying bond in a way that is both
simple and realistic. We assume that the standard deviation of return on the
underlying bond is proportional to the bond’s duration. Duration, a present-value
weighted time to payment of the bond’s cash flows, is a measure of effective
maturity, and, as maturity increases, a bond’s duration converges to that of a
consol bond. Despite its simplicity, recent empirical work on bond-hedging
technique suggests that duration is a good measure of the relative variability of
bond returns.?

In our option-vatuation model, the single state variable is the price of the
underlying bond with a standard deviation of return proportional to duration.

! In the Cox, Ingersolf, and Ross model, the interest rate process is derived in a general-equilibrium
framework.
% 8ee, e.g., Brennan and Schwartz [5] and Melson and Schaefer {15].
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This means that, like the equilibrium-based models and unlike Black-Scholes
and Ball-Torous, our option values will reflect the fact that the characteristics
of the underlying bond are changing over time. Moreover, it means that, like
Black-Scholes and Ball-Tarous and unlike the equilibrium-hased models, our
model does not require the estimation of stochastic processes for interest rates,
the estimation of the market price of interest rate risk, or the computation of
bond prices in the boundary conditions.

In common with Black-Scholes, our method has the theoretical weakness of
assuming a constant short-term rate of interest. However, considering the advan-
tages of our model described above, including its simplicity of application, we
believe that, for practical purposes, this theoretical weakness is a price worth
paving. This issue, however, can only be resolved empirically.

Section I of the paper describes in detail the stochastic process governing bond
prices. Section I presents some empirical evidence on the relationship between
the variability of bond returns in the U.K. and duration. In Section III, we
develop the option-valuation model, and Section IV provides some numerical
examples and compares our results with those from the Black-Scholes and
Brennan-Schwartz maodels. Section V gives our conclusions.

I. A Stochastic Process for Bond Prices

As we mentioned earlier, the objective of this paper is to construct a model that
{a) has the price of the underlying bond as the anly state variable and (h)
accommodates the fact that the dynamics of a bond’s price change as the bond
approaches maturity. We therefore assume that, at time ¢, the instantaneous rate
of return on a default-free hond with price P is given by

d}? = pdt + o{P, t)dz, (1)
where ¢ is the instantaneous rate of price appreciation on the hond, possibly
stochastic, and «(P, t} is the instantaneous standard deviation of return. Note
that, by writing the standard variation of return as a function of only P at ¢, our
model becomes an arbitrage model in the spirit of Black and Scholes [3], rather
than an equilibrium analysis such as those of Cox, Ingersoll, and Ross [10],
Vasicek [17], or Brennan and Schwartz [4]. We take this route because the
purpose of this paper is to develop a robust and simple procedure for valuing
options on honds rather than developing an equilibrium model of the term
structure,

Despite this shortcoming, out approach has a number of advantages. First, hy
making the price of the bond the sole state variable, we are freed from the need
to estimate any utility-dependent parameters as would he the case in all the
equilibrium models mentioned ahove. Second, we are free to choose an empirically
realistic characterization for the variance of the price process. This is to he
contrasted with, for example, one-factor equilibrium models where the price
variability of long-term zero-coupon yields tends to zero. Third, by having the
price of the underlying asset as a state variable, the boundary conditions for
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option pricing are greatly simplified. In the case of Brennan and Schwartz [6],
for example, the boundary conditions must be computed from the value of the
underlying state variables. Fourth, by having only one state variable, the com-
putational requirements are significantly less demanding than for two-state-
variable models to the extent that implementation on a personal computer is
straightforward. Finally, as will become apparent, the inputs for the model are
easily obtained.

The key issue in equation (1) is the specification of the standard deviation
a(P, t) and, in particular, the pattern of time dependent of (P, t) as the bond
approaches maturity. A significant literature exists that suggests that duration
is a good measure of the standard deviation of hond returns.? Of the duration
measures that depend only on P and ¢, the simplest is the Reddington [16]
duration, which is defined as

D(P, t) = [L%1 (& — theexpi—y(t; — )} + (tx — t}F expl=y{t, — t}I/P, (2)

where ¢;, i = 1, -- -, n, is the ith coupon on the bond paid at time &, F is face
value, and y is the yield ta maturity on the bond that is the solution to
P = [Y L1 cexp{—y(t, — t}] + F exp[—y(t, — t}]]. (3)

Macaulay’s [12] duration, which is identical to (2) except that the discounting is
peformed using the underlying zero-coupon yields rather than the yield to
maturity on the bond, is an alternative and frequently used measure of duration,
Indeed, it may appear to be a better measure of average maturity since the
discounting is performed at market rates. However, Ingersoll [11] has shown that
the differences between the two measures are almost always trivial* and, since
Reddington’s measure depends only on the own price of the bond rather than
the entire term structure, we will use this measure,

In Section II, we provide some empirical evidence from the U.K. government
hond data that suggests that duration is a good measue of the variability of bond
returns.

In this paper, we assume that the standard deviation of a hond’s return is
proportional to duration, and we write (1) as

dP = uPdt + RP*D{P, t)dz (4)
or, equivalently,
a(P, t}y = RP*'D(P, t). (5}

In (4) and (5}, « and k are constants.
It is well known that equation (2) is equivalent to

14P
D(P, t)=—1—35, (6)

¥ See, e.g., Nelson and Schaefer [15] and Brennan and Schwartz (5].
* See Ingersol] [1L, p. 170, Table 4].
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and it therefore follows that RP*' measures the local standard deviation of the
change in yield to maturity.® Different values of « therefore characterize different
patterns of a dependence between the variability of yield changes and the level
of the bond price. This is most clearly seen in the case of a consal bond, for
which

p=° (7)
y
and
D=1 @)
y

Here, from equations (5), (7), and (8), the standard deviation of bond returns is
given hy

a(P, t) = g P~ 9

which implies that the standard deviation of the consol vield is ke 'y ™. Notice
that, when « equals zero, the standard deviation of consol returns is a constant,
as in the Black-Scholes model, and the consol’s yield, like its price, follows a
geometric Brownian Motion. When « is unity, the standard deviation of consol
returns is k/y, which is proportional to duration,® and the corresponding consol
yield follows an arithmetic Brownian Motion.

Some limited empirical evidence on the value of « is given in Section IL It
should be pointed out, however, that even though with « equal to zero the process
for bond returns converges to the Black-Schales process as time to maturity
increases, the same will not be true for honds with short maturities. In the case
of the latter, duration will be relatively less sensitive to price, and, therefore, the
standard deviation of return will be inversely related to the level of price. This is
to he contrasted with the Black-Scholes case, where the standard deviation of
returns is independent of price.

On the other hand, when « equals unity, the standard deviation of returns on
short honds will be insensitive to the price level, whereas the standard deviation
of consol returns will be proportional to price.

The above discussion suggests that, if (5) provides a good description of the
standard deviation of bond returns, then the Black-Scholes model will not
correctly price options on both short- and long-term bonds simultaneously.

Finally, it is interesting to consider the case of discount bonds. Here, duration

2 Ta see this, consider the yield to maturity, y, as the primitive process with standard deviation ¢,.
Using Itd's Lemma on P = P(y, t), the local standard deviation of dP/P is {1/P}{dP/3y)a,, which,
from (5) and (6}, implies that o, = 2P*"'. The pracess described by equation (4) has the drawhack
that the bond price does not necessarily tend to the face value as the band approaches maturity. For
aptions with maturities close ta the maturity of the bond, this may produce inaccuracies. A number
of salutions ta this problem appear passible, but perhaps the simplest would be to refarmulate the
model in terms of the bond's yield to maturity, y, rather than the price. Since y= (P, ¢}, this is no
more than a change of variahle, but it will nonetheless avercome the difficulty described above.

% Note that, when o = 1, a{P, ¢} is also proportional to duration for nonconsal bonds.
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is equal to time to maturity and hence insensitive to bond price or yield. In this
case, (5) shows that the standard deviation of return is insensitive to price when
& equals one rather than zero.

In this section, we have proposed a specification of the stochastic process for
bond prices. While other specifications are possible, the process we have chosen
seems particularly attractive since it not only incorporates the well-documented
relationship between duration and the standard deviation of hond returns but
also accommodates a variety of patterns of dependence between the standard
deviation of yield changes and the level of price.

II. Duration and the Variahility of Bond Returns: Some Empirical
Evidence

A fundamental feature of our specification of the stochastic process is the
proportional relationship between duration and the standard deviation of hond
returns. While it is not our intention in this paper to provide an exhaustive
analysis of this topic, we have carried a limited investigation and report our
results in this section.

The data were daily prices and returns on all the UK. government bonds
(excluding index linked to convertible issues} aver the pericd from October 1,
1985 through December 1, 1985. The total number of bonds in the sample was
eighty-nine, with maturities ranging from three months to twenty-eight years.

Figure 1 shows the annualized standard deviations of return for the total
sample plotted against their average daily durations over the period. The strong
positive association between these variables is apparent, and a regression of
standard deviation (&) against average duration (I3) gave the following results:

&= 00055 + 0.0055 D+ ¢,
{0.0011}  (0.0002)

R* =091

Even though duration explains ninety-one percent of the variability of &, the
following two points should be noted. First, the intercept is greater than zero;
this may well be due to a small amount of noise in the price data (which, in turn,
probably derives from the bid-ask spread). Second, there are a number of outliers
in the data, particularly in the mid- to high-duration range, where a number of
observations are below the main hody of the data. More detailed investigation
revealed that the majority of the outliers were low-coupon honds, and, in Figure
2, bonds with coupons below ten percent have been excluded. As can be seen,
this step (which eliminates thirty-two bonds)} substantially reduces the number
of outliers, and the corresponding regression becomes

&= 00045 + 00059 D+,
(0.0011)  (0.0002)

R* =094,
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Figure 1. The relationship between the volatility of bond returns and average duration. The
figure plots the annualized time-series valatility of daily returns on all British Government Securities
(“gilts") against their average duration. The data caver the period from October 1 through December
1, 1985. The diagram also indicates those bonds that have coupans of less than six percent,

While these results suggest many interesting avenues for research, it is clear that
duration alone explains a very significant fraction of the crass-sectional variation
in bond-return variability.

Finally, we have made some very preliminary attempts to estimate «. It should
be remembered that the role of the term P*~ ' in equation (5) is to model the
effect of changes in the level of yields on the wvariability of yield changes.
Consequently, the estimation of « should be carried out within a time-series
analysis rather than in a cross-section. To simplify the analysis, we used data on
a very long-term hond (twelve percent Exchequer 2013-2017) and estimated
equation (9), which related to a consol.’

Taking logs of equation {9}, we obtain

log ¢ = loglk/c) + « log(P).

We estimated this equation using values for the standard deviation of returns
derived from forty-one nonoverlapping two-month periods of daily returns be-
tween January 1979 and November 1985, The price, P, in the regression was
taken as the last price in each two-month period (though the results were little

? We used data on the twelve percent Exchequer 2013-2017 rather than on one of the outstanding
“sonsals” as the price data on the former were felt to be more reliable.
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Figure 2. The relationship between the volatility of bond returns and average duration, The data
are as described for Figure 1 except that bonds with coupons less than ten percent are excluded.

affected by using the first price}. The results of this regression were

log d =316 — 119 log P + ¢,
(1.77) (0.38)

R? = 0.18; Durbin Watson = 1.39.

This negative estimated value of « suggests that, for the period congidered, the
variability of U.K. bond returns increased with the level of yields. We point out,
however, that the limited period covered by the data does not allow any general
conclusions on the value of « to be drawn.

III. A Pricing Model for Bond Options

In our pricing model, we shall assume that the short-term rate of interest is
constant. This is clearly a weakness since a deterministic short rate is logically
inconsistent with stochastic variation in the prices of long bonds and is also
inconsistent with the empirical evidence. We make this hold assumption based
on the sucecess of the Black-Scholes model in valuing stock options since, in this
case, even though the application of their maodel is not subject to the first
ctiticism, it is certainly subject to the second.? In theory, it would be easy to
include a stochastic short rate of interest in our model, but doing this would

8 Clearly, when interest rates are both high and variable, the assumption of a deterministic short
rate becomes less satisfactory.
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involve considerable complication in its practical application. In the first place,
it would be necessary to estimate the stochastic process governing the short rate;
second, it would require the estimation of a preference-dependent function
describing the market price of the short-term interest rate; third, the numerical
solution of the resulting partial-differential equation would be substantially more
involved. Given the empirical evidence an the performance of the Black-Scholes
model, it appears that the influence of random variation in the short-term rate
on equity option prices is a second-order effect. Therefore, in spite of the
theoretical considerations, the inclusion of a stochastic short rate may not be
Jjustified for valuing debt options in practice. The main contribution of the model
presented here is to adapt the highly practical features of the Black-Scholes
model to the complexities introduced by the changing nature of the variahility of
bond returns.

Making the standard market assumptions of the continuous-time framework
and assuming bond price dynamics described by {4), we can write the value at
time ¢ of an option on a bond with price P as V(P, t). Using the familiar Black-
Scholes hedging argument, it is easy to show that the value of the option must.
conform to the following partial-differential equation:

WP*¢*(P, t)Vpp + (rP — c)Vp + V, — rV = Q, (10)

where ¢ is the rate of the continuously paid coupon on the bond,? r is the short-
term interest rate, and (P, t} is given by (5). If T is the maturity of the option,
then the terminal boundary condition for a call is

V(P, T) = max|[0, P — E], {11)
where E is the exercise price of the option. Similarly, the terminal boundary
condition for a put is

V(P, T} = max[0, E — P]. (12)
For American options, the following boundary conditions must also hold for any
time £ = T

V(P, t) = max[0, P — E| for a call and (13)
VP, t} = max[0, E — P] for a put. (14)
The partial-differential equation (10}, subject to the boundary conditions for
either a put or a call, has no analytical solution. However, numerical solutions

are easily obtained using, for example, finite-difference methods. In the following
section, we provide some solutions to (10) for call options.

IV. Application and Examples

In this section, we discuss some aspects of the application of the model and also
provide some examples of bond-option prices.

Apart from the variance function, the remaining parameters in our model are
identical to those in the Black-Scholes model and are easily observable (the

# For simplicity, we assume continuous coupons; discrete coupons could be easily accommodated.
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current bond price, exercise price of the option, time to maturity of the option,
and the short-term interest rate). The problem of estimating the parameters k
and « in the function for standard deviation given by (5} is precisely the same as
that of estimating the corresponding parameters in the Cox [8] constant-elastic-
ity-of-variance model. Section II described one possible approach to this problem,
and several others have been suggested in the literature. (See, e.g., Beckers [2]
and MacBeth and Merville [13]). The best method to use in the context of bond
returns is a subject for further research. In our examples, we assume a value of
0.5 for « and use equation (5) to derive k& from a given value of the instantaneous
standard deviation of returns, ¢(P, t):

k= a(P, )/PTY2D(P, ). (18)

Table I contains values for American call options on bonds with maturities of
two, five, ten, and twenty years. The exercise price in each case is $100, and
values are given for underlying bond prices of $95, $100, and $105 and for options
with initial maturities of three months, six months, one year and three years. All
these values have been computed using a short-term interest rate of ten percent
and an instantaneous standard deviation of return of ten percent.'® The under-
lying bond in each case has a face value of $100 and a coupon rate of ten percent,

It is interesting to compare our results with those derived from the Black-
Scholes model. There are, of course, a number of different ways in which the
Black-Scholes model could be applied to the problem of valuing hond options,
and, in Table I, we provide two alternatives, For each alternative, we have made
an adjustment to the variance used in the Black-Scholes model so as to reflect
the known fact that the variance of the rate of return on the bond decreases with
time to maturity. We assume that the variance declines linearly with time from
its current level (0.10 p.a. in the example) to zero at maturity. The first cage,
BS1, assumes a constant {continuous) coupon and accommodates the American
option characteristics. Note that, for the parameters of the example, Merton's
{14, p. 156, equation (13)] sufficient condition for no premature exercise halds.
The second case, BS2, then treats the option as European and assumes a constant
proportional coupon to enable us to compute a closed-form solution.

A primary purpose of our model is to capture the attenuation of a bond’s
standard deviation of return as it approaches maturity. This effect is most clearly
seen in those cases where the maturity of the option is a significant fraction of
the maturity of the underlying bond. For example, in Panel C of Table I, the
value of an at-the-money one-year call on a two-vear bond is $2.99, whereas the
value of a similar option on a twenty-year bond is some twenty-five percent
higher at $3.75. Notice also that the differences in option values become less as
the maturity of the underlying bond increases. This is hecause duration, and
therefore the variability of returns, decreases more quickly for shorter maturities.

In comparing our values with those from the various versions of Black-Scholes
described above, several points emerge, First, the BS1 values for three- and six-

!9 Notice that it is neither realistic nor consistent with our model for the instantaneous standard
deviation of return to he the same for bonds of all maturities. We use the same value of & in each
case simply to facilitate comparison between the option values we obtain and the correspanding
Black-Schales values.
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Table I
Values for Call Options®
Panel A: Values for Three-Month Call Options

Bond Price ()
5 100 105
Bond ¥ 0
Maturity Duration Duration Duration
(Years} Model BS1 BS2 Model BS1 BS32 Model BS1 BS2
2 0.31 0.34 0.32 1.85 1.39 1.48 5.38 539 533
5 0.34 0.36 0.34 1.92 192 192 5.42 5,41 5.40
10 0.36 0.37 0.35 1.94 1.94 1.93 5.43 5.42 H4l
20 .37 037 035 1.95 1.94 1.94 5.43 543 541
Panel B: Values for S8ix-Month Call Options
Bond Price ($)
a5 100 105
Bond
Maturity Duration Duration Dwuration
{Years) Model BS1 B32 Model BS1 BS2 Moadel BS1 BS2
2 (.66 0.76 072 245 286 2.51 5.79 585 581
5 .80 0.84 0.79 2.64 2.87 262 5.93 594 584
10 (.85 0.86 (.82 2,70 2.70 2.65 5.97 596 591
20 0.88 .87 0.83 2.73 2732 2.67 598 598 593
Panel C: Values for One-Year Call Options
Bond Price {§)
95 100} 105
Bond
Maturity Duration Duration Duration
{Years)} Model BSL BS2 Model BS1 BS2 Model BS1 BS2
2 1.05 1.30 118 2.9% 3.28 3.13 6.22 6.44 6.30
5 1.46 1.56 1.42 3.51 3.69 3.42 6.66 6.71 6.55
10 1.61 1.64 1.49 3.68 3.69 3.52 6.83 6.80 6.63
20 1.70 1.67 1.53 3.15 3.74 3.56 6.85 6.84 6.68
Pane| D: Values for Three-Year Call Options
Bond Price ($)
a5 100 105
Bond
Maturity Duration Duration Duration
{Years) Model BS1 BS2 Model BS1 BS2 Model BS1 BS2
5 248 277 217 4.71 501 4.28 777 8.02 7.24
10 3.18 3.29 255 5.47 551 4.71 8.48 851 .65
20 3.53 344 273 5.83 575 492 8.79 8.73 17.85

* Parameter values used: exercise price = §$100, short-term interest rate = ten
percent p.a., instantaneous standard deviation of bond return = ten percent p.a., «
= (1.5, coupon rate on bonds = ten percent, and face value of bond = $100.

month call options on honds with ten and twenty years to maturity are always
within a penny from our values. It seems that the variance-adjusted Black-
Scholes method for valuing short-term options on long-term honds is a very good
approximation to our duration procedure. Second, the BS1 procedure overvalues
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all options on short-term bonds and undervalues long-term options on long-term
bonds, relative to our method. The BS2 results are rather mixed. For options on
long-maturity bonds, our values tend to be larger than the corresponding BS2
values; for options on shorter maturity bonds, the reverse is true. Clearly, there
can be several possible explanations for these results, including differences in
treatment of the American feature and of the coupon. However, the results may
also reflect the different rates of variance attenuation implicit in the two models.
All this serves to illustrate the difficulties in devising simple modifications to
Black-Scholes that produce results similar to our model.

The drawbacks of applying Black-Scholes to valuing debt options are well
understood, and it is more interesting to compare our model with those that take
into account the changing nature of bond returns. The most sophisticated of
these is the Brennan and Schwartz model, and, in Brennan and Schwartz [6],
values are provided that allow such a comparison.

In Table II, we compare our results with those provided by Brennan and
Schwartz and also examine the sensitivity of our results to different values of a.
Panel A reports values for call options, with initial maturities of six months, one
year, and two years, on a twenty-year bond for values of the hond price between
%90 and $110. Panel B gives the corresponding values when the underlying hond
has initially five years to maturity.

One input to the Brennan and Schwartz model is the standard deviation of
returns on a consol bond. To compare our results with theirs, we use their value
of 10.32 percent p.a. to estimate the value of k in equation (5). For a consol hond,
we have, from equation (9),

__gl(consal) X coupon
price{consal)®

(16)

The other parameters are unchanged from our earlier examples.

The first three rows in both panels of Table II report our option values for o
of zero, 0.5, and unity. In neither case is there any change in the value of the at-
the-money options. The values for in-the-money and out-of-the-money options
are influenced by a, but the differences are generally not substantial. For options
on the five-year bond, the maximum difference between values for different a’s
is two cents. For options on the twenty-year bond, the differences are larger, and
the maximum difference of fifteen cents occurs for the deep-out-of-the-money
two-year option. These results are consistent with those for the Cox [8] constant-
elasticity-of-variance model reported in Cox and Rubinstein [9, p. 364, Table
7.1]. It is reassuring that the value of &, which is inherently difficult to estimate,
does not appear to be critical for aption valuation.

The fourth row in hoth panels gives the Brennan and Schwartz values. For at-
the-money options on a twenty-year bond (Panel A), our values are very close to
those of Brennan and Schwartz. For both in-the-money and out-of-the-money
options, our values are always somewhat lower than theirs and, in the case of a
six-month deep-out-of-the-money option on a twenty-year bond, substantially
so. This is somewhat surprising as the differences actually decrease for longer
maturity options.
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For aptions on five-year bonds (Panel B), we observe that at-the-money values
are similar for six-month and one-year options but that our method gives
substantially lower values for two-year options. As in Panel A, we find that the
values for away-from-the-month options are lower in the case of our model, but,
contrary to Panel A, these differences now increase with option maturity.

In comparing our values for options on five-year bonds with those of Brennan
and Schwartz, it should be pointed out that, in the case of our method, we have
imputed the standard deviation of returns on the five-year bond from the consol
standard deviation. This step, which undoubtedly introduces error into our values,
would, of course, be unnecessary in practice as the standard deviation of returns
wotld be estimated directly from the returns on the five-year bond.

Finally, and for completeness, the last row in hoth panels of Table II gives the
values obtained using the Black-Scholes model. Following Brennan and Schwartz,
we use the consol standard deviation in all Black-Scholes calculations, and this
results in identical values in both panels."! Not surprisingly, this method grossly
overvalues options on the shorter bond relative to the other methods since it
implicitly assumes that the standard deviation of return on five-year honds equals
that of a consol.

Options models are used, not only for valuation but also for hedging. The key
statistic here is the “hedge ratio,” defined by

HR = 3V/4P, (17)

which gives the number of units of the underlying asset that must be sold short
(purchased) in order to hedge one call (put). Table III gives the hedge ratios
corresponding to the call option values given in Table 1. It is interesting to note
that the differences between the hedge ratios for our model and those for Black-
Scholes are much smaller than the differences in option values. This is most
marked in the case of at-the-money options where the greatest difference is only
0.01. The largest difference occurs in Panel C of Table III for an out-of-the-
money one-year call an a twa-year band, where the difference is 0.03.

V. Conclusions

In this paper, we have developed a new approach to valuing debt options. The
key feature of the madel is that it incorporates in a simple yet realistic manner
the well-documented fact that the variance of returns on a bond tends to decline
as it approaches maturity. The inputs to the model are fairly readily obtained,
and the computational complexity is of the same order of magnitude as that for
the Black-Scholes model applied to American options.

The option values that are presented in the paper indicate that there can be
substantial differences between the values produced by our model and those
produced by Black-Scholes, in particular when the maturity of the aption is a
significant fraction of the maturity of the underlying bond. These differences,
however, are trivial for short-term options on long-term bonds, Comparison with

' It should be noted that there seems to be an error in the Black-Scholes values reported in
Brennan and Schwartz [6].
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Table 111
Hedge Ratios for American Call Options®
Panel A: Hedge Ratios for Three-Month American Call

Options
Band Price ($}
105
Bond 95 100

Maturity Duration Duration Duration
(Years) Model BS1I Model BS1  Model BSI
2 0.13 0.14 0.51 0.51 0.86 0.86
5 0.14 0.15 0.51 0.51 0.85 0.85
10 {.15 0.15 0.51 0.51 0.85 0.85
20 0.15 0.15 0.51 0.51 0.85 0.85
Panel B: Hedge Ratios for Six-Month American Call Options

Bond Price {§)
9 100 105
Bond 5

Maturity Duration Duration Duration
{Years) Model BS1 Model BS1 Model BS1
2 0.20 0.22 .51 0.51 0.79 0.7%
5 0.22 0.23 0.51 0.51 0.78 .78
10 0,23 0.23 Q.51 0.51 .77 0.77
20 0.24 0.24 0.52 0.51 0.78 0.78

Panel C: Hedge Ratios for One-Year American Call Options
Bond Price ($)

9 o0 105
Band 5 .
Maturity Duration Duration Duration
{Years) Model BS31 Model BS1  Model BS1
2 0.25 0.28 0.51 0.52 0.75 .74
5 0.29 .30 .61 0.52 0.72 0.72
10 .30 0.31 0.52 0.52 0.71L 0.72
20 0.31 031 0.52 0.52 0.72 0.72
FPanel D: Hedge Ratios for Three-Year American Call Options
Bond Price (§)
1 105
Rond 95 00
Maturity Duration Duration Duration
{Years) Model BS1 Madel BS1 Model BS1
5 0.35 0.37 0.52 0.63 .67 0.68
10 .38 0.38 0.52 0.53 0.66 0.67
20 0.40 0.39 0.53 0.53 0.66 0.66

* Parameter values used: exercise price = $100, short-term inter-
est rate = ten percent p.a., instantanecus standard deviation of
bond return = ten percent p.a., « = 0.5, coupon rate on bonds = ten
percent, and face value of bond = $100.
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the Brennan and Schwartz model shows that cur method produces broadly
similar results. Moreover, the differences in practical application may be smaller
than those reported here since now the variahility of the underlying bond would
be estimated directly rather than being imputed from consol variance.

In deriving our model, we have made a number of simplifying assumptions
including a constant short-term rate of interest. The only way to estahlish
whether this and the other assumptions we have made are reasonable is through
empirical tests of their ability to price debt options and, in particular, by
comparing the performance of our model with those of the alternatives.

Finally, the approach we have developed here can also be applied to the
valuation of options on bhond futures.
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