Market Liquidity
And Trading Activity

Tarun Chordia
Richard Roll
Avanidhar Subrahmanyam

July 24, 2000

<table>
<thead>
<tr>
<th></th>
<th>Chordia</th>
<th>Roll</th>
<th>Subrahmanyam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voice</td>
<td>1-615-322-3644</td>
<td>1-310-825-6118</td>
<td>1-310-825-5355</td>
</tr>
<tr>
<td>Fax</td>
<td>1-615-343-7177</td>
<td>1-310-206-8404</td>
<td>1-310-206-5455</td>
</tr>
<tr>
<td>E-mail</td>
<td>tarun.chordia@owen.vanderbilt.edu</td>
<td>Rroll@anderson.ucla.edu</td>
<td>asubrahm@anderson.ucla.edu</td>
</tr>
</tbody>
</table>
| Address | Owen School of Management
Vanderbilt University
Nashville, TN 37203 | Anderson School
UCLA
Los Angeles, CA 90095-1481 | Anderson School
UCLA
Los Angeles, CA 90095-1481 |

Acknowledgement

We are grateful to an anonymous referee and to René Stulz (the editor) for insightful and constructive criticism. We also thank David Aboody, Michael Brennan, Larry Harris, Ananth Madhavan, Kevin Murphy, Narayan Naik, K.R. Subramanyam, a second anonymous referee, and seminar participants at the University of Southern California, INSEAD, Southern Methodist University, and the London Business School for useful comments and suggestions, Ashley Wang for excellent research assistance, and Barry Dombro for help with the transactions data.
Market Liquidity and Trading Activity

Abstract

Spreads, depths, and trading activity for U.S. equities are studied over an extended time sample. Daily changes in market averages of liquidity and trading activity are highly volatile, negatively serially dependent, and influenced by a variety of factors. Liquidity plummets significantly in down markets but increases weakly in up markets. Trading activity increases in either up or down markets. Recent market volatility induces less trading activity and reduces spreads. There are strong day-of-the-week effects; Fridays are relatively sluggish and illiquid while Tuesdays are the opposite. Long- and short-term interest rates influence liquidity and trading activity. Depth and trading activity increase just prior to major macroeconomic announcements.
Introduction

Liquidity and trading activity are important features of financial markets, yet little is known about their evolution over time or about their time-series determinants. Their fundamental importance is exemplified by the influence of trading costs on required returns (Amihud and Mendelson, 1986, Jacoby, Fowler, and Gottesman, 2000) which implies a direct link between liquidity and corporate costs of capital. More generally, exchange organization, regulation, and investment management could all be improved by knowledge of factors that influence liquidity and trading activity. A better understanding of these determinants might increase investor confidence in financial markets and thereby enhance the efficacy of corporate resource allocation.

Notwithstanding the importance of research about liquidity, existing studies of trading costs have all been performed over short time-spans of a year or less. This is probably due to the tedious task of handling voluminous intraday data and, until recently, the paucity of intraday data going back more than a few years. As a result, there are many interesting questions about liquidity and trading activity that have yet to be satisfactorily answered. For example:

- How much do liquidity and trading activity vary over time?

- Are there regularities in the time-series of daily liquidity and trading activity? For example, are these variables systematically lower or higher during certain days of the week or around scheduled macroeconomic announcements?

- How does recent market performance influence the ease of trading on a given day?

- What causes daily movements in liquidity and trading activity? Are they induced, for example, by changes in interest rates or in volatility?

Aside from their scientific merit, these questions are of direct importance to investors developing
trading strategies and to exchange officials attempting to identify conditions likely to disturb trading activity. In addition, given the relation between liquidity and asset returns, answering the above questions could shed light on the time-series behavior of equity market returns. Satisfactory answers most likely depend on a sample period long enough to subsume a variety of events for only then could one be reasonably confident of the results.

We construct time series of market-wide liquidity measures and market-wide trading activity over the eleven-year period 1988-1998 inclusive, almost 2,800 trading days. The data are averaged\(^1\) over a comprehensive sample of NYSE stocks on each trading day. Measures of liquidity are quoted and effective spreads plus market depth while the trading activity measures are volume and the number of daily transactions.

The studies of Chordia, Roll, and Subrahmanyam (2000), Huberman and Halka (1999), and Hasbrouck and Seppi (1999) document commonality in the time-series movements of liquidity attributes. However, these authors do not analyze the behavior of aggregate market liquidity over time. They also have a relatively short data sample, ranging from two months to one year. These studies do, however, suggest a line of future research; namely, to identify factors causing the observed commonality in liquidity.

In choosing explanatory variables for liquidity and trading activity, we are guided by prior paradigms of price formation and by intuitive \textit{a priori} reasoning. The inventory paradigm of Demsetz (1968), Stoll (1978), and Ho and Stoll (1981) suggests that liquidity depends on the costs of financing dealer inventories, on factors that influence the risk of holding inventory, and on extreme events that provoke order imbalances and thereby cause inventory overload. Thus, our first set of candidates for explanatory factors consists of short- and long-term interest rates, default spreads, market volatility, and contemporaneous market moves. The informed speculation paradigm (Kyle, 1985, and Admati and Pfleiderer, 1988) suggests that market-wide changes in liquidity could closely precede informational events such as scheduled Federal announcements about the state of the economy. Further, trading activity could vary in a weekly

\(^1\) For the most part, we study equal-weighted cross-sectional averages. However, for completeness and as a check on robustness, we also provide results obtained with value-weighted averages.
cycle, for example, because of systematic variations in the opportunity cost of trading over the week; it could vary also around holidays. We thus include indicator variables to represent days around major macroeconomic announcements, days-of-the-week, and major holidays.

Many authors, starting with Banz (1981), Reinganum (1983), Gibbons and Hess (1983), have documented regularities in asset returns on a monthly or daily basis, but have not considered the time-series behavior of liquidity. In work that is more directly related to ours, Draper and Paudyal (1997) carry out an analysis of seasonality in liquidity on the London Stock Exchange, but are able to obtain only monthly data for 345 firms. Ding (1999) analyzes time-series variations of the spread in the foreign exchange futures market, but his data span less than a year. Jones, Kaul, and Lipson (1994) study stock returns, volume, and transactions over a six-year period but do not attempt to explain why trading activity varies over time. Pettengill and Jordan (1988) analyze seasonalities in volume, and Lo and Wang (1999) analyze commonality in share turnover, with data spanning more than twenty years, but they do not analyze the behavior of market liquidity. Finally, Hiemstra and Jones (1994) and Karpoff (1987) analyze the relation between stock returns and volume over several years, but again do not consider market liquidity.

Foster and Viswanathan (1993) examine patterns in stock market trading volume, trading costs, and return volatility using intraday data from a single year, 1988. For actively traded firms, they find that trading volume is low and adverse selection costs are high on Mondays. Lakonishok and Maberly (1990) use more than thirty years of data on odd-lot sales/purchases to show that the propensity of individuals to sell is particularly high on Mondays. Harris (1986, 1989) documents various patterns in intraday and daily returns using transactions data over a period of three years. However, he does not have data on spreads, depths or trading activity and so is unable to directly analyze the behavior of liquidity. Thus, to our knowledge, an analysis of the time-series behavior of liquidity over a long time-span and its relations, if any, with macroeconomic variables, has not yet been explored.

The remainder of this paper is organized as follows. Section I describes the data. Section II documents the time-series properties of our liquidity variables. Section III provides the results of the time-series regressions, and Section IV concludes.
I. Data

Data sources are the Institute for the Study of Securities Markets (ISSM) and the New York Stock Exchange TAQ (trades and automated quotations). The ISSM data cover 1988-1992 inclusive while the TAQ data are for 1993-1998. We use only NYSE stocks to avoid any possibility of the results being influenced by differences in trading protocols.

Stocks are included or excluded during a calendar year depending on the following criteria:

1. To be included, a stock had to be present at the beginning and at the end of the year in both the CRSP and the intraday databases.

2. If the firm changed exchanges from NASDAQ to NYSE during the year (no firms switched from the NYSE to the NASDAQ during our sample period), it was dropped from the sample for that year.

3. Because their trading characteristics might differ from ordinary equities, assets in the following categories were also expunged: certificates, ADRs, shares of beneficial interest, units, companies incorporated outside the U.S., Americus Trust components, closed-end funds, preferred stocks and REITs.

4. To avoid the influence of unduly high-priced stocks, if the price at any month-end during the year was greater than $999, the stock was deleted from the sample for the year.

Next, intraday data were purged for one of the following reasons: trades out of sequence, trades recorded before the open or after the closing time,\(^2\) and trades with special settlement conditions (because they might be subject to distinct liquidity considerations).\(^3\)

Our preliminary investigation revealed that autoquotes (passive quotes by secondary market

\(^2\) The last daily trade was assumed to occur no later than 4:05 p.m. Transactions are commonly reported up to five minutes after the official close, 4:00 p.m.

\(^3\) These settlement conditions typically exclude dividend capture trades. While this caveat should be noted, this exclusion should not have any material impact on our results.
dealers) were eliminated in the ISSM database but not in TAQ. This caused the quoted spread to be artificially inflated in TAQ (see Appendix B for a description of the magnitude by which the quote is inflated). Since there is no reliable way to filter out autoquotes in TAQ, only BBO (best bid or offer)-eligible primary market (NYSE) quotes are used. Quotes established before the opening of the market or after the close were discarded. Negative bid-ask spread quotations, transaction prices, and quoted depths were discarded. Following Lee and Ready (1991), any quote less than five seconds prior to the trade is ignored and the first one at least five seconds prior to the trade is retained.

For each stock we define the following variables:

QuotedSpread: the quoted bid-ask spread associated with the transaction.

%QuotedSpread: the quoted bid-ask spread divided by the mid-point of the quote (in %.)

EffectiveSpread: the effective spread, i.e., the difference between the execution price and the mid-point of the prevailing bid-ask quote.

%EffectiveSpread: the effective spread divided by the mid-point of the prevailing bid-ask quote (in %.)

Depth: the average of the quoted bid and ask depths.

$Depth: the average of the ask depth times ask price and bid depth times bid price.

CompositeLiq = %QuotedSpread/$Depth: spread and depth combined in a single measure. *CompositeLiq* is intended to measure the average slope of the liquidity function in percent per dollar traded.

In addition to the above averages, we calculate the following measures of trading activity on a daily basis:

Volume: the total share volume during the day
Volume: the total dollar volume (number of shares multiplied by the transaction price) during the day

NumTrades: the total number of transactions during the day

Our initial scanning of the intraday data revealed a number of anomalous records that appeared to be keypunching errors. We thus applied filters to the transaction data by deleting records that satisfied the following conditions:

1. QuotedSpread > $5
2. EffectiveSpread/QuotedSpread > 4.0
3. %EffectiveSpread/%QuotedSpread > 4.0
4. QuotedSpread/Transaction Price > 0.4

These filters removed less than 0.02% of all transaction records. From this point, our investigation focuses on daily cross-sectional averages of the liquidity and trading activity variables after employing the above screening procedure; (for convenience, the same variable names are retained). Trading activity averages are calculated using all stocks present in the sample throughout the year as a divisor; e.g., stocks that did not trade are assigned a value of zero for trading volume, which is in fact their actual volume on a day they did not trade.

The same method cannot be employed for spread or depth averages because a non-trading stock does not really have a spread or depth of zero. One possibility is to calculate averages using only stocks trading on each day. However, infrequently-trading stocks probably have higher than average spreads (and lower depths), so daily changes in liquidity measures could be unduly influenced by such stocks moving in and out of the sample. An alternative is to use the last-recorded value for a non-trading stock, but of course the averages would then contain some stale data. We have done all the calculations both ways but report the results only with the latter method, filling in missing data from the past ten trading days only in order to limit the extent of

4 There are approximately 3.5 billion transaction records.
staleness. Both methods yield virtually identical results; some robustness details will be provided in Sections II.A and III.D.

II. Empirical Attributes
of Market-Wide Liquidity and Aggregate Trading Activity

A. Levels of Liquidity and Trading Activity

Table 1 provides summary statistics of the basic market liquidity and trading activity measures.

Insert Table 1 here.

All variables display substantial intertemporal variation, but trading activity shows more variability than spreads as indicated by higher coefficients of variation. This might be attributable to the discrete nature of bid-ask spreads, which could serve to attenuate volatility through clustering. As can be seen, the effective spread is considerably smaller than the quoted spread, evidently reflecting within-quote trading. None of the variables exhibit any significant skewness; means are quite close to the medians. Figures 1 through 5 plot the liquidity and trading activity levels over the entire sample period. Dollar depth and dollar trading volumes are plotted in real terms after scaling by the Consumer Price Index (all items) interpolated daily\(^5\).

The effective spread and the proportional effective spread appear to have steadily declined in the latter half of our sample. This decline is consistent with a concomitant increase in trading activity shown in the figures for trading volume (Figure 4).

Depth and spread show an abrupt decline around June 1997, (Figures 1 and 3), which coincides with a reduction of the minimum tick size from 1/8 to 1/16 on the New York Stock Exchange. Average dollars per trade increase from 1991 through 1996 with the level of stock prices (not plotted) and the number of transactions (Figure 5) but the trend reversed over the last two years,

\(^5\) If \(g = \text{CPI}_T/\text{CPI}_{T-1}\) was the reported monthly inflation rate for calendar month \(T\) which consisted of \(N\) days, the interpolated CPI value for the \(i^{th}\) calendar day of the month was \(\text{CPI}_T(1+g)^{iN} \).
1997-98, perhaps reflecting the increased volume of internet trades and their smaller per trade size.

There appear to be sudden one-day changes in number of firms trading (Figure 6), especially in the period covered by ISSM. Many such changes occur around the turn of the year, which is to be expected, since we reformulate the sample at the beginning of each year. But there are anomalous changes also on other dates. An extreme example occurs on Monday, September 16, 1991, when only 248 firms are recorded as having traded in the ISSM database even though 1,219 were present on the preceding Friday and 1,214 on the immediately following Tuesday. We believe that some of these cases are just data recording errors, though others could arise because of unusually sluggish trading, for example, on days preceding or following major holidays.

Figure 6 also plots the number of stocks per day after filling in missing spreads and depths from previous values (up to a maximum of ten past trading days.) As Figure 6 shows, this number is almost constant within each calendar year which implies that going back even further to fill in missing data would add virtually no additional stocks to each day’s average. Filling in missing data mitigates concerns about the results being influenced by fluctuations in the number of traded stocks. 6 Moreover, despite sizable variation in the number of stocks actually trading, the correlation is more than 0.98 between quoted spreads averaged over trading stocks and averaged over trading and back-filled non-trading stocks. This explains why the results are not very sensitive to the specific method used to construct the liquidity index. In Section III.D, we present a robustness check of this procedure.

B. Daily Changes in Liquidity and Trading Activity

Table 2 presents summary statistics associated with the absolute values of daily percentage changes in all variables. (Since the sample is reformulated at the beginning of each calendar year, the first day of the year is omitted.)

6 After filling in missing observations with data no more than ten days old, the average absolute change in the sample size is 0.13 firms per day. In contrast, the average absolute change in the number of trading firms is 7.0 per day.
As suggested by coefficients of variation in Table 1, there is much more volatility in volume and in transactions than in other variables. The average absolute daily change in volume, dollar volume, and the number of transactions ranges from 10% to 15%, but the average daily change in the spread variables is on the order of only 2%. The average absolute daily change in share and dollar depth is about 4-5%. The average absolute daily change in prices is only 0.56%. Most of us are accustomed to thinking of stock prices as highly volatile, yet they are sluggish compared to liquidity measures and to indicators of trading activity.

Table 3 reports pair-wise correlations among changes in the liquidity and trading activity variables.

A priori, from reasoning at the individual stock level, one might have anticipated a positive relation between volume and liquidity and thus a negative (positive) relation between volume and spreads (depth.) But while correlations between changes in the market-wide quoted and proportional quoted spread and share or dollar volume are negative, they are quite low, and the effective spread measures are actually positively correlated with either measure of volume. Further, the correlations between various spread changes and the number of transactions are also positive. In contrast, depth and dollar depths display a strong correlation with volume, positive as anticipated.\(^7\)

Not surprisingly, spread changes are negatively correlated with depth changes. Correlations between transactions and either share or dollar volume are greater than 0.80.

\(^7\) The correlation between (changes in) the quoted spread and the relative quoted spread is only about 0.75, which might appear surprisingly low. But the relative quoted spread is calculated by averaging the stock-by-stock ratios of
C. Time Series Properties of Market Liquidity and Trading Activity

Table 4 records autocorrelations for percentage changes in each series out to a lag of five trading days (one week not accounting for holidays).

Insert Table 4 here.

Every series except price exhibits statistically significant negative first-order autocorrelation. There is even evidence of negative second-order autocorrelation, albeit weaker. Negative autocorrelation might be expected since most of these series are likely to be stationary; for example, bid-ask spreads probably will not wander off to plus or minus infinity. Notice too that the fifth-order coefficients are uniformly positive and about half of them are significant. This reveals the presence of a weekly seasonal.

Negative first-order serial dependence in spreads could arise also from discreteness. Imagine, for instance, that most stocks have quoted spreads of either one eighth or one quarter, that some stocks oscillate between these discrete points daily, and that they tend to oscillate as a correlated group. This would produce negative first-order autocorrelation in the percentage change of the average spread. Table 4 does show that the four spread measures have the absolutely larger negative first-order autocorrelation coefficients than other variables.

Data recording errors are another possible source of negative serial correlation. However, we do not believe this is the main cause for two reasons: First, errors would just as likely appear in the average recorded price series, but its first-order coefficient is positive and insignificant. Second, we found that the negative serial correlation is just as strong for the quintile of largest firms and it is seems unlikely that actively traded large firms would be as influenced by data recording errors. Consequently, the evidence suggests that negative serial correlation is an inherent property of the true time-series process followed by liquidity.

Quoted spread to price and there is substantial cross-sectional variation in prices. The correlation between the average quoted spread and the ratio of average quoted spread to average price is much higher; about 0.95.

Formal unit root tests (not reported) strongly imply that daily changes of all variables are stationary.

Market Liquidity and Trading Activity,
July 24, 2000
III. Determinants of Liquidity and Trading Activity

This section reports time-series regressions of liquidity and trading activity measures on various potential determinants. First, some justification is provided for the explanatory variables.

A. Explanatory Variables

The inventory paradigm introduced by Demsetz (1968) and developed further by Stoll (1978) and Ho and Stoll (1981) suggests that liquidity depends on dealer financing costs, inventory turnover rates, and inventory risks. By reducing the cost of margin trading and decreasing the cost of financing inventory, a decrease in short rates could stimulate trading activity and increase market liquidity. An increase in longer-term Treasury bond yields could cause investors to reallocate wealth between equity and debt instruments and thus stimulate trading activity and affect liquidity. An increase in default spreads could increase the perceived risk of holding inventory and thereby decrease liquidity. Consequently, as plausible candidates for determinants of liquidity, we nominate the daily overnight Federal Funds rate\(^9\) a term structure variable, and a measure of default spread.

Equity market performance is another plausible causative candidate. Recent stock price moves could trigger changes in investor expectations while also prompting changes in optimal portfolio compositions. In addition, the direction of stock market movements could trigger asymmetric effects on liquidity. For example, sharp price declines could induce relatively more pronounced changes in liquidity to the extent that market makers find it more difficult to adjust inventory in falling markets than in rising markets. We thus consider the signed concurrent daily return on the Center for Research in Security Prices (CRSP) index.

Additionally, we include a measure of recent market history. The rationale is based on the notion that momentum or contrarian strategies\(^10\) and various techniques for “technical analysis”

\(^9\) We repeated all calculations using the one-year Treasury Bill rate as a proxy for dealer financing costs but found that the Federal Funds rate is a better determinant of daily liquidity variations. The results are otherwise essentially identical.

involve past market moves thereby creating a link between trading activity and recent price trends. To proxy for such activity, we include a signed five-day moving average of past returns (ending the day prior to the observation date).

Because volatility should influence liquidity and trading activity through its effect on inventory risk as well as the risk of engaging in short-term speculative activity, we include a measure of recent market volatility. Our proxy is a five-day trailing average of daily absolute returns for the CRSP market index.

Trading activity might also be influenced the opportunity cost of devoting time to trading decisions. Simple behavioral arguments (such as fluctuations in investor mood or sentiment over the week) suggest that trading activity could show systematic seasonal patterns. Work by Admati and Pfleiderer (1989) or Foster and Viswanathan (1990) implies that liquidity could exhibit predictable patterns through time.11 To investigate such regularities, we include indicator variables for days of the week as well as for days preceding and following holiday closures.

Information-based trading (based on the asymmetric information paradigms of Kyle, 1985, and Admati and Pfleiderer, 1988) suggests another group of proximate determinants. As firm-specific information is more likely to induce information-based trades, sensible proxies would be dummies for earnings announcement dates. These dates, however, are not well coordinated across companies. Further, conversations with accounting researchers revealed that information about earnings is often conveyed to the market sometime before the official earnings announcement date. Thus, estimates of earnings with significant information content are often pre-released by managers (see, for example, Ruland, Tung, and George, 1990, and Baginski, Hassell, and Waymire, 1994); such pre-release dates are completely discretionary.

Because of these concerns, we decided to focus on information associated with macro-economic announcements. We include dummy variables for macroeconomic announcements about GDP, the unemployment rate, and the Consumer Price Index. Separate dummies are provided for the day of the announcement and for the two days preceding the announcement.

11 These papers do not explicitly specify which days of the week should involve high/low liquidity.
B. Explanatory Variable Definitions

The explanatory variables are:

ShortRate: the daily first difference in the Federal Funds Rate

TermSpread: the daily change in the difference between the yield on a constant maturity 10-year Treasury bond and the Federal Funds rate

QualitySpread: the daily change in the difference between the yield on Moody’s Baa or better corporate bond yield index and the yield on a 10-year constant maturity Treasury bond\(^{12}\)

\(MKT^+\): the concurrent CRSP daily index return if it is positive and zero otherwise\(^{13}\)

\(MKT^-\): the concurrent CRSP daily index return if it is negative and zero otherwise

(Table A-1 in the Appendix reports summary statistics for the debt and equity market variables above.)

\(MA5MKT^+\): the past five trading-day CRSP daily index return if it is positive and zero otherwise

\(MA5MKT^-\): the past five trading-day CRSP daily index return if it is negative and zero otherwise

\(MA5MKT\): the past five trading-day average of CRSP daily absolute index returns

HOLIDAY: 1.0 if a trading day satisfies the following conditions: (1) if Independence Day,

\(^{12}\)All interest rates are from the Federal Reserve website, http://www.bog.frb.fed.us/releases/H15/data.htm. We thank Yacine Alt-Sahalia for directing us to this site. The Federal Reserve uses the daily yield curve to calculate the yield on a constant maturity Treasury bond on a daily basis.

\(^{13}\)The equal-weighted (value-weighted) CRSP index is used for regressions with equal-weighted (value-weighted) liquidity and trading activity dependent variables.
Christmas, or New Year's Day falls on a Friday then the preceding Thursday, (2) if any holiday falls on a weekend or on a Monday then the following Tuesday, (3) if any holiday falls on another weekday then the preceding and following days\(^{14}\) and zero otherwise.

Monday-Thursday: 1.0 if the trading day is, respectively, a Monday, Tuesday, Wednesday, or Thursday and zero otherwise.

GDP(0): 1.0 on the day of a GDP announcement and zero otherwise.

GDP(1-2): 1.0 on the two trading days prior to a GDP announcement and zero otherwise.

UNP(0), UNP(1-2), CPI(0), CPI(1-2): Defined as for GDP but for unemployment and CPI announcements, respectively.

C. Regression Results

Time series regression results are reported in Table 5 for the scaled spread measures \(\Delta%QuotedSpread\) and \(\Delta%EffectiveSpread\), for \(\Delta CompositeLiq\), for the dollar values of depth, \(\Delta$Depth\), and volume, \(\Delta$Volume\), and for the number of transactions, \(\Delta NumTrades\). (The "\(\Delta\)" prefix denotes the daily percentage change in the corresponding variables described earlier.) To conserve space, results for the non-scaled spreads, \(QuotedSpread\) and \(EffectiveSpread\), and for share depth and volume, are not reported. They are qualitatively similar and will be provided upon request.

There are 19 explanatory variables. Table A-2 of the appendix reports their correlations.

Since OLS runs indicated a high Durbin-Watson test statistic in all regressions, a consequence of the previously-noted negative dependence in all of the dependent variables, we applied the Cochrane/Orcutt iterative correction procedure (first-order only) in the time-series regressions.\(^{15}\) The Durbin-Watson statistics from the final iteration of the Cochrane/Orcutt regressions were within the significance bounds. The results are presented in Table 5.

\(^{14}\)This is always the case for Thanksgiving.
The sample size was 2694 in the Panel A and B regressions. We started with 2779 trading days, eliminated the first day of the calendar year for 1989-98 (10 observations) and had to eliminate five days at the beginning to accommodate the lagging five-day market trend. In addition, bond market data were unavailable for 35 holidays when the stock market was open (King’s birthday, Columbus Day, and Veteran’s Day, though not every year). This brought a further reduction of 70 (35 X 2) because the interest rate variables were first differenced. The total reduction was 85. Panel C has a different sample size and is explained below.

The adjusted R^2s in Panels A and B range from 18% to 33%; i.e., the explanatory variables capture an appreciable fraction of the daily time-series variation in market-wide liquidity and trading activity.

The day-of-the-week dummies for Tuesday, Wednesday, and Thursday are significantly negative in the spread regressions and significantly positive for depth and the trading activity regressions. This is compelling evidence that market liquidity declines and trading activity becomes sluggish on Friday relative to the other days of the week, particularly the three days in mid-week. Most usually, Tuesday has the largest absolute coefficient suggesting that liquidity and trading activity appreciably increase on Tuesday relative to other days.16 The composite liquidity measure shows a pattern that is similar to the individual liquidity and depth variables.

The regression intercepts are all strongly significant, positive for spreads and negative for depth and trading activity. Although one cannot rule out the possibility that significant intercepts are caused by omitted explanatory variables or by a departure from linearity, the most likely explanation is lower liquidity and trading activity on Fridays (when the four day-of-the-week dummies are zero). If Tuesday instead of Friday is the zero base case for day-of-the-week dummies, the sign of every intercept is reversed and its significance is actually increased (not reported, but available on request.)

16 The results obtained using OLS do not differ qualitatively from those obtained from the Cochrane/Orcutt method. The OLS results are available from the authors upon request.
Trading activity also slows down around holidays as evidenced by the negative and significant coefficient for the holiday dummy in the Δ$Volume and ΔNumTrades. The coefficients measure the percentage decline relative to normal days, so dollar volume is off by around 11 percent and the number of transactions per average stock declines about nine percent (Panel A of Table 5). The reduced trading activity appears to lower market depth and increase quoted spreads as evidenced by the negative and positive coefficients on the holiday dummy in the quoted spread and depth regressions, respectively. The holiday dummy for the composite liquidity variable (CompositeLiq= %QuotedSpread/$Depth) is also highly significant.

There is a distinctly asymmetric response of spreads to up and down markets. They weakly decline in up markets and strongly increase in down markets. The opposite is true for depth. This suggests that inventory accumulation concerns are more important in down markets.

Depth increases significantly in up markets. One possible explanation is that market makers attempt to manage inventory by quoting higher depth on the bid side but the same or only slightly lower depth on the ask side such that average depth increases. Note that the trading activity variables show a symmetric response; they increase in both up and down markets.

A recently falling market (MA5MKT-) tends to be associated with increased trading activity and decreased effective spreads. On the other hand, a recently rising market (MA5MKT+) appears to cause a decrease in depth but has little effect on spreads and trading activity; this might imply that market makers quote lower depth on the buy side which leads to a smaller overall depth.

High levels of recent market-wide volatility $MA5|MKT|$ decrease trading activity as might have been expected, but, perhaps surprising, they also decrease spreads; though depth is virtually unaffected.\(^{17}\) It appears that sluggish trading following recent volatility allows dealers to reduce inventory imbalances which then prompts them to reduce spreads.

\(^{16}\) A joint test that Tuesday's coefficient is the same as Monday's, Wednesday's and Thursday's was rejected with a p-value less than 0.0001 in all regressions except ΔCompositeLiq's.

\(^{17}\) In contrast to this result for recent market-wide volatility, it is well known that individual stock volatility is cross-sectionally associated with higher spreads (Benston and Hagerman, 1974), reflecting the notion that individual stock volatility is more closely associated with asymmetric information.
In Table 5, Panel A, the Federal Funds rate change is negative and significant in regressions for the trading activity and depth measures, but positive and significant for the quoted spread. An increase in Treasury bond yields relative to the short rate (TermSpread) is accompanied by significantly decreased trading activity, decreased depth, and increased quoted spreads; and the composite (inverse) measure of liquidity, \(\Delta\text{CompositeLiq} \), has a positive reaction that is consistent with the coefficient sign on the depth variable. Overall, there is evidence that increases in either the long- or short-term interest rate has a significantly negative effect on both liquidity and trading activity. The default spread variable (QualitySpread) apparently has little influence on either trading activity or liquidity.

Turning to the macroeconomic variables, trading activity increases prior to GDP and unemployment announcements. Depth also rises but then but there is no significant impact on bid-ask spreads. On the day of the announcement, (which occurs typically in the morning), depth falls back toward its normal level. This pattern is consistent with differences in anticipations about the forthcoming figures and a concomitant flurry of prior uninformed trading. Increased speculative trading activity allows greater depth to be quoted. This result is also consistent with an increase in the number of informed traders as the announcement date approaches. Competition among informed traders could bring additional liquidity (Admati and Pfleiderer (1988)).

Overall, the evidence can be summarized as follows:

- Quoted spreads, depths, and trading activity responds to short-term interest rates, the term spread, equity market returns, and recent market volatility.
- Depth and the composite measure of liquidity respond to recent market trends.
- Effective spreads respond strongly to equity market returns, recent market trends, and recent market volatility.
- Spreads respond asymmetrically to contemporaneous market movements, increasing much more in down markets than they decrease in up markets.
• There is strong evidence that liquidity and trading activity drop on Fridays relative to other days of the week.

• Tuesday tends to be accompanied by increased trading activity and increased liquidity relative to other days of the week.

• Depth tends to decrease and trading activity tends to increase around major holidays.

• Both depth and trading activity increase prior to announcements of GDP and unemployment rates.

• Impending CPI announcements do not seem to influence either liquidity or trading activity. Evidently, inflation has been relatively easy to predict in the U.S. recently.

Although the explanatory power of these regressions is relatively modest, the number of separate significant regressors is impressive. For example, in the $\Delta NumTrades$ regression, Panel A, twelve of the nineteen variables are significant at the one percent level and two others are significant at the five percent level. There are more significant determinants in the depth and trading activity regressions than in the spread regressions. Doubtless, the significance of some of our regressors is influenced by the large sample size. However, the magnitude of the coefficients implies economic significance as well. Here are some examples: average depths are about 6% higher and volume is about 20% higher on Tuesdays relative to other days; an increase in the Federal Funds rate of 1% induces a spread increase of 2.5%; a 1% market decline brings a 2.4% increase in the average relative quoted spread.

Panel B of Table 5 reports regressions with value-weighted liquidity and trading activity measures, where the weights are proportional to each company’s total market capitalization at the end of the previous year. The stock market indexes are also value weighted. The results are qualitatively similar to Panel A, except that interest rate variables are no longer significant for the liquidity variables and the weekly seasonals are weaker (though mostly still significant). This may imply that inventory considerations are more important for smaller stocks and that weekly variations in trading have a larger impact on the liquidity of smaller companies. On the
other hand, explanatory power is actually slightly higher in the spread regressions and for dollar volume and the number of transactions. Notice too that the unemployment announcement is now statistically significant for quoted spreads.

D. Robustness Checks

Figure 6 reveals that the number of firms trading varies daily. Hence, there is some ambiguity about average liquidity measures because spreads and depth are not available for non-trading firms. (This does not affect the trading activity measures because volume is properly counted as zero when a stock does not trade.) We attempted to correct this defect by using liquidity measures from the last day the stock did trade, going back a maximum of ten trading days. To assure that the results are not influenced by this admittedly less-than-perfect procedure, we redid the regressions for a sample of stocks that traded every single trading day in each calendar year from 1993 to 1998, the period corresponding to the TAQ data source. Because of aberrant variation in the reported number of stocks trading in the ISSM data, the same robustness check was not done for the 1988-92 period. The resulting sample size is 1472 days. The results, presented in Panel C, are qualitatively similar to those in Panel A. There is a loss in significance for some of the coefficients, particularly those representing the weekly seasonals, but the overall pattern of significance is unchanged (except that the effective spread also is influenced significantly by the short rate).

The Federal Funds rate is only a proxy for short-term dealer borrowing costs. To check whether the results are robust to other proxies, we were able to secure a time series of overnight repurchase agreement (repo) rates, though for a shorter time period beginning on May 21, 1991.18 We substituted the repo rate for the Federal Funds rate in all the interest rate variables and re-calculated the regressions the resulting 1841 daily observations. The results (available on request) were qualitatively similar to those in Panel C.

18 We are grateful to Francis Longstaff for supplying these data.
IV. Conclusions

We study liquidity and trading activity for a comprehensive sample of NYSE-listed stocks over an eleven-year period. Aggregate market spreads, depths, and volume are even more volatile than returns. Daily changes in these variables are negatively serially correlated. There has been a secular downtrend in spreads and an upward trend in depth and volume, though there have been major excursions around these trends and at least one important structural break, when the minimum tick size was reduced from 1/8 to 1/16 in mid-1997.

We find that liquidity and trading activity are influenced by several factors. Based on theoretical paradigms of price formation (inventory and asymmetric information) and on intuitive reasoning, we nominated candidates as possible determinants. The explanatory variables include short- and long-term interest rates, default spreads, market volatility, recent market movements, and indicator variables for the day of the week, for holiday effects, and for major macroeconomic announcements.

Equity market returns and recent market volatility influence liquidity and trading activity. Short-term interest rates and the term spread significantly affect liquidity as well as trading activity. There are strong day-of-the-week regularities in liquidity and in trading activity. A typical Friday has lower liquidity and more sluggish trading. This is also true for days adjacent to major holidays. Tuesday is the highest liquidity day of the week with the most trading activity.

A particularly intriguing result is the asymmetric response of bid-ask spreads to market movements. Both quoted and effective spreads increase dramatically in down markets, but decrease only marginally in up markets. Indeed, the down-market variable is the most significant one in our analysis. In addition, contrary to intuition, recent market volatility tends to reduce spreads. While informal speculation about these results is possible, a formal theoretical investigation of this result would appear to be desirable.

Trading activity and market depth increase prior to scheduled macroeconomic announcements of GDP and the unemployment rate while they fall back toward normal levels on the announcement
day itself. This is consistent with increased trading induced by differences of opinion prior to the announcement which, being conducted by uninformed traders, is accommodated by dealers offering greater depth. The depth pattern would also be consistent with an increase in the number of informed traders as the announcement day approaches. Competition among this larger number of informed agents would drive down asymmetric information costs to dealers and result in higher liquidity (Admati and Pfleiderer, 1988).

The determinants investigated here explain between 18 and 33 percent of daily changes in liquidity and trading activity. This is consistent with the evidence for commonality in liquidity documented by Chordia, Roll, and Subrahmanyam (2000).

It is worth reiterating the adage pointed out, for example, by Chowdhry and Nanda (1991) and Admati and Pfleiderer (1988), that “liquidity begets liquidity.” While a return anomaly is subject to arbitrage forces, a “liquidity anomaly” is self-perpetuating; that is, as agents find out about such an anomaly, they will avoid trading in illiquid periods, which will further reduce liquidity in those periods. Thus, regularities in the time-series behavior of liquidity and trading activity should be dynamically stable.

To our knowledge, no other study has examined such a long history of spreads, depth, and trading activity nor has attempted to identify their determinants; but the sample period here, 1988-1998 inclusive, is a relentless bull market. It seems possible that liquidity and trading activity might behave differently in a bear market. Rising markets attract more investors and there is indeed ample evidence of steadily increasing liquidity over the past decade. Prolonged bear markets, on the other hand, could be subject to falling liquidity.

While liquidity levels could vary with market trends, the determinants of day-to-day changes in liquidity are probably the same in most environments, though their explanatory power might very well fluctuate. For example, based on recent experience with crash events, down markets may be characterized by frenzied selling (in contrast to steady buying in rising markets) so inventory could accumulate and the impact of interest rates on liquidity could become stronger in bear markets.
Macroeconomic variables should have influences over horizons longer than those examined here. If macro variables anticipate economic downturns, they might also anticipate lower liquidity and trading activity in equity markets. As a longer history of data becomes available, future studies will shed more light on this interesting issue.

It would be interesting also to investigate cross-sectional differences in the market-wide effects found here. For example, do interest rates and equity returns differentially influence the liquidity of large and small firms? Are the day-of-the-week effects more prevalent in actively traded stocks or the relatively inactive ones? Do default spreads influence the liquidity of small, relatively new, companies?

The implications of our results for asset pricing remain unexplored. For example, do weekly regularities in liquidity correspond to previously documented patterns in returns? Do unanticipated liquidity variations represent a risk factor priced in the cross-section of asset returns? Such questions deserve definitive answers from future research.
References

Table 1. Market Liquidity and Trading Activity Variables, 1988-1998 (inclusive)

Summary statistics for time series of market-wide liquidity and trading activity. The series are constructed by first averaging all transactions for each individual stock on a given trading day and then cross-sectionally averaging all individual stock daily means that satisfy the data filters described in the text. The sample period spans the first trading day of 1988 through the last trading day of 1998, 2,779 trading days.

<table>
<thead>
<tr>
<th>Number of Firms</th>
<th>Quoted Spread ($)</th>
<th>% Quoted Spread</th>
<th>Effective Spread ($)</th>
<th>% Effective spread</th>
<th>Depth (Shares)</th>
<th>Price ($)</th>
<th>Share Volume (000's)</th>
<th>Dollar Volume ($million)</th>
<th>Number of Daily Trades</th>
<th>$ Depth ($0000)</th>
<th>Dollars/Trade ($00)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>1326</td>
<td>0.208</td>
<td>1.497</td>
<td>0.137</td>
<td>6216</td>
<td>28.31</td>
<td>183.48</td>
<td>7.12</td>
<td>109.63</td>
<td>13.85</td>
<td>634.0</td>
</tr>
<tr>
<td>Sigma19</td>
<td>126</td>
<td>0.026</td>
<td>0.412</td>
<td>0.017</td>
<td>1195</td>
<td>2.84</td>
<td>75.76</td>
<td>3.74</td>
<td>47.94</td>
<td>2.95</td>
<td>104.7</td>
</tr>
<tr>
<td>C of V20</td>
<td>0.0954</td>
<td>0.125</td>
<td>0.276</td>
<td>0.126</td>
<td>0.192</td>
<td>0.100</td>
<td>0.413</td>
<td>0.525</td>
<td>0.437</td>
<td>0.213</td>
<td>0.165</td>
</tr>
<tr>
<td>Median</td>
<td>1344</td>
<td>0.217</td>
<td>1.490</td>
<td>0.138</td>
<td>6478</td>
<td>27.97</td>
<td>162.21</td>
<td>5.72</td>
<td>95.84</td>
<td>13.77</td>
<td>627.1</td>
</tr>
<tr>
<td>Minimum</td>
<td>252</td>
<td>0.142</td>
<td>0.691</td>
<td>0.099</td>
<td>3224</td>
<td>20.88</td>
<td>30.93</td>
<td>0.83</td>
<td>16.77</td>
<td>6.21</td>
<td>244.6</td>
</tr>
<tr>
<td>Maximum</td>
<td>1504</td>
<td>0.282</td>
<td>2.819</td>
<td>0.203</td>
<td>8584</td>
<td>36.52</td>
<td>613.95</td>
<td>27.76</td>
<td>379.22</td>
<td>21.77</td>
<td>1814.2</td>
</tr>
</tbody>
</table>

19 Standard Deviation
20 Coefficient of Variation: Standard Deviation + Mean; (dimensionless)

Market Liquidity and Trading Activity,
July 24, 2000
Table 2. Absolute Percentage Daily Changes in Market-Wide Liquidity and Trading Activity

Summary statistics for absolute values of daily percentage changes in the variables described in Table 1 omitting the changes at the turn of each year. There are 2,768 observations. The acronyms \textit{QuotedSpread}, \%\textit{QuotedSpread}, \textit{EffectiveSpread}, \%\textit{EffectiveSpread}, \textit{Depth}, \$\textit{Depth}, \textit{CompositeLiq}, \textit{Price}, \textit{Volume}, \$\textit{Volume}, and \textit{NumTrades} denote market-wide equal-weighted averages of, respectively, the quoted spread, the percentage quoted spread, the effective spread, the percentage effective spread, share depth, dollar depth, \%\textit{QuotedSpread}/\$\textit{Depth}, the average price of stocks that traded, share volume, dollar volume, and the average number of transactions per stock. A preceding "Δ" denotes the daily percentage change in the variable.

<table>
<thead>
<tr>
<th>(\Delta\text{Quoted Spread} /)</th>
<th>(\Delta%\text{Quoted Spread} /)</th>
<th>(\Delta\text{Effective Spread} /)</th>
<th>(\Delta%\text{Effective Spread} /)</th>
<th>(\Delta\text{Depth} /)</th>
<th>(\Delta$\text{Depth} /)</th>
<th>(\Delta\text{Composite Liq} /)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textbf{Liquidity Variables}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>1.572</td>
<td>1.671</td>
<td>1.906</td>
<td>2.227</td>
<td>4.039</td>
<td>4.843</td>
</tr>
<tr>
<td>Sigma21</td>
<td>1.563</td>
<td>1.664</td>
<td>1.945</td>
<td>2.142</td>
<td>3.513</td>
<td>4.242</td>
</tr>
<tr>
<td>Median</td>
<td>1.170</td>
<td>1.240</td>
<td>1.415</td>
<td>1.708</td>
<td>3.194</td>
<td>3.795</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\Delta\text{Price} /)</th>
<th>(\Delta\text{Volume} /)</th>
<th>(\Delta$\text{Volume} /)</th>
<th>(\Delta\text{NumTrades} /)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textbf{Trading Activity Variables}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0.555</td>
<td>14.35</td>
<td>15.37</td>
</tr>
<tr>
<td>Sigma</td>
<td>0.560</td>
<td>19.57</td>
<td>21.21</td>
</tr>
<tr>
<td>Median</td>
<td>0.403</td>
<td>9.889</td>
<td>10.84</td>
</tr>
</tbody>
</table>

21 Standard Deviation
Market Liquidity and Trading Activity,
July 24, 2000
Table 3. Correlations of Simultaneous Daily Percentage Changes in Market-Wide Liquidity and Trading Activity

Correlations among daily percentage changes in the variables described in Table 1 omitting the changes at the turn of each year. The acronyms \(\text{QuotedSpread} \), \(\%\text{QuotedSpread} \), \(\text{EffectiveSpread} \), \(\%\text{EffectiveSpread} \), \(\text{Depth} \), \(\$\text{Depth} \), \(\text{CompositeLiq} \), \(\text{Price} \), \(\text{Volume} \), \(\$\text{Volume} \), and \(\text{NumTrades} \) denote market-wide equal-weighted averages of, respectively, the quoted spread, the percentage quoted spread, the effective spread, the percentage effective spread, share depth, dollar depth, \(\%\text{QuotedSpread}/\$\text{Depth} \), the average price of stocks that traded, share volume, dollar volume, and the average number of transactions per stock. A preceding "\(\Delta \)" denotes the daily percentage change in the variable.

<table>
<thead>
<tr>
<th>(\Delta%\text{QuotedSpread})</th>
<th>(\Delta\text{EffectiveSpread})</th>
<th>(\Delta%\text{EffectiveSpread})</th>
<th>(\Delta\text{Depth})</th>
<th>(\Delta$\text{Depth})</th>
<th>(\Delta\text{CompositeLiq})</th>
<th>(\Delta\text{Price})</th>
<th>(\Delta\text{Volume})</th>
<th>(\Delta$\text{Volume})</th>
<th>(\Delta\text{NumTrades})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.749</td>
<td>0.782</td>
<td>0.581</td>
<td>-0.464</td>
<td>-0.355</td>
<td>-0.323</td>
<td>-0.181</td>
<td>0.492</td>
<td>0.568</td>
<td>0.686</td>
</tr>
<tr>
<td>(\Delta%\text{QuotedSpread})</td>
<td>(\Delta\text{EffectiveSpread})</td>
<td>(\Delta%\text{EffectiveSpread})</td>
<td>(\Delta\text{Depth})</td>
<td>(\Delta$\text{Depth})</td>
<td>(\Delta\text{CompositeLiq})</td>
<td>(\Delta\text{Price})</td>
<td>(\Delta\text{Volume})</td>
<td>(\Delta$\text{Volume})</td>
<td>(\Delta\text{NumTrades})</td>
</tr>
<tr>
<td>0.492</td>
<td>0.568</td>
<td>0.686</td>
<td>-0.460</td>
<td>-0.375</td>
<td>-0.316</td>
<td>-0.213</td>
<td>0.623</td>
<td>0.628</td>
<td>0.458</td>
</tr>
<tr>
<td>(\Delta%\text{QuotedSpread})</td>
<td>(\Delta\text{EffectiveSpread})</td>
<td>(\Delta%\text{EffectiveSpread})</td>
<td>(\Delta\text{Depth})</td>
<td>(\Delta$\text{Depth})</td>
<td>(\Delta\text{CompositeLiq})</td>
<td>(\Delta\text{Price})</td>
<td>(\Delta\text{Volume})</td>
<td>(\Delta$\text{Volume})</td>
<td>(\Delta\text{NumTrades})</td>
</tr>
<tr>
<td>-0.460</td>
<td>-0.375</td>
<td>-0.316</td>
<td>-0.460</td>
<td>-0.375</td>
<td>-0.316</td>
<td>-0.213</td>
<td>0.623</td>
<td>0.628</td>
<td>0.458</td>
</tr>
<tr>
<td>(\Delta%\text{QuotedSpread})</td>
<td>(\Delta\text{EffectiveSpread})</td>
<td>(\Delta%\text{EffectiveSpread})</td>
<td>(\Delta\text{Depth})</td>
<td>(\Delta$\text{Depth})</td>
<td>(\Delta\text{CompositeLiq})</td>
<td>(\Delta\text{Price})</td>
<td>(\Delta\text{Volume})</td>
<td>(\Delta$\text{Volume})</td>
<td>(\Delta\text{NumTrades})</td>
</tr>
<tr>
<td>0.623</td>
<td>0.628</td>
<td>0.458</td>
<td>-0.150</td>
<td>-0.293</td>
<td>-0.192</td>
<td>-0.273</td>
<td>0.362</td>
<td>0.362</td>
<td>-0.882</td>
</tr>
<tr>
<td>(\Delta%\text{QuotedSpread})</td>
<td>(\Delta\text{EffectiveSpread})</td>
<td>(\Delta%\text{EffectiveSpread})</td>
<td>(\Delta\text{Depth})</td>
<td>(\Delta$\text{Depth})</td>
<td>(\Delta\text{CompositeLiq})</td>
<td>(\Delta\text{Price})</td>
<td>(\Delta\text{Volume})</td>
<td>(\Delta$\text{Volume})</td>
<td>(\Delta\text{NumTrades})</td>
</tr>
<tr>
<td>-0.150</td>
<td>-0.293</td>
<td>-0.192</td>
<td>-0.150</td>
<td>-0.293</td>
<td>-0.192</td>
<td>-0.273</td>
<td>0.362</td>
<td>0.362</td>
<td>-0.882</td>
</tr>
<tr>
<td>(\Delta%\text{QuotedSpread})</td>
<td>(\Delta\text{EffectiveSpread})</td>
<td>(\Delta%\text{EffectiveSpread})</td>
<td>(\Delta\text{Depth})</td>
<td>(\Delta$\text{Depth})</td>
<td>(\Delta\text{CompositeLiq})</td>
<td>(\Delta\text{Price})</td>
<td>(\Delta\text{Volume})</td>
<td>(\Delta$\text{Volume})</td>
<td>(\Delta\text{NumTrades})</td>
</tr>
<tr>
<td>-0.051</td>
<td>-0.138</td>
<td>0.091</td>
<td>-0.051</td>
<td>-0.138</td>
<td>0.091</td>
<td>-0.018</td>
<td>0.310</td>
<td>0.310</td>
<td>0.347</td>
</tr>
<tr>
<td>(\Delta%\text{QuotedSpread})</td>
<td>(\Delta\text{EffectiveSpread})</td>
<td>(\Delta%\text{EffectiveSpread})</td>
<td>(\Delta\text{Depth})</td>
<td>(\Delta$\text{Depth})</td>
<td>(\Delta\text{CompositeLiq})</td>
<td>(\Delta\text{Price})</td>
<td>(\Delta\text{Volume})</td>
<td>(\Delta$\text{Volume})</td>
<td>(\Delta\text{NumTrades})</td>
</tr>
<tr>
<td>-0.039</td>
<td>-0.142</td>
<td>0.095</td>
<td>-0.039</td>
<td>-0.142</td>
<td>0.095</td>
<td>-0.028</td>
<td>0.273</td>
<td>0.273</td>
<td>0.322</td>
</tr>
<tr>
<td>(\Delta%\text{QuotedSpread})</td>
<td>(\Delta\text{EffectiveSpread})</td>
<td>(\Delta%\text{EffectiveSpread})</td>
<td>(\Delta\text{Depth})</td>
<td>(\Delta$\text{Depth})</td>
<td>(\Delta\text{CompositeLiq})</td>
<td>(\Delta\text{Price})</td>
<td>(\Delta\text{Volume})</td>
<td>(\Delta$\text{Volume})</td>
<td>(\Delta\text{NumTrades})</td>
</tr>
<tr>
<td>-0.034</td>
<td>-0.059</td>
<td>0.151</td>
<td>-0.034</td>
<td>-0.059</td>
<td>0.151</td>
<td>0.112</td>
<td>0.241</td>
<td>0.241</td>
<td>0.256</td>
</tr>
<tr>
<td>(\Delta%\text{QuotedSpread})</td>
<td>(\Delta\text{EffectiveSpread})</td>
<td>(\Delta%\text{EffectiveSpread})</td>
<td>(\Delta\text{Depth})</td>
<td>(\Delta$\text{Depth})</td>
<td>(\Delta\text{CompositeLiq})</td>
<td>(\Delta\text{Price})</td>
<td>(\Delta\text{Volume})</td>
<td>(\Delta$\text{Volume})</td>
<td>(\Delta\text{NumTrades})</td>
</tr>
<tr>
<td>(\Delta%\text{QuotedSpread})</td>
<td>(\Delta\text{EffectiveSpread})</td>
<td>(\Delta%\text{EffectiveSpread})</td>
<td>(\Delta\text{Depth})</td>
<td>(\Delta$\text{Depth})</td>
<td>(\Delta\text{CompositeLiq})</td>
<td>(\Delta\text{Price})</td>
<td>(\Delta\text{Volume})</td>
<td>(\Delta$\text{Volume})</td>
<td>(\Delta\text{NumTrades})</td>
</tr>
</tbody>
</table>
Table 4. Autocorrelations of Liquidity and Trading Activity Variables

Autocorrelation coefficients for the variables described in Table 1, after omitting the changes at the turn of each year. The acronyms QuotedSpread, %QuotedSpread, EffectiveSpread, %EffectiveSpread, Depth, $Depth, CompositeLiq, Price, Volume, $Volume, and NumTrades denote market-wide equal-weighted averages of, respectively, the quoted spread, the percentage quoted spread, the effective spread, the percentage effective spread, share depth, dollar depth, %QuotedSpread/$Depth, the average price of stocks that traded, share volume, dollar volume, and the average number of transactions per stock. A preceding "Δ" denotes the daily percentage change in the variable. Numbers in bold face type indicate a p-value less than 0.0001 for an asymptotic test that the autocorrelation coefficient is zero.

<table>
<thead>
<tr>
<th>Order (Lag in daily observations)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquidity Variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔQuotedSpread</td>
<td>-0.295</td>
<td>-0.131</td>
<td>-0.048</td>
<td>-0.032</td>
<td>0.081</td>
</tr>
<tr>
<td>Δ%QuotedSpread</td>
<td>-0.221</td>
<td>-0.127</td>
<td>-0.002</td>
<td>-0.018</td>
<td>0.047</td>
</tr>
<tr>
<td>ΔEffectiveSpread</td>
<td>-0.306</td>
<td>-0.093</td>
<td>-0.072</td>
<td>-0.017</td>
<td>0.035</td>
</tr>
<tr>
<td>Δ%EffectiveSpread</td>
<td>-0.291</td>
<td>-0.075</td>
<td>-0.031</td>
<td>-0.021</td>
<td>0.046</td>
</tr>
<tr>
<td>ΔDepth</td>
<td>-0.188</td>
<td>-0.212</td>
<td>-0.117</td>
<td>-0.015</td>
<td>0.229</td>
</tr>
<tr>
<td>Δ$Depth</td>
<td>-0.218</td>
<td>-0.179</td>
<td>-0.106</td>
<td>0.001</td>
<td>0.140</td>
</tr>
<tr>
<td>ΔCompositeLiq</td>
<td>-0.198</td>
<td>-0.178</td>
<td>-0.096</td>
<td>-0.005</td>
<td>0.130</td>
</tr>
<tr>
<td>Trading Activity Variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔPrice</td>
<td>0.006</td>
<td>0.019</td>
<td>0.013</td>
<td>0.025</td>
<td>-0.030</td>
</tr>
<tr>
<td>ΔVolume</td>
<td>-0.266</td>
<td>-0.107</td>
<td>-0.042</td>
<td>-0.017</td>
<td>0.095</td>
</tr>
<tr>
<td>Δ$Volume</td>
<td>-0.268</td>
<td>-0.099</td>
<td>-0.038</td>
<td>-0.020</td>
<td>0.097</td>
</tr>
<tr>
<td>ΔNumTrades</td>
<td>-0.259</td>
<td>-0.097</td>
<td>-0.036</td>
<td>-0.007</td>
<td>0.033</td>
</tr>
</tbody>
</table>
Table 5. Time Series Regressions

Dependent variables are daily percentage changes in market-wide liquidity and trading activity as described in Table 1. The acronyms Δ%QuotedSpread, Δ%EffectiveSpread, ΔDepth, ΔCompositeLiq, ΔVolume, and ΔNumTrades denote market-wide averages of the percentage quoted spread, the percentage effective spread, the measure of dollar depth, the percentage quoted spread divided by dollar depth (a composite measure of liquidity), dollar volume, and the average number of transactions per stock, respectively. A preceding "$\Delta" denotes the daily percentage change in the variable.

Explanatory variables are: MKT+ (MKT-): the CRSP equally-weighted return if it is positive (negative) and zero otherwise; MA5MKT+ (MA5MKT-): the CRSP equally-weighted return over the past five trading days if it is positive (negative) and zero otherwise; MA5lMKT: the average CRSP equally-weighted daily absolute return over the past five trading days (all of the preceding variables are in percentages); Monday-Thursday: four variables that take on a value of 1 if the trading day is, respectively, a Monday, Tuesday, Wednesday, or Thursday, and zero otherwise; Holiday: a variable that takes on a value of 1 if a trading day satisfies the following conditions: (1) if Independence Day, Veteran’s Day, Christmas, or New Year’s Day falls on a Friday then the preceding Thursday, (2) if any holiday falls on a weekend or on a Monday then the following Tuesday, (3) if any holiday falls on another weekday then the preceding and following days22; and zero otherwise; ShortRate: the daily first difference in the yields of Treasury bills closest in maturity to one year; TermSpread: the daily change in the difference between the yield on a constant maturity 10-year Treasury bond and ShortRate; Quality Spread: the daily change in the difference between the yield on Moody’s Baa or better corporate bond yield index and the yield on a 10-year constant maturity Treasury bond; GDP(0): one on the day of a GDP announcement, and zero otherwise; GDP(1-2): one on the two trading days prior to a GDP announcement, and zero otherwise; UNP (0), UNP(1-2), CPI(0), CPI(1-2): Defined as for GDP but for unemployment and CPI announcements, respectively.

The Cochrane/Orcutt method is employed to correct first-order serial dependence in the disturbances. Coefficients significantly different from zero at the 1% (5%) level are indicated by ** (*)..

22This is always the case for Thanksgiving.
Market Liquidity and Trading Activity, July 24, 2000
Table 5, continued

Panel A: Equally-weighted (2694 observations)

<table>
<thead>
<tr>
<th>Explanatory Variables</th>
<th>Δ%QuotedSpread Coefficient</th>
<th>Δ%QuotedSpread t-statistic</th>
<th>ΔEffectiveSpread Coefficient</th>
<th>ΔEffectiveSpread t-statistic</th>
<th>ΔDepth Coefficient</th>
<th>ΔDepth t-statistic</th>
<th>ΔCompositeLiq Coefficient</th>
<th>ΔCompositeLiq t-statistic</th>
<th>ΔVolume Coefficient</th>
<th>ΔVolume t-statistic</th>
<th>ΔNumTrades Coefficient</th>
<th>ΔNumTrades t-statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA5MKT+</td>
<td>0.052</td>
<td>1.36</td>
<td>0.010</td>
<td>0.22</td>
<td>-0.434**</td>
<td>-3.98</td>
<td>0.425**</td>
<td>3.33</td>
<td>-0.65</td>
<td>-1.49</td>
<td>-0.346</td>
<td>-1.03</td>
</tr>
<tr>
<td>MA5MKT-</td>
<td>0.036</td>
<td>0.72</td>
<td>0.210**</td>
<td>3.34</td>
<td>-0.151</td>
<td>-1.06</td>
<td>0.234</td>
<td>1.41</td>
<td>1.970**</td>
<td>3.46</td>
<td>1.910**</td>
<td>4.35</td>
</tr>
<tr>
<td>MA5[MKT]</td>
<td>-0.141**</td>
<td>-3.97</td>
<td>-0.124**</td>
<td>-2.80</td>
<td>-0.033</td>
<td>-0.33</td>
<td>-0.097</td>
<td>-0.83</td>
<td>-1.266**</td>
<td>-3.15</td>
<td>-1.101**</td>
<td>-3.56</td>
</tr>
<tr>
<td>Monday</td>
<td>-0.592**</td>
<td>-3.88</td>
<td>-0.573**</td>
<td>-2.90</td>
<td>0.335</td>
<td>0.82</td>
<td>-0.775</td>
<td>-1.61</td>
<td>1.484</td>
<td>0.90</td>
<td>6.656**</td>
<td>5.33</td>
</tr>
<tr>
<td>Wednesday</td>
<td>-0.367**</td>
<td>-2.75</td>
<td>-0.691**</td>
<td>-4.05</td>
<td>2.830**</td>
<td>7.74</td>
<td>-3.414**</td>
<td>-7.94</td>
<td>8.01**</td>
<td>5.47</td>
<td>4.555**</td>
<td>4.07</td>
</tr>
<tr>
<td>Thursday</td>
<td>-0.553**</td>
<td>-3.73</td>
<td>-0.681**</td>
<td>-3.54</td>
<td>1.460**</td>
<td>3.69</td>
<td>-2.214**</td>
<td>-4.74</td>
<td>4.81**</td>
<td>3.02</td>
<td>3.429**</td>
<td>2.84</td>
</tr>
<tr>
<td>Holiday</td>
<td>0.807**</td>
<td>3.40</td>
<td>0.161</td>
<td>0.54</td>
<td>-4.807**</td>
<td>-7.21</td>
<td>7.150**</td>
<td>9.16</td>
<td>-10.77**</td>
<td>-4.04</td>
<td>-8.792**</td>
<td>-4.29</td>
</tr>
<tr>
<td>ShortRate</td>
<td>2.485**</td>
<td>2.63</td>
<td>0.461</td>
<td>0.39</td>
<td>-5.795**</td>
<td>-2.21</td>
<td>7.910**</td>
<td>2.57</td>
<td>-32.43**</td>
<td>-3.08</td>
<td>28.724**</td>
<td>-3.56</td>
</tr>
<tr>
<td>TermSpread</td>
<td>2.092*</td>
<td>2.23</td>
<td>-0.047</td>
<td>-0.04</td>
<td>-5.466*</td>
<td>-2.10</td>
<td>7.141*</td>
<td>2.34</td>
<td>-34.60**</td>
<td>-3.32</td>
<td>-29.582**</td>
<td>-3.70</td>
</tr>
<tr>
<td>QualitySpread</td>
<td>0.959</td>
<td>0.61</td>
<td>0.087</td>
<td>-0.04</td>
<td>3.549</td>
<td>0.81</td>
<td>-3.354</td>
<td>-0.65</td>
<td>12.81**</td>
<td>4.00</td>
<td>7.138**</td>
<td>2.91</td>
</tr>
<tr>
<td>GDP(1-2)</td>
<td>-0.549</td>
<td>-1.91</td>
<td>-0.216</td>
<td>-0.59</td>
<td>1.975*</td>
<td>2.47</td>
<td>-2.384**</td>
<td>-2.54</td>
<td>12.81**</td>
<td>4.00</td>
<td>7.138**</td>
<td>2.91</td>
</tr>
<tr>
<td>GDP(0)</td>
<td>-0.242</td>
<td>-0.84</td>
<td>0.022</td>
<td>0.06</td>
<td>-0.542</td>
<td>-0.68</td>
<td>0.096</td>
<td>0.10</td>
<td>-3.485</td>
<td>-1.08</td>
<td>-1.248</td>
<td>-0.51</td>
</tr>
<tr>
<td>UNP(1-2)</td>
<td>-0.293</td>
<td>-1.58</td>
<td>-0.088</td>
<td>-0.37</td>
<td>2.046**</td>
<td>3.97</td>
<td>-2.159**</td>
<td>-3.57</td>
<td>4.561**</td>
<td>2.21</td>
<td>3.865**</td>
<td>2.45</td>
</tr>
<tr>
<td>UNP(0)</td>
<td>0.135</td>
<td>0.72</td>
<td>0.118</td>
<td>0.49</td>
<td>-1.389**</td>
<td>-2.66</td>
<td>1.522**</td>
<td>2.48</td>
<td>2.549</td>
<td>1.22</td>
<td>3.457**</td>
<td>2.15</td>
</tr>
<tr>
<td>CPI(1-2)</td>
<td>-0.166</td>
<td>-0.97</td>
<td>0.014</td>
<td>0.06</td>
<td>0.672</td>
<td>1.41</td>
<td>-0.908</td>
<td>-1.62</td>
<td>-1.539</td>
<td>-0.81</td>
<td>-0.827</td>
<td>-0.57</td>
</tr>
<tr>
<td>CPI(0)</td>
<td>-0.183</td>
<td>-1.06</td>
<td>0.078</td>
<td>0.36</td>
<td>0.302</td>
<td>0.63</td>
<td>-0.416</td>
<td>-0.74</td>
<td>1.961</td>
<td>1.03</td>
<td>0.579</td>
<td>0.40</td>
</tr>
<tr>
<td>Intercept</td>
<td>0.909**</td>
<td>6.02</td>
<td>1.005**</td>
<td>5.08</td>
<td>-2.519**</td>
<td>-6.31</td>
<td>3.923**</td>
<td>8.32</td>
<td>-7.183**</td>
<td>-4.48</td>
<td>-6.283**</td>
<td>-5.18</td>
</tr>
</tbody>
</table>

Adjusted R² | 0.288 | 0.270 | 0.290 | 0.334 | 0.206 | 0.179 |
Figure 1. Average Quoted and Effective Bid-Ask Spreads
Figure 2. Average Percentage Quoted and Effective Bid-Ask Spreads
Figure 3. Bid-Ask Average Quoted Dollar and Share Depth

Market Liquidity and Trading Activity
Figure 4. Average Daily Trading Volume per Stock

Market Liquidity and Trading Activity
Figure 6. Number of Stocks in the Daily Sample
Appendix A
Supplementary Empirical Information

Table A-1: Debt and Equity Market Explanatory Variables

Summary Statistics, Daily, 1988-98 Inclusive
(2,694 Observations)

\(\text{ShortRate} \): Yield on overnight Federal Funds

\(\text{TermSpread} \): Yield spread between the constant maturity 10-year Treasury bond and the Federal Funds yield

\(\text{QualitySpread} \): Yield spread between Moody’s Baa or better corporate bond index and the 10-year constant maturity Treasury bond.

\(\text{Stocks} \): Return on the equal-weighted CRSP equity index.

<table>
<thead>
<tr>
<th></th>
<th>(\text{Short Rate})</th>
<th>(\text{Term Spread})</th>
<th>(\text{Quality Spread})</th>
<th>(\text{Stocks}) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levels</td>
<td>Mean 5.77</td>
<td>1.35</td>
<td>1.79</td>
<td>0.111%</td>
</tr>
<tr>
<td></td>
<td>Std. Dev. 1.87</td>
<td>1.35</td>
<td>0.29</td>
<td>0.570%</td>
</tr>
<tr>
<td></td>
<td>Median 5.52</td>
<td>1.24</td>
<td>1.73</td>
<td>0.170%</td>
</tr>
<tr>
<td></td>
<td>Maximum 10.71</td>
<td>4.24</td>
<td>2.77</td>
<td>2.760%</td>
</tr>
<tr>
<td></td>
<td>Minimum 2.58</td>
<td>-2.35</td>
<td>1.16</td>
<td>-5.432%</td>
</tr>
<tr>
<td>Absolute Values of Daily First Differences</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean 0.1591</td>
<td>0.1682</td>
<td>0.0252</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Std. Dev. 0.2411</td>
<td>0.2411</td>
<td>0.0250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median 0.0800</td>
<td>0.1000</td>
<td>0.0200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum 2.8300</td>
<td>2.8600</td>
<td>0.2300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum 0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Market Liquidity and Trading Activity,
July 24, 2000
Table A-2. Correlations of Explanatory Variables in Table 5 Regressions (Panel A)

<table>
<thead>
<tr>
<th></th>
<th>MARKET+</th>
<th>MARKET-</th>
<th>MASMKT+</th>
<th>MASMKT-</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Holiday</th>
<th>ShortRate</th>
<th>TermSpread</th>
<th>QualitySpread</th>
<th>GNP(1-2)</th>
<th>GNP(0)</th>
<th>UNP(1-2)</th>
<th>UNP(0)</th>
<th>CPI(1-2)</th>
<th>CPI(0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARKET+</td>
<td>0.308</td>
<td></td>
</tr>
<tr>
<td>MASMKT+</td>
<td>0.355</td>
<td>0.221</td>
<td></td>
</tr>
<tr>
<td>MASMKT-</td>
<td>-0.092</td>
<td>0.431</td>
<td>0.350</td>
<td></td>
</tr>
<tr>
<td>MASMKT</td>
<td>0.403</td>
<td>-0.228</td>
<td>0.283</td>
<td>-0.583</td>
<td></td>
</tr>
<tr>
<td>Monday</td>
<td></td>
<td>-0.104</td>
<td>-0.098</td>
<td>0.015</td>
<td>0.007</td>
<td>-0.003</td>
<td></td>
</tr>
<tr>
<td>Tuesday</td>
<td></td>
<td>-0.096</td>
<td>-0.024</td>
<td>-0.001</td>
<td>-0.008</td>
<td>0.003</td>
<td>-0.011</td>
<td></td>
</tr>
<tr>
<td>Wednesday</td>
<td></td>
<td>0.025</td>
<td>0.044</td>
<td>0.001</td>
<td>-0.014</td>
<td>0.001</td>
<td>-0.471</td>
<td>-0.034</td>
<td></td>
</tr>
<tr>
<td>Thursday</td>
<td></td>
<td>0.076</td>
<td>0.040</td>
<td>0.015</td>
<td>0.000</td>
<td>0.001</td>
<td>-0.455</td>
<td>-0.491</td>
<td>-0.035</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holiday</td>
<td></td>
<td>0.097</td>
<td>0.039</td>
<td>-0.001</td>
<td>0.007</td>
<td>0.002</td>
<td>-0.025</td>
<td>-0.017</td>
<td>0.051</td>
<td>-0.040</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ShortRate</td>
<td>-0.035</td>
<td>-0.008</td>
<td>-0.063</td>
<td>-0.001</td>
<td>-0.034</td>
<td>0.093</td>
<td>-0.019</td>
<td>0.131</td>
<td>-0.066</td>
<td>0.023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TermSpread</td>
<td>-0.131</td>
<td>-0.176</td>
<td>0.046</td>
<td>-0.027</td>
<td>0.014</td>
<td>-0.146</td>
<td>-0.039</td>
<td>0.114</td>
<td>0.088</td>
<td>0.032</td>
<td>-0.973</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QualitySpread</td>
<td>0.111</td>
<td>0.021</td>
<td>-0.073</td>
<td>-0.056</td>
<td>0.031</td>
<td>-0.054</td>
<td>-0.009</td>
<td>0.027</td>
<td>0.028</td>
<td>-0.016</td>
<td>-0.011</td>
<td>-0.405</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GNP(1-2)</td>
<td>-0.014</td>
<td>-0.027</td>
<td>-0.038</td>
<td>-0.009</td>
<td>-0.018</td>
<td>0.039</td>
<td>0.043</td>
<td>0.002</td>
<td>-0.070</td>
<td>0.017</td>
<td>0.018</td>
<td>-0.041</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GNP(0)</td>
<td>0.048</td>
<td>0.005</td>
<td>-0.013</td>
<td>-0.022</td>
<td>0.004</td>
<td>-0.068</td>
<td>-0.021</td>
<td>0.047</td>
<td>0.032</td>
<td>0.095</td>
<td>0.045</td>
<td>-0.007</td>
<td>-0.006</td>
<td>-0.027</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNP(1-2)</td>
<td>0.045</td>
<td>0.054</td>
<td>0.089</td>
<td>0.027</td>
<td>0.018</td>
<td>-0.177</td>
<td>0.008</td>
<td>0.357</td>
<td>-0.012</td>
<td>0.023</td>
<td>0.006</td>
<td>0.013</td>
<td>0.043</td>
<td>-0.048</td>
<td>0.042</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNP(0)</td>
<td>0.032</td>
<td>0.010</td>
<td>0.083</td>
<td>0.041</td>
<td>0.007</td>
<td>-0.011</td>
<td>-0.191</td>
<td>-0.190</td>
<td>-0.001</td>
<td>0.001</td>
<td>-0.131</td>
<td>-0.001</td>
<td>0.008</td>
<td>-0.048</td>
<td>-0.085</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPI(1-2)</td>
<td>-0.030</td>
<td>-0.007</td>
<td>-0.040</td>
<td>-0.009</td>
<td>-0.011</td>
<td>0.029</td>
<td>-0.024</td>
<td>-0.022</td>
<td>-0.065</td>
<td>-0.049</td>
<td>0.029</td>
<td>0.017</td>
<td>-0.030</td>
<td>-0.044</td>
<td>-0.039</td>
<td>-0.083</td>
<td>-0.042</td>
<td></td>
</tr>
<tr>
<td>CPI(0)</td>
<td>0.011</td>
<td>0.016</td>
<td>-0.029</td>
<td>-0.022</td>
<td>-0.016</td>
<td>-0.083</td>
<td>0.036</td>
<td>0.052</td>
<td>0.010</td>
<td>-0.046</td>
<td>0.007</td>
<td>0.019</td>
<td>-0.030</td>
<td>-0.044</td>
<td>-0.083</td>
<td>-0.083</td>
<td>-0.087</td>
<td></td>
</tr>
</tbody>
</table>
Appendix B

A Caution about Autoquotes

The widely used NYSE Trades and Automated Quotations (TAQ) database includes an anachronism that should engender caution in market microstructure scholars. Unlike the Institute for the Study of Security Markets (ISSM) database, the TAQ database reports "autoquotes" which are passive quotes by official dealers (often from secondary exchanges) who are not actually making a market. Such quotes usually add a mechanical fraction (e.g., 1/4 point) on either side of the posted primary market quote. Depth associated with such a quote is most often 100 shares. Autoquotes are not identified explicitly on TAQ. These facts were verified in electronic communications with Robert Wood, the primary developer of the ISSM database, and with Mark Ventimiglia of the Research and Planning Division at the NYSE.

In this study, we finessed the problem by using only BBO23-eligible primary market (NYSE) quotes. The magnitude of this problem is illustrated in Figure B-1, which plots our average quoted spread series and a corresponding series averaged over all quotes. The average quoted spread jumps from 25 cents to about 42 cents the data source shifted from ISSM to TAQ (on the first trading day of 1993). The series differ only slightly in the ISSM period because there are some legitimate non-NYSE quotes.

This potentially troubling issue that should be kept in mind when using the TAQ database.

23 Best Bid and Offer

Market Liquidity and Trading Activity, July 24, 2000
Figure B-1. Quoted Spread Comparison; NYSE vs. All Exchanges

Average Quoted Spread ($)