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JOURNAL OF FINANCTAL AND QUANTITATIVE ANALYSIS
Volume XV, MNo. %, December 1980

ORTHOGONAL PORTFOLIOS

Richard Roll®

I. Motivation for Studying Orthogonal Portfolios

Orthogonal portfolios are prominent in the economics af asset pricing. The
minimum-variance "zera-heta" portfolic ta the market index is one of the two
determinants of individual expected asset returns in Black's [1] theory. "Zerc-
beta" is simply another way ta express the ahsence of linear correlation, or the
"orthagonality," aof twa portfolios' returns.

It is widely believed that the minimum-variance zero-heta portfalio is
unique for a given market index and that all such zero-heta portfolics, whether
minimum-variance or not, have the same expected return; cf., for example, Fama
(4, pp. 285-286]. BAs proven helaw, however, this is true only when the market
index is mean/variance effigient. When the index is not efficient, there are
zero-beta portfolios at all levels of expected return.

This result is more than a mere mathematical curicsity. Tt has signifi-
cant implications for asset pricing theory and tests thereof. To see why, con-
sidar Black’s [l] expected return model, suitably generalized to allaw far the
possibility of an inefficient index. It would be

aj = E(rj} - E(rz} - Bj E(rm - rz}

[T

where the "r" refers to return, "E" to expectatiaon and the subscripts indicate

j, an arbitrary asset
m, the market index
2, a zero-heta portfolic for the index.

The "systematic risk" coefficient is given by Bj = cov(rj,rm)/var(rm). The
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aj term is essentially a measure of the index,mean/variance efficiency. Aas
proven hy Rass [10], aj will be identically zero for all F if and only if the
index m is efficient {ex ante). This is the case invariably discussed in the
thearetical literature, for m should he efficient if it is indeed the market
portfnlio of all assets; if investors have homogeneous beliefs; if returns are
generated by a stationary multivariate normal process; if there are no trading
costs nor short-selling restrictions; and if the market is in equilibrium.

If the index m is efficient, not anly will aj vanish for every j, but since
all zerc-heta portfolios have the same expected return, there will be only cne
possible value for E(rz).

Suppose to the contrary that an index used for empirical work is not ex
ante mean/variance efficient. This could happen in the theory is incarrect and
if the "true" value-weighted market portfolio i1s actually measured and employed
as an index. It could happen also if the theory iz correct, but if a mistake
were made in measuring the index. As mentioned above, one now well-known conse-
gquence of an inefficient index is that some asset or assets must display aj # 0,
2 lesser well-known consequence is that E(rz) can conceivably take on any value.
For {an extreme) example, a minimall variance zero-beta portfolio can be found

such that E(rz} = E(rm), in which case Black's model reduces to
2
E{r.) = E(r ) + a,.
] m i

Clearly, this particular choice of z would be less than best for testing the
"risk" structure implied by the theory. The "beta" has completely disappeared.
To repeat, differing expected returns on zero-beta portfolios occur for a
given choice of market index. The casual reader may know already that E(rz)
changes as the identity of the index changes; but the point here is that E(rZ)
can take on any value even for a fixed index. If the index is not mean/variance
efficient, it possesses orthogonal portfolios at all levels of expected return.
Thus, the Black model which relates mean returns to "betas" can have literally
any values for its intercept, E(rz), and its slope, E(rm - rz), pravided that

the slape and intercept sum to E(rm).

1 .. . . .
The word "minimal-variance" will he used here to dencte the minimum-
variance at a given level of mean return.

2 . ; . ; . .
Hotice that this equation implies T xjaj = ¢ where r, = E xjr 5t i.e.,
3
xj is the proportion of the index represented by asset j. This weighted aver-

age o is always zero, even when E(rz} £ E{r }.
m
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What have been the choices of z actually employed in empirical work? Some
studies that have reported time series of returns on measured Zero-beta port-
folics are: Fama and MacBeth {5]; Black and Scholes [2]; and Morgan [8]. They
amployed slightly different computational metheds. 3Similar methods are bheing
adapted or have been used in numerous other scholarly papers and in dactoral
dissertations. The Fama/MacBeth time series has heen used direetly in many
other papers {e.qg., Charest [{3]). No paper has attempted to test whether the
partfolic used as a market index was actually ex ante mean/variance efficient.
There must, therefore, he some nonnegligible chance that differing computational
methods, even when used with exactly the satme index owver exactly the same time
period, produced different zerc-beta partfoliocg. The parameters af such artho-
gonal portfolicos can differ and the time series histories can he distinct. For
example, it is even possible that two minimal-variance portfolios with different
mean returns, both zero-bheta to the same index, are themselves mutually ortho-
gonal. Their time series would therefore he linearly unrelated. Without analy-
5i5 of the data, there is no way to ascertaln whether such extreme pathological
congequences actually occurred. It seems unlikely. Nevertheless, the mere
possibility of such events argues for a more detailed investigaticon of the
general properties of arthogonal portfolios than has heretofore heen presented.
The remainder of this paper attempts to provide a unified treatment of these

properties.

II. General Properties of Minimal-Variance Orthaganal Portfalios

Mast af the properties are illustrated in Figure 1, a diagram in the mean/
variance space. The figure is hased on a given portfolio {p) that is not mean/
variance efficient. The shaded region of Figure 1 contains portfolios ortho-
gonal to p. It is bounded hy a quadratic function, the locus of minimal-variance
arthogonal portfolios (l.a].3 I shall call this lacus the "orthogonal frontier
for p." Symhol 2z indicates some particular portfolia an the orthogonal frontier.

There is a minimum-variance member of the orthogonal frontier, ZO in Figure
1, and like p, it is nat mean/variance efficient (l.h). It lies claser to p in
the mean return dimension than the unique orthogonal portfolic (z*] that is
mean/variance efficient {l.e}. This latter portfolia lies at the tangency cof

. : , 4
the efficient frontier and the orthoagonal frontier (l.el. The return level of

i . .

Praafs of all statements are given in the Appendix. A number and letter
such as "{2.b}" follawing each statement refers to the {corcllary number, impli-
cation) in the Appendix.

4Note that mean/variance efficient portfalios are defined to include those
on the negatively-sloped frontier. "“Efficiency" in the present usage is a euphe-
mism for "minimum-variance" (far a given mean return). Aan asterisk denotes an
efficient partfalio.
Laa7
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of Return
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The shaded region, containing portfolios that are uncorrelated with p ,

is bounded by a quadratic function of r , the arthogonal frontier. As

p approaches efficiency at p* (D > o}, the orthogonal frontier collapses
to a horizontal line at the level P As o2 increases, the orthogonal
frontier approaches ceoincidence with“the effigient frontier. At any return
level r,, the horizontal distance between the two frontiers is

B = [cg %rz - rz*)/(r - r3%)]° /D. The vertical distance between the
minimum-variance port%oh'os, o and 2, , is F = {ry - ry)/(D/K + 13.
Portfolia u 1is uncorrelated with both z and p . The efficient

portfolio g* is a linear combination of the inefficient portfolios
Z and p.
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the tangency is located at the intersection af the return axig and a line drawn
from p* through o, the portfolic with global minimum variance.

In the analysis of Long [6], the tangency portfolio z* is the zero-beta
portfolio for p using his first method and z, is the zera-heta portfolio far p
using his second method. As explained in Morgan [8, pp. 363-364], the first
method entails choosing an orthogonal portfoalio whose covariance with asset j
is propartional to 1 - Bj. This will be true only if z is mean/variance effi-
cient. Hence, the portfolio must he 2%¥. The second method entails minimizing
the variance of the orthogonal portfolio and the solution to this problem is
clearly zo.

A line drawn from z* through o intersects the return axis at rp. Thisg
line passeg also through zO {3.b). Furthermore, a line from p through o

intersects the return axis at £, {l.b). By using these lines and the method
a
of similar triangles, many interesting relationships can be cbtained, e.q., the

vertical distance fram ro jofa} rZ
o

The shape and position af the orthogonal frontier are functionally related
to the horizontal distance (D) from the efficient frantier of portfolio p's
position (l1.d). As p's position approaches the efficient frontier {at p*),

the arthogonal frontier collapses to a horizontal line emanating from r__. Thus,

2%
all portfolios orthogonal to a mean/variance efficient portfolia have the same
mean return. As p becomes "less efficient," i.e., as its location moves further
ta the right in Fiqure 1, the orthagonal frontier widens toward the left. The
two frontiers coincide for infinite G;. Thus, extremely high variance ineffi-
clent partfolios must bhe approximately arthagonal ta all efficient portfolios
(1.£).

Any arbitrary minimal-variance arthagonal portfolio {like z)} lies to the
right of the efficient frontier by the distance B = (09*2)2/D, where qp*z is
the covariance between 2z and the efficient portfalio p* which has the same mean
return as p (l.d). This guantity can also be expressed as B = [00 (rz - rz*}/
(ro - rz*}IQ/D. These relations are useful in understanding the movement of
the orthogonal frontier with respect to changes in the mean return, rp, of the
inefficienﬁ base portfolio, p. The geometry makes it obvious that a portfolio
whose meah return is less than that of portfolio o, (the global minimum wvariance
portfolio), will have an orthaganal frontier whose tangency 2* lies above o.
For a portfalio p whose return is exactly o the arthogonal frantier is some-

what more difficult to visualize. It will be positioned as a harizontal trans-

. .. . 4
lation of the efficient frontier; so that r =r , B =0/D {(a constant aver
z a o
fo)

all levels of raturn}, and so that the tangency vanishes (i.e., rox = 1 o},
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Since the orthogonal frontier extends indefinitely with nonzero slope,
every nonefficient portfolio has an orthogonal portfolio with the same mean re-
turn. In fact, if p lies sufficiently far to the right, it can have orthogonal
portfolios with the same mean return and the same variance! For example, if
p happens to be located just twice as far from the return axis as the efficient
frontier (c; = 20;*], then the orthogonal frontier passes through p's location,
thereby implying the existence of a minimal-wvariance zero-beta portfolio with
the same mean and same variance as p itself (l.qg).

The vector of investment proportions that defines a member of the ortho-

gonal frontier can bhe written as a linear combination of three "funds," port-
folio p and two (different) mean/variance efficient portfolios (2.). This im-
plies that every nonefficient index, if combined in the correct proportions
with any of its minimal-variance orthogonal portfolios, will yield an efficient
portfolio (2.). Unfortunately, the correct propoxtions turn out to be rather
complex in the general case, but they are given in the Appendix, Corcllary 3.
If g* is the efficient portfolic constructed from p and one of its orthe-
gonal partners z, then g* and 2z possess corthogonal portfolios with the same

mean return, {3.a). This implies a pedagogically-useful geometric property
illustrated in Figure 1. Portfolic a* is positioned such that s* is its

{efficient) orthogonal partner. Portfolioc 2 has an orthogonal portfeolieo, u,
which is orthogonal also to p. The mean returns are equal for u and s*. Thus,
gq* can he located by passing a line from z through Zo to the return axis, then
passing a second line from this point through o until it intersects the effi-
cient frontier.

The three-fund property of orthogonal portfelios also implies a functional
relationship hetween the wector of investment proportions of the orthogonal
portfolio and the vector @ of deviations5 apout the return/beta securities mar-
ket line (4.). The deviations turn cut to be clasely related to the wvector {C)
of covariances between individual assets and the orthogonal portfolio. Both C
and & are linear combhinations of the same three vectors. However, this rela-
tion tends to be obscured by a further property that the inner product of a is
aexactly zero with both the investment proportions vectors for p and for =z, (4.}.

The deviations (a's) can be expressed as analytic functions of the mean
and variance of the index p, of the distance (Dl of p's location from the

efficient frontier, and of the mean and variance of the chosen 2ero-beta

5 . o . -
For an individual asset j, the deviation a, is ¢, S r, - r =g, {r - r}
J ] J ] 2 J B Z

where p is the index, z is one of its orthogonal partners, and Bj is the ca-

variance of j and p divided by p's variance. a(without subscript) is the vec-
tor of uj's.
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portfolio 2. Since hoth p and z can be freely selected, it is easy to see that
algebraic values of & 's hawe wery little to do with the relative desirabilities
J

of different individual assets.

ITI. Summary

There is a false, but widely-held belief about orthogonal {("zero-beta"}
portfolios: far a given market index, all zero-bheta portfolios have the same
expacted return and the minimal-variance, zero-beta portfolio is unigque. This
is true only when the index is mean/variance efficient. Every nonefficient
index possesses zero-heta portfoalios at all levels of axpected return. For a
given index, minimal-variance zero-beta portfalios corresponding to different
expected returns lie alang an "orthogonal frontier" in the mean/variance space.
The frontier has some unusual properties which turn ocut ta he relevant for empi-
rical work an asset pricing. It is functionally related to deviations about

the "securities market line."
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APPENDIX
PROVING THE STATEMENTS IN THE TEXT

All results assume a finite set of N individual assets and use the follow-

ing notation:

v,

the (W ®x N) covariance matrix of returns on indiwvidual assets,
assumed to be nansingular,

the (N x 1) column vector of mean returns, assumed tao contain some
differing entries,

Note: V and R can he either subjective ex ante estimates or ep
post statistical estimates,

the (N % 1) unit wvectar,

an (N x 1) column vectar of investment proportions whose sum is
unity, defining an arbitrary portfalio 3,

an (N x 1) column vector of investment proportions defining
an orthogonal portfolio j,

the {(scalar) mean return on portfolico j, and
the {scalar) covariance of portfolios i and j, where the i and 3

subscript indicates

p an arbhitrary portfolio

2 an arthogonal portfolio

'

-

(WS
m

o the global minimum-variance portfaolio

* appended to any symbal indicates a mean/variance
efficiant portfalia.

The folloewing properties are stated without proof. (Proof can be found

in Merton [7] or Roll [9]):

{1) Portfolio additivity conditian: Xﬁl =1 {alsa Zél =1).
. . 2

{2) Covariance between portfolios: g, = XIVH, {and g, = R'VX.].
ij i3 J L.

(3) Mean return of partfolio: r, = ¥R
3 ]

{4) Covariance between portfclios o1 .

wher one is mean/variance Gp*j = (r 1} A (rjl)

efficient:
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where a b
A= . (2x2) ,

is the "efficient set information matrix" whose

elaments are a = R'V_lR, b = R'V-ll, c = 1'V'11.6

{5) Definition of
orthogonal portfolics: Z'VB =

|
o

{6) Mean/variance efficient

portfalios: X,
P

v_l(m) A_l(rp*l) .

Note: mean/variance efficient portfolios are
defined to include those on the negatively-
sloped seqment of the efficient frontier.

As equation (5} indicates, an orthogonal pair of portfolics, with investment
proportions vectors Z and X, has zero covariance. For a given ¥, there is a
continuum of solutions Z to (1) and (3), but only some of these solutions have

both desirahle properties of minimal variance and orthogonality.

Definition. The orthogonal frentier for p is the set of minimal wvariance port-
folios orthogonal to portfelio p.
For an efficient portfolio p*, the orthogonal frontier for p* can be cob-

tained easily from {(4). Setting a =0 in {4), we obtain the result,

p*z

(7} = (b - a} - b}.
r rp a /(crp*

2% *

Since the right side of (7) is a scalar, all portfolios orthogonal to an effi-
cient portfolic must have the same return. Clearly, one of these is also effi-
cient and its welghts are given from {6) as

(8 z* = v IR A tir 1)

zk
Thus, there is a unique minimum-variance portfolic which is orthogonal to the

efficient portfolio X .

Cf. Roll (9, Appendix], for proofs of these results.

7 P .
Note that the wector of individual asset "betas" computed against port-

folic p is given by B = VXp/G;. Thus Z'R = ﬂz = gy /0; =q,
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When the initial portfolio p is not mean/variance efficient, a modified

approach is required:

Theorem.

Proof.

Let the cavariance matrix of individual asset returns be nonsingular
and let at least two assets have different mean returns. Let X he
the invegstment proportians vectar of a nonefficient portfolia. Then
the portfolio orthogonal to ¥, whose variance is minimum for the
return lewvel rz, has investment proportions

1

R:V"l1] e 0r, 1

Z = [X:V

where H, a {3x3) symmetric matrix of constants, is given in (11) below.

To find minimal-variance orthogonal portfolios when X is not efficient,

e 2
we must minimize a, = 2z

suhject to 2'WE = 0,
Z'R = r , and

zZ

1.

1l

AR

The Lagrangian is

and the

1]

' - ' - 'R - - 1 - 1}
Z'VZ ll(z V) lz(z B rz} lj(z 1
firat—order conditicns are

WZ = (VX:R:I}(XIX2X3)'

Pre-multiplying hy (VX:R:1)' U_l/E gives

(10}

P . r = '
(O.rz.lJ H(A1A2A3J /2

where the (3x3) matrix H is defined as

(11) H = (VX:R:1)' V_l(VX:R:l)
02 ; r 1
IS <
e
= |
¥ !
F |
( A
1 X
and where A is the efficient set information matrix, (cf., {4)]. Eliminating

lals



l/2(klk213)' from the first-order conditions by suhstituting from (10] gives (9).

O.E.D.
The solution to (9) and many of the further results helow require the in-

verse of H. It is convenient to compute this inverse by the partition method,

uUsing the structure displayed just below (11l]. The result c¢an be uzed to abtain
a
0
- /D
— *
H 1 r = prz
“ Glr 1)
Z
where

p* is the mean/variance efficient portfalio with the same mean
return as p itself; N.B.: although the covariance hetween z and
p is zero, the covariance is not generally zZero hetween z and
an efficient portfolio with the same return as p;

2 2

measures the degree of p's inefficiency by the horizontal dis-
tance {in the variance direction) of p‘'s location from the effi-
cient frontier:

and
_ ,-1 -1
{14) G = A T[I + (rp 1y (rp 1ya /D1,

the lower right (2x2) submatriz of H_l, is symmetric and con-
stant for given p. {I i1s the 2 x 2 identity matrix.}
Using the notation just presented, the covariance of a (minimal-variance]
orthogonal portfolio with any arbitrary portfolia, say g, can be obtained from
(2) and (9) as

(15) XVZ=(c r 1) HY0r 1)
q ap “q 2

If g also is orthogonal, then qu = 0 and only G, the lower right (2x2) sub-

. -1 ; . .
matrix of H ~, needs to be cansidered; i.e., if Z] and 22 are both orthogonal

a - . , ) s
The development of H l(0 r, 1)' into its individual elements yields,

¥ (b -cr) +br -a
z P p

-1 .1 2 2
H (0 t, 1} = fﬂ3§F rz(ccrp 1) + rp - bap

r {r - bo2) + a02 - r2 .
z p P p B
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to p and one of them is on the orthogonal frontier, then

(18] % 2. =2.vZ, = (r 1Licx 1)
2 2 z

1 2
Corollary 1. Any property of efficient portfolios which depends only upon their
means, variances, and covariances is true also for orthogonal
portfolias.
proof. The covariance between two efficient portfolios, say g* and p* is,
from (4},

(17 a = (r . 1) A Yer

p*qt p* l} )

*
Since the two matrices G in {(1&) and A_l in {17) are both 2 x 2 and symmetric,
the structureg of (16) and (17) are identical. Thus their means, variances and
covariances are related hy identical functions (but with different parameters).
O0.E.D.
This implies that much of the efficient set mathematics can be applied
directly to the arthogonal set. In particular, the gecometric form and the

pasition of the arthogonal frontier can be ohtained easily from (1é).

Implications of Corollary 1.

{a) The orthogonal frontier is a quadratic function of rz in the mean/

variance space., The scalar formula for the orthogonal frontier is

2 2 2 2 2 2
g =[{a -2b¥r +crifiac -bilo, where a = ag -r ,

z z z z z 2z Z 2z 2z p z B p

_ 2 . 2 . . . .

b =Zbhgd -r , and ¢ = cg - 1. This formula is obtained most easily

z P P 2 P

from (1l6) and the results in note 8 by using the fact that

2 2
ac, - bZ = D!A{Gp. Recall the analogous scalar formula for the

2
efficient frontier, Gp* = {a - Qbrp* + cr;*]/(ac - bg}.

{b} The minimum-variance orthogonal portfolio (analagous tc the global

minimum-varianee portfnlio) has a return, L which is the sgolution

o
for the first row of G(rz 1)' = 0. This is analogous ta the firgt
_l a
row of A (rol)' = 0, whose solution is rO = b/e. The solution for
r is
Z
o
2 2 2 2
{18} r =H{ro -ralflg_-a}=h/c
z_ o p P o s o z' "z

1017



2 , ..
where r0 and Uo are the mean and variance of the global minimum-variance

"portfolio. From {18) it is easy to prove that r always falls between

9 2, 2
¥y and r . Furthermore, (18} can he rewritten r = r +(g /g )=
p 2, p 2, p o

(rO -, } which shows that a line from p through ¢ intersects the

o
return axis at r, - The vertical distance F =r - r is, from (18),
o z
a ©

2 2 2
g {r -r)/{a_ - ¢ ). But from the efficient set geometry, {(r - r }
o p o D o p o

2 2 2 . s .
/o, -—a) =(r -r )/5 where 2* is the efficient portfolio ortho-
D o o z o
gonal to p*, the efficient portfolio with return rp. Thus,
2 2 2 2
F = -r = - D/K+ = - =a -o__.
L ” e - r_,}/(D/K+l) where K Tw T 9, and D b o*

o
See Fiqure 1.

fc) & line drawn in the mean/variance space from any orthogonal portfolio,
2, through the position of N the minimam-variance arthogonal port-
folio, intersects the return axis at the level of another portfolio
that is corthogonal to hoth 2 and to p. In Figure 1, for example, the
portfolios 2z and u are uncarrelated. Both are uncorrelated with p.

{d}] The difference in the variance direction hetween the efficient and

orthogonal frontiers is B =2 (d;*Z}Q/D. This is obtained from {14)
and (lé&) by noting that
2 - - -
(19) o2 = (x_ DA N, D'+ (r. DAY Dt(r. DA Tx. 1) /D,
z z 2 2 i) B 2

But from (4], the firgt term is the variance of an efficient port-

) . : -1
folia whose return is ¥_. Furthermore, g ., =d_, = {r_11A (r_ 1)°,
z p*z zp 2 p

. 2 , . .
and gso the second term is (op*z) /0. For a portfolio z* which is
arthogonal to p*, we must have

9 ; .
Rearranging (18) we have Xy = (L - Y)rz + yrp where y = ag/a; . Since
4]
2 2
< g_always, 0 < y < 1 and thus r_ is always between r and r .
a 3] - o ’ Zq B
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and thus
2 2
B = [cro(r2 - rz*}/(rO - rz*}] V4

{e) We okbserve that B = ¢ for rz =r, {and for g

. = (0). Thus, the

p*z

efficient and orthoganal frontiers must be tangent at z*. Since the

global minimum-variance portfolio return r always falls between rp
8]

and LI {implication h above), the tangency portfolio 2* always lieg
s}
farther from p in the return dimension than does the minimum-variance

orthogonal portfolio Z,»

(f} BAs p's variance increases, (D » =), the orthogonal frontier approaches
coincidence with the efficient frontier. This result can be obtained
by noting that the second term in (19]) vanishes as D increases. As p
approaches efficiency, (D = 0}, ai in (19) grows without hound when
Gp*z # 0. We know already, however, that there is a unique orthoqonal
portfalio z* when p = p*. Thus, the orthogonal frontier collapses to
the line r =X, asp approaches p¥*.

{(g] Every inefficient portfolio has an orthogonal portfolio with the same
mean return and some have orthogqonal portfolios with the same mean

return- and the same variance. From (12}, the minimal-variance port-

folio 2' orthogonal to p and with the same return as p has variance
2 2
g, = cp*{l + Gp*/D)

2 2 2 2
=d_a Jla - a .}
p p*'p p*
2 . . o
When T,e < Up, portfolio p lies within the space bounded by the
2 2
orthoganal frontier. Thus for Gp > 209*, p has an orthogonal port-

2

. . - 2 ..
folio with the same mean and variance. Far op = 20 this i the

ey
minimal-variance orthagonal portfolio with return r
The arthogonal vector Z in (9) is a weighted sum of the three other vec-
tors: Xp {the ariginal portfolia)l; V_lR/b, the mean/variance efficient vector
whose mean return is a/b and whose orthogonal portfolios have zero mean return;
and XG = V_ll/c, the global minimum-variance portfolio vector.l0 The well-
known two-fund property of efficient vectors implies that any two {different)
efficient portfonlios could also be used to ohtain the vector Z in (9). We have

therefore established the following:

lOCf. Roll [9, pp. 141, 1&5].
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Corollary 2. ("Three-Fund Theorem"}. The investment proportions vectors of
portfoliog with minimal-variance {for a given mean) that are
arthogonal te an arbitrary portfolio p, are spanned by p's vector
of investment proportions plus any twa {(differing) mean/variance

efficient investment proportions vectors.
Praof. See above.

Using the two convenient efficient portfolios X, and XO, {9) can be ex-

pressed ag
{20} Z = -hX + {Xb:X <) G{r_ 1}'
o] 1 a -3

2
where h = Gp*z/m' By applyving the portfolio additivity condition (9}, we aob-

tain 1 = h + (b c) G(rz 11', and thus 2 is a weighted average of xp, ¥. and XO.

1
The following implications are ohtained readily from (20).

Implicatinus of Corollary 2.

{a) The minimum-variance orthogonal partfolio, za, is a weighted average
of only Xp and of XO. This follows from (20) and implication (b) of
Corallary 1 (the first row of G(r2 1)' is zero for zo).

{h} There is a unigue memher of hoth the arthogonal and efficient fron-
tiers. When Op*z = 0 in (20}, 2 is a weighted average of the eaffi-
cient portfolios Xl and XG alone. Therefore, Z also is efficient.

This is portfolio 2* in Figqure 1 and its return is, from (7},

roa = (brp - a)/(crp - hl.

Corollary 3. There is a weighted average of portfolio p with its minimal-variance
orthogonal partner z that produces an efficient portfolio, g¥*.
Furthermore, g* and z have orthogonal portfolios with the same

mean return.
Frocf. Let the vector of investment proportions of g* he denoted Xq*. Then

from (20}, Xq* = {2 + hxp)/(l + h). Xq* is efficient because it is a linear

cambination of Xl and XO. Now rewrite {(20) as

Xq* = (le:xoc) G(rzl)'/(l + h}

Then pre-multiplying both sides by (R 1})*' and recalling that r,o= a/b,
ro = b/c, we ohtain
(r , 1) = AG{rZ '/l + h)

qx
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Since gq* is efficient, its investment proportions can alse be expressed from

{6), as

-1 .
xq* =V (R Glr 1)7/(1 +h)

Also, if s* is a portfolie which is orthogonal to g¥*, then

-1
orge = e U A (1 =0

o]
n

=(r_, 1) 6lr, 1)* =0
5 2

If u is a portfolio orthogonal to z then from (16)

q
[}

(r 1) G{r_1)*' = 0.
u 2

Th = . .E.D.
115 rLl rs* o.E.D

Implications of Corollary 3.

{a) There is a useful geometric praperty, illustrated in Figure 1, that
lineg passed from = Fox ON the return axis through o and 2O inter-
sect respectively the efficient frontier at q* and the orthogonal
frontier at =z,

(b} A special case of this geometric property cccurs when portfolios ortho-
gonal to g* and 2z have the return r . Then a line from ¥ on the
return axis through o must pass alss through z*. (See Figure 1.}

But 2z¥* is on both orthagonal and efficient frontiers, so the same

line must pass also thraugh zol

Corcllary 4. Let C = VZ denote the vectar of covariances hetween individual
agsets and the arthogonal partfolio z. ILet g denote the vectar
of deviations about the securities market line (of., note 5).
Then C and o are spanned by the same three vectors, (VX, R and

1). Also Zfa = Xéa = a for every 2, Xp, and a.

Praof. Actually, when p is nonefficient, there are two different definitions

of deviations from the securities market line. The simplest isg

2 = - 1 - -
{21) a, R r, B[rp rz]

2
where the beta vector is g = vxp/cp. Equation (21} can be rewritten as
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2 1
(22) o) = (VX RO, -~ x)/o :leor 1.

From {9) or (20}, we can obtain the covariance vector of 2 with individual

assets as
{23) C=VZ = (VX R 1)[41:G(rz 1],

Clearly both al and C are spanned by VX, R, and 1.
A second definition of deviations from the securities market line uses the

vector of individual betas computed against the zero-beta portfolio.

(24) &, = R - Vi(r /02) - Vi(r /62).
2 z 'z P

{The vectors ay from {21} and a, from (24) are equal when p is mean/variance

efficient and only then.) Equation (24) contains VZ on the right side. But
from {23), we note that VZ is just a linear combination of V¥, R and 1. Thus,

«, also is gpanned by the same vectors as - This demonstrates the first part

of the corollary.

The last sentence is demonstrated simply by carrying out the vector pro-

ducts. From {22}, we obtain Xé @, = ¢ and from (24}, xé a, = 0, {(because
xﬁvz = 0). For the products of 2 and o, we have
-1 -1 2
Z'a¢. = (0r 1} H (WX RV AV RU[r - r )fr :lz-r_ ]!
1 4 z )< 4] 2

2 2 .
{0 rZ l)[(rz - rp)/cp}/cp:l:—rz] = 9

and similarly,

8]
153
1]

1 r 2
(rz e o0y - G(rZ 1} (rz/az)]

=r =-v¢ {r 1) G{r l)'/62 = 0 . O.E.D.
z z  z z z

Implications of Corollary 4.

The deviations abhout the securities market line are commonly considered as
measures of the gqualities of individual assets. We observe from this carollary,
however, that the a's are strictly functions of the portfolios p and z chosen to
obtain the securities market line. Unfortunately, the deviations will generally

appear to be unrelatead to their determining portfolios because their vector
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inner products, o'X and a'Z, which are simply the weighted averages of the a's
with respect o the Investment propartions of z and p, are canstrained mathe-

matically to zera.
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