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EVIDENCE ON THE “GROWTH-OPTIMUM’ MODEL

RicHARD RoLp*

I. INTRODUCTION

A PORTFOLIO OWNER may hope to maximize the long run growth rate of his
real wealth, In 1959, Latané suggested maximum growth as an operational cri-
terion for portfalio selection, contending that its (possible) suboptimality
on theoretical grounds was practically unimportant and emphasizing Roy’s
[1952] warning that “A man who seeks advice about his actions will not be
grateful for the suggestion that he maximize expected utility.”

In the past ten years, however, little work on growth-maximization of port-
folio value has appeared in the academic literature of finance or economics. The
neglect was due to competing norms for asset selection, particularly to norms
based on two-parameter, two-period portfolio models deriving fram the work
of Markowitz [1959], Tobin [1958], Sharpe [1964], and Lintner [1965].
These were developed into full theories of capital market equilibrium and the
empirical evidence collected in their support seemed at least sufficient to justify
continued research along the lines of relaxing assumptions and performing more
tests on observed portfalio behavior.

Recently, Hakansson [1971] and Hakansson and Liu [1970] again brought
the growth maximization criterion to our attention. Hakansson presented a
persuasive theoretical argument that . . . the mean-variance model [a special
case of the aforementioned two-parameter model, was] severely compromised
by the capital growth model in several significant respects,””

Most readers will find the following a significant respect: Given temporally
independent returns, a number of mean-variance efficient portfolios can be
shown to bring complete ruin after an infinite sequence of re-investments. It is
true, of course, that such sequences may indeed be optimal from an expected

* Graduate School of Industrial Administration, Carnegie-Mellon University. The comments of
Eugene Fama, Haim Levy, Robert Litzenberger and Myron Scholes are gratefully acknowledged,
Remaining errars are due to the authar alone.

This project was supported by the Ford Foundation which does not necessarily agree with the
results and opinions,
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utility viewpoint, despite ultimate ruin. No mathematician can prove the
contrary, especially when it is recognized that a typical investor’s horizon will
probably fall short of infinity and that he will likely consume a fraction of his
assets each period. However, one of our basic concerns should not be with
formal proof, but with practical and intuitively credible models of investor
behavior. In this regard, “growth-optimum’’ portfolios possess appealing fea-
tures even during a finite time span. For example, such portfolios maximize the
probability of exceeding a given level of wealth within a fixed time.?

Hakansson also pointed out other features of the growth-optimum model that
may be more or less appealing. It implies a logarithmic (in wealth) utility
function, which displays decreasing absolute risk aversion, and it implies
optimal decision rules that are myopic. As a further embellishment, Hakansson
and Liu derived a “separation theorem’ that holds the optimal sequence of
investments to be independent of the sequence of wealth levels even when
returns are stochastically dependent across time. (Myopia also holds with tem-
poral dependence).

Although these are strong challenges to the practical superiority of two-
parameter portfolio models, we should not abandon the latter too hurriedly.
They have heen successfully used in many empirical contexts and their com-
petitors should be required to weather empirical examination; so the purpose of
this paper is to report on some empirical tests of growth-optimum theory using
common stock returns.

Briefly, the growth-optimum model receives mixed support. In some tests it
performs extremely well while the results of other tests are puzzling. In com-
parison to the mean-variance model it also performs well but the test results are
clouded by the close operational similarity of the two models.

II. A TEST STATISTIC FOR THE GROWTH-OQpTIMUM MODEL

The quantitative derivation of the growth-optimum rule will employ the
following convenient

NOTATION:

n—number of shares purchased of security j initially
p;.c—price per share of security j in period t.
N

V.= 2 n;p — Value of a portfolio of N distinct securities in period t.
=1
X, = njpjlt/? n,p; —fraction of resources invested in security j in t.
R;.={[(p;. +Dj.)/pyc_1] —1}—rate of return to security j from t — 1
to t.
D;.-—per share dividend or coupon paid to security j between t — 1 and t.
E—Mathematical expectation.

2. Breiman [1961, section §]. Hakansson seems to have erred slightly when he states that
“Breiman has shown that if the objective is to achieve a certain level of capital as soon as possible,
then the optimal-growth portfolio . . . minimizes the expected time to reach the given level,”
Hakansson [1971, p. 540]. Breiman conjectured that this was true but was unable to state a proof
for a fixed level of wealth, As wealth grows indefinitely large, however, the limited expected
minimum time is in fact achieved by the “growth-optimum’ portfolio.
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Since the rule for maximizing the expected growth of portfolio value is
myopic, one only needs to optimize between successive periods. Thus, the
growth-optimum tule is

maximize E[log.(Vi/Vi_1)] = E {loge[ Xy (1 -+ B )]} (1)
X,y

subject to .3, = 1. Negative values of X represent short sales which, by
assumption, can be accomplished without penalty. Transaction costs are ne-
glected.

Although the problem is easily solved without further qualifications, for
historical comparison purposes it is worth assuming that the N asset, denoted
F, is risk-free and that it receives the residual portion from the amounts in-
vested in all risky assets; i.e.,

N—1 N—1
Vt/Vt—l = ij.t-—l (1 + Rj.t) + (5 + RF,I:) (1 - Z Xj.t—l)-
i=1

i=1
First-order conditions from problem {1) show that the investor’s growth-
optimum portfolio will be determined by praportions X* such that

ﬁj,t - RF,I:

Noel

E

=0, j=1,..., N—1. ()

1+ Re + 4= X*, 1 (Riy — Rpyr)

As illustrated by Hakansson [1971] and Breiman [1960], these optimal invest-
ment fractions generally will imply a diversified portfolio but their exact values
cannot be determined without specifying the joint probability distribution of
the R,’s,

To obtain a testable proposition from (2}, however, it will not be necessary
to specify that distribution. We can rely instead on the fact that in a given
period, the value of

14 K.
L+ R+ 2fXpeer (R — Re) ]

expected by each individual is equal for every risky security. Advancing to an
agpregate level will require either of two traditional assumptions: (a) that all
investors hold identical probability beliefs or (b) that a “representative” in-
vestor holds the expectations of equation (2) with the invested proportions
(X*'s) being equal to relative values of existing asset supplies. In either case,
the denominator of (2) is equal to 1 + R, ,, 2 “market return” defined as a
value-weighted average of all individual asset returns. The approximately ob-
servable® variable

_I4Ry,

"1+ Rax (3)

A

3. Tt is only approximately observable hecause no comprehensive value-weighted asset indexes
exist.
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will have the same mean for all securities. It will also be true, of course, that
some unexplained variation may occur about these expectations so that the
quantities Z,, will not be exactly equal in every period. However, an appro-
priate test of the identity of expectations only requires that corresponding
sample means be statistically equal; that is, the temporally averaged means

T
_ 1+Rm/

P t=1 i + Rm\t

must be insignificantly different across securities. Testing the equality of N
sample means is an analysis of variance problem. Its application to New York
and American Stock Exchange listed securities will be reported in the next
section.

(4)

ITT. A Simpre Test oF rHE GrowrH-OPpTIMUM MoODEL’S Basic VALIDITY

Data used in this section ate rates of return obtained from the Wells Fargo
rate-of-return tape prepared by M. Scholes. The tape contains daily price
changes for all common stacks listed on the New York and American exchanges
from June 2, 1962 through July 11, 1969. It is a condensation and thus a
tractable version of the ISL Quarterly Historical Stock Price Tapes. The
Standard & Poor’s Composite Price Index (The “500”) is used to obtain the
“market return.”

In the following test, returns were taken over weekly intervals. Thus, the
statistic

Zi.= (1 +Ryo)/(L + Ray)

was calculated for stock j at the end of week t; where 1 + R; = (e +
D) /Pre—y and 1 4+ R, , was similarly calculated using the S&P Composite
Index. The nult hypothesis requires the expected return ratios to be equal,
E(Z;.) = E(Z..), for all i, j, and t. Usuaily, this would be tested by one-way

= |
analysis of variance on the temporally-averaged means, Z,E? 2, Z,, but

simple analysis of variance procedures requires that all the Z;,’s be uncorre-
lated cross-sectionally and have equal variances under the null hypothesis.
These assumptions are obviously too strong and are not required by the (null)
growth-optimum hypothesis anyway. Furthermore, we have the evidence of
many previous studies to confirm the existence of positive covariation between
stack returns and returns on a market index. Some researchers (notably King,
[1966]) have calculated directly a substantial co-movement among stock
returns. Although the covariation between two individual stocks returns, say R;
and R,, may be reduced in the return ratios (Z's) as the result of division by
I + Ry, it would be too audacious to assert a complete elimination. Further-
more, there is no a priori reason to suppose that Var(Z,) = Var(Z ), as is
required hy a simple one-way of variance.

Fortunately, the Hotelling T? statistic* is available for precisely those cases

4. See Morrisen {1967, pp. 117-124] or Graybill, [1961, pp. 205-208].
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where independence among observations and equal variances do not hold. At
the expense of considerable computer time, which is patiently borne by Car-
negie-Mellon’s undergraduates and the Nation’s taxpayers, and is thus free to
its current beneficiaries, this statistic was calculated for groups of 31 stocks
selected alphabetically according to the procedure described below.

Hotelling’s T? is computed as a quadratic form in the sample vector of
differences between adjacent return ratios and the sample covariance matrix
of those differences.® It is distributed as an F distribution with k —1 and
N — k + 1 degrees of freedom where N is the sample size (weeks) and k. is the
number of stocks in a group.® Since stocks are not always traded over coinci-
dental calendar periods, and since coincidental ohservations are required in
order to calculate sample cavariances, the sample size N of each group was
reduced to the number of weeks when all 31 stocks had been traded and re-
corded. At most, this was the number of weeks for the stock that had the
minimum in its group and it was generally somewhat less. In fact, realizing in
advance that some groups might be reduced to a very low number of coinci-
dental observations, I decided to discard a stock if keeping it in the group
meant reducing the second number of degrees of freedom, N — k 4 1, below
30. When a stock was discarded, the next alphabetical one on the tape was
added to the group. Of course this meant that a stock was then missing from
the subsequent group and another had to be taken from the group following
that and similarly to the end of the tape. Finally, 68 groups of 31 stocks re-
mained for analysis and this number comprises all the stocks on the tape with
sufficient coincidental ohservations for the test procedure. These 68 F statistics
are depicted in Figure 1 and tahulated in Table 1.

The distribution of Figure 1 is stochastically below the expected null distribu-
tion. For example, using a Chi-square goodness-of-fit test with 17 classes to
compare the F sampling distribution with the null distribution, the test statistic
is about 70, which is far above the 005 level of significant difference between
the two distributions. It should be emphasized, however, that only kigh F values
reject the null growth-optimum hypothesis. Thus, growth-optimum theory is
strongly, even too strongly, supported by this test of its basic validity.”

5. As further cxplanation, recall that Z, . = (1 + R; )/(1 + R, ) is the ratio of return on
stock j to the market return. For a given group of 31 stacks, the differences in return ratias are
caleulated as Yip = Zio— 2y, far j =1,... .30 The means af ¥; . and covariances of vy, ,
and y, , are then calculated over time, Hotelling's statistic is based on the sample quadratic ferm
§'S—1% where ¥ is the vector of sample mean differences and S is the sample covariance matrix
af differences, Differences were calculated between adjacent alphabetic pairs but any ather random
scheme for selecting pairs would have been equally acceptable. Cf. Morrisan [1967, pp. 135-1381.

6. This is the rationale far using a group size of 31 stocks: since the number of degrees of
ireedom for the test is k—1, where k is the number of stocks, a group size of 31 is bath large
and makes tabular comparisan easy. If the group size had been chosen larger, the second degrees
of freedom parameter, N—k-+1, {where N is the number of available time points), would be reduced
to 2 low number. Thus, I thought k=31 would balance the two d.f. parameters and still leave
thermn quite large.

7. Because the Hotelling test supports the null hypothesis too strongly, I decided to check several
potential causes. One obvious possihility is the thick-tailed distributions of stock returns that have
heen pointed out by many researchers, (Cf{, Fama {1963], Blume [1970]). The appropriate way
to cheek this problem is to use a non-paratnetric analysis of variance, Friedman's multi-sample
test, {Bradley, 1968, p. 1271). Thiz was done for exactly the same sample of stocks grouped in
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Frequency
r jr—
10 -'._ /
Computed y
F Staustics
81 F Dustributian
— expected under
null hypathesis
6 — _—
4 4=
2 — /
0

Frsure 1
Distribution of F Statistics from Hatelling’s T? Test of Equality Amang Mean Return Ratios

IV. RELATIONS BETWEEN THE GROWTH-OPTIMUM AND THE SHARPE-LINTNER

MoDELS
A, Theory
When one compares the first order conditions for the growth-optimum meodel
1+ R, 1
E—  —=(I4+R).E— _ : j=1,...N—1 (5)
1+ R, 1 + R,
with those for the Sharpe [1964]-Lintner [1965] model
E(14 R (1+R )
PR s o N—1 ()
E(1 + Ra) E(1 4 Ra)

(where B, = Cov (R,, R.)/Var (R,)), some correspondence appears but it is
rather difficult to evaluate fully just by inspection. For example, when the
Sharpe-Lintner risk coefficient, fi;, is equal to zero, equation (6) becomes

E(L+R)  1+R
E(l +Ra) E(+ &)

But when i, = 0, Cov (ﬁj, R.) =0, and the growth optimum condition ex-
pressed in equation (5) becomes

the same way. The results were identical to those obtained by using Hotellings T2, the growth-
optimum model was too strongly supported.

A second possible misspecification is z deficiency in the market price index. The Standard &
Poar's Camposite Price Index, used in the preceding tests, is heavily-weighted in favor of a few
stocks. Also, since it is essentially a “buy-and-hold” portfolio, weights of individual stocks change
over time as relative prices change. Fvans [1968] and Cheng and Deets [1471] have provided
empirical evidence that such an index performs quite differently from a “fized-investient propor-
tion” or “rebalanced” index. Therefore, a rebalanced index composed of stocks on the tape was
constructed and used in reporting the tests already dome. Again, no difference was detected.

Thirdly, the possibility that an unrepresentative episode biased the entire sample period af seven
vears of weekly observations was checked by repeating the tests for annual sub-periods. There was
no perceptible difference among the sub-periods or between the overall period and any sub-period.
In every case the growth-optimum model was strongly supported.

Further details of all the tests in this faotnote are available in an earlier working paper. (It was
edited to conserve Journal space.)
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TABLE 1
CALCULATED VALUES oF HOTELLING's T? STATISTIC FroM COMMON STOCK
MEaN RETURN RATIOS, 1962-1969

Sample size Sample size
Graup {weeks) T2 Group (weeks) T2
1 113 360 36 98 30.8
2 &1 20.2 37 76 35.0
3 61 533 38 101 29.2
4 61 45.4 39 79 54,1
5 143 284 40 69 56.3
6 76 353 41 107 323
7 132 555 42 61 68.9
8 61 14.4 43 61 720
g 148 29.7 44 73 32.0
10 131 24.1 45 64 359
11 90 226 46 a7 46.3
12 68 287 41 66 569
13 108 41.3 48 62 571
14 76 275 49 91 249
15 109 41.5 50 60 50.1
16 273 29.4 51 61 376
17 111 i35 52 64 40.3
18 110 35.0 53 63 383
19 175 36.5 54 65 256
20 75 42.0 55 60 s
21 95 279 56 67 63.8
22 76 1.3 57 80 48.2
23 112 224 58 60 107.0
24 74 64.5 59 94 249
25 i12 234 60 79 390
26 127 31.8 61 73 57.8
27 158 38.6 62 A2 56.2
23 78 230 63 72 28.5
29 123 396 64 a6 65.7
30 112 40.2 65 61 47.3
31 104 49.7 L) 65 53.5
32 61 32.3 67 75 42.3
33 115 352 68 63 529
;; gé 2;2 Nate: The F statistic is caleulated as
) N-—30 »
(N —1}30

1 1
E(1-|—Rj)E(——~,;—-) :(l-f-Rr)E(iN).
14+ Ry 1+ R,

Since the terms containing market returns cancel in both of the displayed
equations just above, the growth optimum model provides a market diversifica-
tion result which is well-known from Sharpe-Lintner theory; namely, a security
whose portfolio risk is zero will sell at an expected return equal to the riskless
rate.
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1+ R,

Stock B

Stock A

1+ Ra

FiouRg 2
Stocks Satisfying the Grawth-Optimum Model with Different Degrees of Market Response

It is not true that the growth-optimum model implies a constant f§ coefficient
although it may seem to after a first glance at equation (6).% A simple example
is sufficient to show the contrary. Figure 2 illustrates the discrete probability

§. Because (6) is

E(1 + R)) 1+ Rg [ 14 Ry :|
S —

B0+ R Ba+ Ky EG+R,)

() -+ (57)
E — =F = ;
14+ R, 1+ R,

4 reader not cautious about quotients and reciprocals of random variables might think that the
{atter madel implies ﬁj = zero, independent of j.

and (5) is
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distributions of stacks A and B and of the market. In this example, only four
equally likely returns are possible for the market and each stock can retugn
corresponding amounts to those four. The growth-optimum model requires that

(1+ﬁA 1+ Ry
E 7)213(7)

1+ Ru 1+ R

which in geametric terms implies that the expected slopes of rays from the
origin through each possible point in the 1 + R;, I + R, plane is equal for both
stocks. This is clearly satisfied by the radially symmetric solid lines which
pass through the points of possible occurrence in Figure 2. Nevertheless, the
slopes of regression lines of R, on R,, indicated by dashes, are quite different.
Stock A has low partfolio risk because its $ is low, while stock B has much
greater response to the market and thus higher risk. Both securities’ returns
are perfectly functionally related to the market return but it is already apparent
that correlation per se will have the same relatively unimportant role in a
growth-optimum as it has in the Sharpe-Lintner framework (i.e., the expected
slopes of rays can be equal no matter what correlation occurs between a stock’s
return and the market’s).

A close correspondence between the two madels can be made more ap-
parent by rearranging a few terms. The result (derived in the footnote®), is

E(R, — Rp) = I:COV(RI,iM)/COV (Rm,iﬁ,)]E(Rm"—RF);
1 + R, 1

- + Rm
(7)
which is very similar indeed to the Sharpe-Lintner equilibrium equation. In
~ 1
fact, since Cav (Rm, ﬂ—m) is negative, one is tempted to suggest that

a second implication of Sharpe-Lintner theory is also satisfied by the growth-
optimum model: namely, that security j's expected return will exceed the
riskless return if and only if Cov (R,, R,,) is positive. One would need to prove,

9. To obtain (7}, note that equation (5} is equivalent ta
CoviR, 1/(1+ R0 1= (1 + RK — E(1+ RPK (5a)
where K = E[1/¢(1 + R 1],

L]

Multiplying hoth sides of (Sa} by X, the proportien af wealth invested in security j, (or the
fraction of aggrepate economic wealth represented by security i),

Cov[EZX, R, 1/(1 4+ B )1 = —~K T (X;ER, — R}
1 i

i
and substituting for the definition of R, , ie, for R, = Ry + ZX (R, — Rz),

CoviR, — Rp(1 — TX), 111+ R )1 = —~KER, ~Ry).
i

Since RF(l—Exj) is & constant,
K = ~CavIR,,, 1/(1 + R D I/EE, — Rp).

Suhbstituting this for K in (5a) provides equation (7).
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however, that Cov (R;, R,) > 0 implies Cov (Rj, ) < 0 and this

1
1+ R,
is definitely not true in general. Counterexamples can be displayed for highly-

skewed distributions.*?

B. Testing Sharpe-Lininer vs. Growth-Optimum

The two models will provide approximately equivalent empirical implications
if certain restrictions are placed on the ranges of individual rates of return. To
verify this, one only needs to note the following facts: (a) quadratic utility
functions and homogenous anticipations will lead to the Sharpe-Lintner equi-
librium result of equation (6) and (b) the logarithmic utility function implied
by portfolio growth maximization can be approximated by a quadratic as

lOg(I + RT) £ RT'—- 1/2 RTQ

provided that the portfolio’s total return is restricted to less than 100 per cent
per period.*! Tt is indeed trivial to show that the two models are identical when
this approximation to the logarithm is made. Thus, given the truth of one
theory, we should not be surprised to find that an empirical test of the other
supports it very well, especially when the observed rates of return used in test-
ing fall predominantly near zera. Of course, this leads us to ask whether the
strong empirical support for the growth-optimum model reported in the pre-
ceding section is really damnation for Sharpe-Lintner or just an accidental
stroke of choosing a short time interval (one week) which guaranteed that
returns were never abserved far from zero.

An obvious way to test this is suggested by the logarithmic approximation.
If growth-optimum theory appears to satisfy the data only because the loga-
rithm approximates a quadratic when returns are near zero, one should choose a
longer time interval for empirical testing so that many more large and small
returns are observed.'? This was done for both four week and twenty-six week
periods with the same common stock data as used previously and the conclu-
sions wete identical to those for weekly periods already reported.

A more refined and direct test to discriminate between the two models can be
based on equilibrium conditions of the two competing theories,

. 1
E(R; — Ry) :{cou[Rj,i,v]/

14+ Ry
~ I o
COV[Rm,—“—T]} E(Ru — Re) =1 (8)
14+ R

m

10. However, for at least one special asymmetric case, {lognormal distributions) the growth-
optimum model does agree completely with the Sharpe-Lintner result that a securitv's expected
return will be a linear function of systematic risk; i.e., of ﬂj_ i am indebted to Robert Litzenberger
for demonstrating this point.

11. And more than minus 100 per cent per period. Without short sales this last restriction is
presumably satisfied for common stocks by the existence of limited liahility. Samuelson [1970] has
derived a broader “fundamental approximation theorem" which shows the clase match of mean-
variance to any correct portfolio theory when the joint distribution of returns has a small dispersion.

12, This completely ignores the crucial question of investor horizon periad that may have a sig-
nificant effect on the farm of the Sharpe-Lintner market model. Cf. Jensen [1969, pp. 186-191].
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which is the growth-optimum condition (7), and
E(R; — Re) = (Cov [R;, Rn]/Var (Ra)} E(Ru — Re) =3, (9)

which is the familiar Sharpe-Lintner condition. A suggested test procedure
obtains the best estimates of all components of (8) and (9) from time series
and then performs cross-sectional regression with those estimates.

A series of comparative tests of these two equations was conducted with the
common stock returns mentioned previously. In each case, time series were used
to calculate Ry, the mean return, and 9, or Sj, the estimated risk measures im-
plied by the growth-optimum or the Sharpe-Lintner model, respectively.'?
Then, cross-sectional computations were performed for the regression models

R, =4, + 43, (10)
and
R, =b, + 5.3, (11)

Estimated coefficients from (10) and (11} should be compared to their theo-
retical counterparts: depending on which theory is correct, 4, or %U should equal
Ry, the average risk-free interest rate, and 4, or b, should equal unity.

In the first test, all calculations were carried out. with individual security
returns during the same time period." For example, 1192 separate values of
R, 9, and 8 were obtained from weekly data covering the annual sub-period
July, 1962 through June, 1963. Cross-sectional regressions using these 1192
estimates gave 2, = 20.1 and B, = 20.3 per cent. The value of Ry, as measured
by the weekly average interest rate on short-term government debt abligations
during the year, was only 3.27 per cent; so neither model satisfied its theoreti-
cal prediction very well in this particular annual sub-period.'® Over all the
seven years of available data, the estimated values of 4; and b were very sig-
nificantly positive and they were scattered around unity in nice accard with
their expected level. 4, and b, were also reasonably close to R, at least on
average. As a distinguishing test of the two competing theories, however, these
results failed miserably; for the estimates were very highly correlated between
the models. The two competitive intercepts were practically identical in every

13. Ta he precise,
e ) () J s
= R,— Cdvi R, ————o —R
=L N, G R

_ﬁp)

and
8, = [CBv(R,R,) /VE (R, 1(R,,

where " indicates the sample analog of a population parameter, ealeulated fram weekly ohservations
over a specified period, and — indicates sample mean from the same period.

14. To save computation expense, only New York Exchange listed stocks with at least 30 weekly
quotations during a year were included in the sample. The risk-free rate was measured hy a weekly
“average of short-term government debt obligations” taken from Standard & Poor's Trade Statistics.
The market indexes used were: The $&P Composite Index and a rebalanced index constructed by
weighting all NYSE Stock Returns equally each week. The results were very similar but only the
results for the rebalanced index are quoted in the text.

15, To save space, only one annual sub-periad is reported here but aif the results are available
fram the author upon request.
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period as were the two competitive slope coefficients. They deviated much more
from theoretical predictions than from each other,

In order to sharpen the discriminatory resolution of the data, a different
pracedure!® was necessary. The first problem to be alleviated was an extremely
low explanatory power which was indicated by low R™s (on the order of .05),
for the cross-sectional models with individual stock returns. A technique to
remedy this is to form portfolios of stocks and conduct cross-sectional tests on
portfolios rather than on individual securities. A difficulty arises, however, be-
cause randomly-selected portfolios would have very similar values of the risk
measures ¥ and 0. To create a cross-sectional spread in risk measures, portfolios
must be selected on the basis of risk by grouping stocks with the lowest ¥'s ot
s in one portfolio, stacks with higher %'s or &’s in the next portfolio, and so
on.

This procedure for forming portfolios makes another econometric prablem
obvious: In the cross-sectional regression, the explanatory variables contain
errors which will tend to bias slope coefficient estimates toward zero.'” To
alleviate this problem somewhat, stocks were placed in portfalios based on their
risk measures calculated from weekly data of a given year and then the mean
portfolio return and risk measures for the portfolio as a whole were calculated
from weekly data in the subsequent year. Cross-sectional models {10) and (11)
were then estimated using these latter estimates and the results are given in
Table 2 and Figure 3. To recapitulate, the procedure which resulted in the
output of Table 2 and Figure 3 was as follows:

1. For each stock (j) in year t, the total risk premia 9; and 3j were calcu-
Jated from the time series of year t using the rebalanced market index
{see note 7).

2. Stocks were ranked from smallest to largest ?; and irom smallest to
largest 35.

3. Twenty portfolios were selected by assigning the lowest five per cent of
ranked stocks to one portfolio, the next lawest five per cent to a second
portfolio, etc, Thus, two sets of 20 partfolios each were formed; one set
based on v rankings and one set on & rankings.

4. Each portfolio’s mean return, R, was calculated from time series in year
t + 1. For each portfolio that had been farmed an the basis of v rankings,
the growth-optimum risk premium 9, was calculated from year t + 1
data. Similarly, the Sharpe-Lintner premium SU was calculated from year
t + 1 data for each portfolio that had been formed by & rankings.

5. For each of six years (1963-64, 1964-65, . . . 1968-69), these calculated
portfolio mean returns and risk measures are plotted in Figute 3 and
regressions across portfolios are reported in Table Z.

In Figure 3, the scatters of mean portfolio returns versus the two compet-
ing risk measures are displayed for six different years. The solid lines mark

16. Blume [1970]1, Miller and Scholes [1972], Black, Jensen, and Scholes [1971], and Fama
and MacBeth [1972], have ariginated and developed the pracedures used here in theit work with
the empirical validity of the two-parameter portfolic model.

17. This is true, of course, for regressions using individual stocks as well as for those using
partfolios,
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Ficuerg 3
Mean Portfolio Returns and Estimated Partfolio Risk Premia, New York Exchange Stocks,
1962-1969, Rebalanced Index
¥ (5.L) Denotes Sharpe-Lintner Risk Premia and {G-0) denotes Growth-Optimum Premia.

the theoretical predictions, an intercept of Ry and a slope of unity.'® Table 2
contains results from cross-sectional models (10) and (1) applied to these
data.

On average across the six years, both the growth-optimum and the Sharpe-
Lintner moadel seem to have excessive intercepts, (4, b, > Rg), and deficient
slopes, (4, b, < 1}. The averages are given in footnote d of Table 2. These
deviations from the anticipated can no doubt be attributed, at least in part,

18. Since the axes are scaled differently in each plot, the lines do not appear to have slapes of

unity upon first examination. Note that the plotted lines are the theoretical predictions and are
npt the regression lines reparted in Tahle 2.
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to errors in the measurement of risk premia. In the first two years and in
year 5 (1967-68) the wide scatter suggests that either the mean portfolio
returns or the risk premia were measured inaccurately.

In the twa years of best fit, 1965-66 and 1966-67, portfolios with low risk
premia return less than anticipated while portfolios with high premia return
more. This is unlikely to be just a sampling phenomena if the standard errors
of 2, and b, are credible. For example, the growth-optimum slope for 1965-66
is & = 1.85 which is nearly eight standard errors above unity.'®

Perhaps the most striking characteristic of the two models is their very
close relation over time. The slope coefficients and intercepts given in Table
2 vary widely across periods but are extremely close, between the two models,
in each period. This is obvious from even a quick look at Figure 3.*° Based on
these results, one can only conclude that the two models are empirically
identical. A qualification is in order, of course; assets whose returns are much
more highly skewed (e.g., warrants), may permit a finer discriminatory test.

V. SumMarRy aND CONCLUSIONS

Ii investors wish to maximize the probability of achieving a given level of
wealth within a fixed time, they should choose the “growth-optimum’ port-
folio; that is, the portfolio with highest expected rate of increase in value.
This paper has examined the implications for chserved common stock returns
of all investors selecting such a portfolio.

Given some widely-used (and useful) aggregation assumptions, the growth-
optimum model implies that the expected return ratio E[ (1 4+ R;} /(1 4 Ry} ]
is equal for all securities.” This implied equality of expected return ratios
was utilized in analysis of variance tests with New York and American Ex-
change listed stocks from 1962-1969 in order to ascertain the basic validity
of the growth-optimum model. The model was well-supported by the data.

The growth-optimum model was compared algebraically to Sharpe-Lintner
theory, which is probably the most widely-used portfolio result in empirical
work. A close correspondence was demonstrated between their qualitative im-
plications. For example, hoth models imply that an asset’s expected return
will equal the risk-free interest rate if the covariance between the asset’s return
and the average return on all assets, Cov(R;, R,), is zera. For most cases,
the growth-optimum model also shares the Sharpe-Lintner implication that an
asset’s expected return will exceed the risk-free rate if and only if Cov(R,, Ry)
> 0. There are, however, some cases of highly-skewed probability distributions
where this implication does not follow for the growth-optimum maodel.

A close empirical correspondence between the two models was demonstrated
for common stock returns. The procedure (1) estimated returns and risk premia

19. For a more detailed discussion of this point, see Friend and Blume [1970].

20. The greatest difference between '5.1 and Bl is 2 which is only about 2.3 per cent of their

average value, Between '50 E’u' the greatest difference is about six per cent of their average value.

A close connection between the two moadels was previously implied by the wark of Young and
Trent [1969]. They showed that the geometric mean of partfolio returns was clasely approximated
by funetions of the arithmetic mean and variance of returns. These functions were developed as
approximations to the geometric mean. For accuracy, they require a minimal amount of skewness
and are, therefore, analogous to the truncated (after two terms), Taylor series expansions of
log, (1+R).

21. R; is the rate of return on security j and R | is the rate of return on a portfolio of all assets.
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implied by the two models from time series; (2) calculated cross-sectional
relations between estimated returns and risks; and (3) compared the cross-
sectional relations ta the thearetical predictions of the two models. They could
not be distinguished on an empirical basis. In every period, estimated corre-
sponding caefficients of the two models were nearly equal; and indeed, they
deviated much further from their theoretically anticipated levels than they
deviated from each other.
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