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Theory and Methods Sectlan

Parameter Estimates for Symmetric Stable Distributions

EUGENE F. FAMA and RICHARD ROLL*

Building on results of on earlier orticle [6], estimatars are suggested for the
scale parometer and choracteristic exponent of symmetric stable distributians, ond
Monte Caorlo studies of these egtimatars are reparted. The powers af various good-
ness-af-fit tests of a Ge thesis agoinst non-Gaussian stable alerna-
tives ore gisa investigated. Finolly, o test of the stobility property of symmetric
stable variables is suggested and demanstrated.

null hyp

1. INTRODUCTION

Stable distributions' are becoming more common as
data models, especially in economies where many in-
teresting quantities can be expressed as sums of random
variables,? (see e.g., [5, 11].) Such empirical efforts have
been hampered by a lack of known closed-form densities
for all but a few members of the stable class. In [6] we
attempted to alleviate this problem by supplying prob-
ahility tables of symmetric members of the stable class
and by studying estimators of their location parameters.
In this article, we suggest estimators for the two remain-
ing parameters of symmetric stable distributions, the
scale parameter and the characteristic exponent.? In
addition, we examine two test procedures that may often
be useful in data analysis: (a) goodness-of-fit tests of
normality against nonm-normal stable alternatives, and
(b) tests of the property of stability.

2. AN ESTIMATOR OF THE SCALE PARAMETER, ¢

An estimate of ¢ can be obtained from sample fractiles.
If the appropriate fractiles are echosen, the estimate will
be only slightly dependent on «, the characteristic ex-
ponent.

In particular, the .72 fractile of a standardized (.e.,
§=0, ¢=1) symmetric stable distribution is in the in-
terval 827 +.003 for 1<a<?2 (see [6, Table 3]). Thus,
given a random sample of N observations, a sensible
estimator of ¢ is

¢ = (1/2(.827)) £.22 — £.1s), (2.1)

where # refers to the (f)(N-1)st order statistic, which

* Eugene F. Fama is prafessor of finance, Graduate Scheol of Busineas, University
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Industrial Adminiatration, Carnegie-Mellon University., Reaearch on this projeet
wad supparted by a grant from the National Seiense Foundation, The authors are
indebted to Harry V. Roberts for penetrating comments and ta the associate editor
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1 References [6, 7, 8, 14| provide compact treatments of stable distributions.

¥ Btakle distributions are the anly pessible limiting distributions for sums of
independent; identically-distributed random variables, {7, pp. 168, 302-8].

# For gymmetrie stable digtributions, the log sharacteristic function is £ 5¢ — et |9,
where i is an argument, { =+/ —] and the parametera are: &, location ; ¢, seale; and a,
ehgracteristic axponent.

is used to estimate .4 and x 7, the .28 and .72 fractiles of
the distribution of =z,
This estimator has an asymptotie bias of less than 4

‘percent [6, pp. 822-3]. Being a linear combination of.

order statistics, it is asymptotically normally distributed
with variance [2, p. 368]

°5) NQ(-QS)(.?2—.28)( 1 \?
T Npte, P 1.654)’

2.2)

where p(a, f} is the density of the distribution of z at
the f fractile. Since symmetry is assumed, the distribu-
tion of ¢ is independent of the location parameter of the
underlying random variahle, 2. The scale of z affects the
asymptotic variance of ¢ through the density pla, .72)
which appears in the denominator of (2.2). For a non-
standardized symmetrie stable distribution {i.e., ¢=1),
a2(£) is, of course, ¢? times the value of ¢2(¢) for ¢=1.

Table 1 reports the results of a Monte Carlo study* of
the praperties of ¢ N is the sample size and % the number
of replications; E(£) is the asymptotic expeetation of &,
obtained by substituting the true fractiles z 7. and z .4
into (2.1); «(£) is the asymptotic standard deviation,
obtained from (2.2); €, éme and & are the mean, median
and standard deviation of the Monte Carlo sample
values of ¢; and SR is the studentized range (i.e., the
range of the Monte Carlo distribution of ¢ divided by its
standard deviation &),

Differences between ¢ and the asymptotic expectations
E(&) in Table 1 (which differences are largest for small
a and N) are due to finite sample bias of sample fractiles
as well as to sampling variation. As one would expect,

+ Monte Carlo samples were abtained as follows. First 54,900 “cumulative prob-
ahilities” {i.e., random numbers fram the uniform distribution U6, 1)) were gen-
erated. For each randomly chosen cumulative prabahility, the numerical inverse
tunstion of {6] was used to obtain the seven standardized (8 =0, ¢ =), aymmetric
stable random deviates corresponding to « =1.0, 1.1, 1.3, 1.5, 1.7, 1.9, 2.4, Tha re-
sult ia seven samples of 69,900 abservationa, but the samples are nat independent
since the #th cbeervation in each carrespands to the asme cumuiative prabability.
Thig ia actually an advantage since, as we ahall gee, it tacilitates comparisons of the
sampling properties of a given eatimator for different values of o« For each « the
random numbers were grouped on magnetic tape into five blacks of 11,880 each, The
number of replizations n ia simply one less than five times the largest integer less
than oF equal ta 11,980/4,

The Maonte Carlo results will depend on whether the 59,900 cumulstive prob-
abilities conform well ta I7{0, 1). The papulstion mean, variance, second moment
and third mement for {0, 1) are, respectively, .5, .0833, 3333, and .25; the sample
values are (500018, 082991, 333007, and .249404. Finally, a chi-square test of the
sample cumulative probahilities against U(0, 1), using twenty ¢qual sehintervals of
length .05, yielded the value 19.027—just slightly above the median of the chi-
square distribution with 19 d.f. We canclude that the sample conforms extremely
wellta UG, 1).
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Toble 1. SUMMARY STATISTICS OF MONTE CARLO DISTRIBUTIONS OF ¢
v B z SUPR: S 7S B < G4 & 9@ SR T b, & a@) =
N = 24 n o= 1494 N = 49 n = 1119 M=74 n o= 804
2,0 .997 1,03 1,022,259 157 6,78 1,013 1.01¢ 178 180 7.09 1,003 .996 14l 147 6.57
1.9 ,999 1.044 1,029 263 ,259 6,82 1.017  1.0l4 .180 .182 7.10 1.007  1.000 .l42  .148  6.57
1.7 1,002 1.057 1,038 ,273 ,265 6,92 1.024 1.020 185 185 7.1 1.012  1.004 .146  .151 6,56
1.5 1.004 1.074  L.051 201 ,272 7,19 1.092 1,024 194 .l91 7.19 1.017 1,007 .152 .155. 6.58
1.3 1,003 1.102 1,084 ,324  .284 7.792 1.042  1.031 .208 .139 7,252 1.023  1.011 .16l .12 .70
1.1 1,001 1,151 1,088 ,390 ,306 &,538 1.060 1,040 236 214 7,318 1,033 1,013 178 .I175  6.887
1.0 1.000 1.1s1 1,110 .446 .326 8.962 1.076 1.051 L3259 237 7.3 1,041 1,017 .l9z .i8s  6.97%
B =99 n=604 Wo=199 n =299 W=299 n =199
7.0 997 l.000  ,998 124 ,127 6,56 996 .95 03l 089 5.91 994 .99 072 073 5.84
1.9 .999 1,003 1,000 125 .124 6,57 .9%9  ,997 892 .09 5,91 997 ,999 073 074  5.85
1.7 1.002 1.008 1,006 128 .13l 6.60 1,002 1,061 ,094 092 5.90 1,001 1007 074 .075 5.85
1.5 1,004 1,013 1,009 133 .13 6,64 1.005  1.002 .09  .095  5.89 1.003 1,004 077 .077  5.84
1.3 1.003 1,017 1.013 .14 .l40  6.71 1.007 1.005 102 ,099 5,48 1.004 1,004 .080 .08l  5.85
1.1 1.ool 1.023  1.015 .14 .151 4,798 1,009 1,005 111  ,107 5,83 1.004 1.003 .097 087  5.85
1.0 1.000 1.0 1.014 .165 .160 6,858 1,012 1,007 .11%  .113  5.80 1,006 1.004 092 ,092  5.59
M =399 n=l4g W =499 no=119 N=599 =299
2.0 .997 .994  ,994 061 063 5,49 L4993 .989  .053  .056 5,29 .994  ,995 051  .052 5,20
1.5 .999 996,997 061 064 5.48 .996  ,992 053 .057 5,29 .997  .997 .45l .05% 5,20
1.7 1,002 1,000 1.000 L0632 L0865 5,44 599 4995 054 L0598 5.28 1.0400 1,004 L0532 L0533 5.19
1.5 1.004 1.002 1.001 .064 .067  5.47 1,001 .997  .056 060 5,29 1,002 1.002 .05 .055 5,19
1.3 1,003 1.002 1l.001 .067 .070 5,47 1.001  .998 .05¢ .063 5,3Q L.002 1,002 056 ,057 5,17
1.1 1,001 1.002  .999 .072 .075 5.46 1,001 .9%6 063 ,067 5.3l 1001  .999 060 061 5.17
1.0 1.000 1,003 .999 .077 080  S5.46 l.oar  .998  .067 ,07L 5,30 l.00L 1.000 063 .065 5,14
® Significantiy different, at .90 level, from SR, for the normal distributior. Far the sampling distribution af SR, see [2].
é—E(¢) declines as N increases and in all cases® ¢ is , =
) ) ., . . — HLLEUT -
within the interval E(£} £ 2¢(&)//N. 26 18 L7 f6 1.8 1.1 1.0
I i ~ -
Moreaver, .exc?ept when both & and N a e ﬁn?all,.the NAD G/ v o2l 106 1az o6 129 68  ess
standard deviations & of the Mante Carlo distributions wmap ) L0413 L0416 L0434 0436 0458 L0488 0515

of ¢ are close to the asymptotic values ¢(é), and the
studentized ranges SR indicate elase fits to normality.®
In short, even in small samples the distributions of Z
conform closely to their asymptotic counterparts.

When a sample is known to be drawn from a Gaussian
digtribution {a=2), the sample standard deviation § is a
substantially more efficient estimator of ¢ than ¢. When
a=2, ¢?=5%2, where ¢ is the population variance. Thus
§*=2 for the standardized symmetrie stable distribution
with o« =2. Sinee in the Gaussian case the asymptotic
variance of § is §2/2N, the ratio of the asymptotic vari-
ances of the two estimators of ¢ is Var(s/+/2)/Var(é)
=.314.

But this loss of efficiency may not be a large price to
pay for the greater robustness of ¢ when « is unknown.
When «<2, the sampling dispersion of 3/ +/2 inereases
rapidly as « decreases. For example, the mean absolute
deviations of the Monte Carlo distributions of §/+/2 and
& for N =599 were as follows:

¢ These cases are not independent, however, besause of the Monte Carlo generat-
ing scheme, Sae Foatnote 4.

s The close fita to pormality of the Monte Carla distributions of € also have been
substantiated by chi-aguare tests and normal probability plots.

The mean absolute deviation (MAD) itself has been
suggested as an estimate of dispersion when the sample
may have arisen from a stable non-Gaussian process. But
Monte Carlo investigations of the MAD indicate that it
ig less efficient than & except when & is close to 2. More-
aver, the expected MAD is dependent on «. For example,
sample means and standard deviations of the MAD and
of ¢ obtained from 101 Monte Carlo samples of size N
=299 were as follows:

o R
MEAIUrE
g0 18 1.7 1.5 1.8 11 1.0
2 996  .998 1.002 1.004 1.005 1.005 1.006
&) 067 .068 .060 071 .075 .081 .086
MAD  1.123 1.17¢ 1.360 1.747 2.655 5.017 7.723
&(MAD) .043 .057 .140 .501 1.688 4.776 8.941

3. ESTIMATORS FOR THE CHARACTERISTIC EXPONENT o

The characteristic exponent « determines the “type” of
a symmetric stable distribution. Stable distributions are
more “thick-tailed” the smaller the «. With standardized
distributions, for example, the .95 fractile decreases
monatonieally from 6.31 for a=1 to 2.33 for a =2.
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Table 2. MONTE CARLO DISTRIBUTIONS OF &; FOR =93, .95, 97 99*

arametar 1.0 [ 1.1 1.5 L [ L.d
ihrantile = 3 o = T T T = e = - = < = = = T " - = =
By By Bg B Ty Eeg fa R ey Tag R R by g Aty a1 Ty Fa Fgy a1 R Fg gy Ggp Fay Ty g
ERTR R
H Lal LAl Lae o L Ly Lk 141 Lsa LeF Lk Ll 13 Lw LN Ll Lan Lo 14 13 I LT R - T 1)
ned) FET TR T} REAET: Tt | B W L L) Wl L2063 .26 13 las AL 281 Ll [ alew 1) L1411k [EE )
610 L1y L L3R Les L. L3l .m Lar Lal .63 .61 a KLl .81 Az = s 9 Pk .1 .l g -4l
a5 leh LAz Léz  L.te Lier L.ab o L.oé L7 1.18 L.t &7 (Y] (W.0) R B ¥6 LE] L) L 217 3% 4 436
T L5h L8 LE] La Ll L Ly Lo L R Lo L6 KZ] A0 A ] EH .82 R TR R P |
4158 1éh LIz L9 Las L.k [T L] L3t L2 L. [T} [T [T L N Rl EE .41 .7 -Hr p:Ll Hh Bl
S oud kd1 LAY l4n L9 L.8s L.61 L.3% 143 1.43 L.41 (95} () [} L L1 1.al 1.0% L% ALl -7 -9 Bl )
5L .80 240 Lo 2.0 won Lra |70 Lod 1.40 Lgs (1 Ly L6 L3 1.30 Loy (5] [ L.1o Las 1oy las -39
Ll 184 a0 260 .40 #,00 Lad L 1.5 L v L.ta L.ad [PEL) (1] L.oh 1.4 b 1.2 L.2é L.23 Ld lia Ll L1
50 .00 .00 2,00 1.0 2.00 .40 L.48 o L. L.z L.1o (W) L.ék (%11 %1 1,08 104 L34 (9] L5 L3 LI L
430 ja0 140 240 .00 .40 r.o0oL,9 A0 2,40 r.00 L.ga 2.00 (- L1 [T 1.8 L3 L.48 L4 1,19 L1y p1x L3
M5B £ E1) 13 At L) A4 LAy AL A -hE L.de a4 416 Pl Loaz i 6 L £ .73 W2 .n -5
LRt
o= lyy, n o= 399
- TAT LA L1 L LE LB LS Lo L L e e LAl Lab ks L oL L Ll 1.48 Lae e La T T R
aid T LYY R T I 1 BT ERRT BT BT L TR BN T 1 NS BT EE T a3 el Lliz el e T T Y ool LeE Lo Lles
LAl Laa 157 Lde LT L46  L,5% 1,580 L4l L= L8 L1 L1y L2z 1.22 L a9 1.6 1.4 B 15 EL k1] -8 b Bl .1 k] .58
a8 1,3 Laa 1 L LA Ls% Lén Ll Lad L Lab Ll Lin L3 L& |ae L Loy Ly -4l 21 BT - .T6 PR R
N} 161 Lt LJa Lag L5t Lex  Lés  L.&7 145 Lad Ll L Lu o ot L T e L Lae L .93 .91 K1) L T N )
W35 Laa L3 LA L84 Lad L7z 1,1 LT? L.53 L.54 L33 L5 L1 L1 114 L1 1.3 [Pl L4 Lo [F. S 1.4L +.40 .41 41 L4L L 281
Bra 198 LAl LwoL.m LEn LAl LA Ls Lé8 Lg6 Le L Lad  1a)  Lak |ag L L L L Ly La?  Lgs ey I CIR E RN |
T3 7.0 oD r.oa Rub JA0 e LW L@ [I TR RO | Lar oL LS g LY L L LE La? Lz fuke LY L 105 103 L3
Lo X8 200 toa o 108 p00 A0 p00 wal o tag Led M U180 LET Las Lay LAl Lgs Lap o Leal 1.2 LA Lak oLm L L L Lia
T 1,40 2,84 1,06 2,00 1,06 2,00 3,04 sl W 200 L.9¢ LAy 161 1.13 LAk Las .51 L.ad 147 Lodk L [9%-41 1. 26 1.1 Ls ke LS Ll
Nt el 240 .06 2l p 0 o Lan 260 R ¥.00 P TY IR ) I L83 1.7 L.t Lol Lt [ Lt [ L3l (L] L L3R L Ll
HAE. P N gy moar L ) Ll A s BT} L ) i T Rt L B T it “u . Bt a i
ERT)
v a8, e Lyt
- IO TR I HE o dms Ler o iow [T L b e ke L oLl Lk 1,88 laa  Lud e ST T B
acdl T PTR T TR LTl atw e Clet Ll e kse am RN Lot TR T H TR T Y 3t
L 147 .5 142 L8 Lel  Laf Lt t.sd [T Le e L 4% LOs Lo Law Kl J8E a4 oy .b§ b 14 [
oz Led o Led LM L AL Led Led Ly Len Ll [FE SR VS TR UE TR O 1 [ O O -1 96 R Rl K R B O T
Nt bed o LIL L] LA LEL Leh LAl L La L LI L L e L6 LLe a2y a0 a8 KH . T e L LAy m
L LAl LBy LB L9 LIa  L,7% 1,29  LHL L Ly Lda Lal LAl e L LmoLn L [ Ley L .t R T
ad L9g a1 LgE L9 LPL: IR L LR O T (L) 1.eg L.5a L.3g L.%8 Lass L.aa L. 1.21 Lo L, la (1] [Nt Lios 1.u0 Bl Ll £
13 140 o ron oo LAl wea L L L1 La L rad Lad o Lm L L3 L 1L LLs Lls wle Ll Las Las Lo Lae
Bl QA0 248 86 nEe pan p08 340 b0 Lo L9l Lopa Leb L&d Ll Lad  Lad ki Lz L2 LIl L LA LW Ll e 1l
a3 ya0- P00 ran 3,00 J.00  Rea pa0 pO8 L a0 LA LA Lth LS Lad 1l L [ L LM L 113 Lkt L Ll
K .80 10 reon 2,00 Lge ¥ 140 rae PRI T [T N WS ) s l.4n L4 L L L3 L% L Lk L2 L4 i1
"'i'fa' JET I E RS BN 1) A om a1 T} .az e Rt} .11 0 1z .11 .la .1 .08 .08 TR TR ST R Y
oe A, oozl
¥ L Ll Lt Lige Laa Lbe 184 Lot in L LA LL64 L.aL (5] L.ag Latd 1.3 L 1% L L.36 L. L.09 (R 146 l.et 49 ALl L98
w il S5 wdd T3 5 Jla1 L33 Oge 08 .154 Lia Lla3 Ll L6 <l -0y i A8 gy Lk -lls LAle -5 KLY -107 R T R L 1 ]
.41 1.5 1.43 LT L,8L L5310 L5810 L&t L5 L.40 1,43 Lag Lo L.a? L 1.31 L.ak L.1L 1,09 LLx A <47 At .81 W5 A5 -3 el il
o L LER L9 L [ B T B O B % L&t 1,51 L35 L4 1,31 [0 L35 L.2e L1t Lis L& Lo -39 26 W7 W28 Ay AT L] 24
- Llug 1L 1,95 L4 L8l Las L8 138 107 L3 [P Lad L.28 L.at 1,18 L1y L.1g LLg L1 L.la L. LAG Bl a2 A B Bl .8
57 g Lk Les LA 114 LT3 1,99 L L3 LEa LEb L Lel.  Lal Ler  Ln [0 R VT O T 141 Loy LAy 91 B T T |
& o L Lee 1) L9 Lso LAd LAt LT Ltg 19 L.ag 1.8 L,50 Lad Liag Lodg g 1.8 L L.aa L1 L.oa L4 148 L,00 Bl 39 BL
L5 Lie 304 248 Lo 1M 1| L1 Le LA1  LAs LTE LT4 Ll LST o Lis L Lo L& L Lo Lt L3 L Lls Lok 18 LAl L
sau 60 300 180 240 3,00 140 380 340 Lan e L L7 Lad o Lal Ldr L La2 L4l kAL AL Lol Ly L 1 Léy 1A Lo b
1] red o0 300 .40 2,00 1,00 .00 1,00 2,480 L.43 L4l Lk L.Ta (1] L.&S L.al Lokl L.41 L4l L&Y baa1 L2 b2l 1,33 L2 Ll Lalz kL
L .00 300 3,00 140 #0440 100 340 2.4 .04 2,44 Lo (.5 [PEF] L2 .72 142 1,44 [PEES L.51 L.2¢ L.2a L.z LM 1le 11F L1} w2
i L e LT e e et -1 ALl -8 - -G Nt K] -4t .0 .16 K £ o L3 T O R ¢
Houats, o=l
i LAl LA Les L.aé [ 2 B 1 B L N L Lt Laa Lt Lag | Lsg L.ad L. L (3] 1.2 bola 1.0% L baa? 1. Mo o7
wii| Plbs 082 A8 [ ) A LM ags 095 134 112 .Lan 81 ar7 s N iy A AT Ll NTH N KLty -09% 457 0% 081 091
any LAl Lde LD Lea Lt LAl 1,8 L5 L Lt L La LA Lo L L L a8 a4 K] KTl 1 T ] 4
A6 L& 1,71 LAl LLAé Lal  L.ed 106 118 L.48 154 Lo L.ds L. () L1 L.l% L.1? 1.4 1% 1.40 Ll Ay Bl B L L) L2
aa L3y L7 L e L& LI LM LT L4 L.t L1 L.3g [P LI L.l% 24 L.2d Lkl L.l Lal [ .1 W91 Ar 9 B4
28 LA L Lw L L& 178 bl L) L&k b4 Labi L&l LAY L L3 LI Lt Lk L6 Lok L L0 D L L L] -3l
swu L1 L Lgs Lo Leo L.ag 1,88 L.48 Ln 1.6% r.s0 bt Liaz [Ty (%] L% (%1} 1.3 1,049 1.0y Lo L4 (¥ FLL T .Y o4T
154 2,00 3,04 A0 304 20 .08 1.4)  L.42 L.&a 1.7 LA [Py L35 1,54 L.15 [P Y L4 1.3 114 (=] Lk L.l Las Lol Lol . Lk
-900 140 300 3,40 1,00 2,00 140 3,080 L4 l.42 L.ay (1] L.&g 1.3% (911 L L 1,38 1.4l 1,14 1l L.1? (1) 1.4t L47 L7 (1)
Sa 140 :aoa .o .08 .00 31,00 2,00 3,00 188 L3 L.t 1.4 1.6% 1,63 1,43 AL L.uL 1.43 1.8 1.k 1.16 L.11 LAy 08 Lod 112
LF 2.4 not 208 r.od 2490 104 200 100 140 2,00 L.gd Lt e 1.7 L4 (3] Led hads 1.1 Lt [P L.as L1r L1E L L
K':" -l - ab b Bt -1 a ab -l ) ala 4T L Nl b ALEH .04 b o .0s L] abE A1 LA o At
[ L ]
H . L, 11 LLAL L. .49 L.a3 Las L0 (3} L.le L 4 o0 Lat e 81
& [T L I Las Lee 1A L n lor s ari 0% e an \asy 46 e T lase .ese Las) ek
&bk PRTS IS ST L 1) I FL L N -118 a1 . . o & A PR 11
. Le 1,72 Ly L LAl LEY L5 L3k Ltr Lk L1 oLn L Ly L L 1.03 . K1) ! .85 ETI - a
K et 8 LAl Ly LEs L4114 LT} (513 158 [P L.a [ L3 L] L2k 1.4 A 1,01 A9 2¥1 -50 FLE L] o
[ L4 Lkl L1 L.ag L.zt 1,14 L6l Lol Lt .0 5 LT I 5 § W87
ala LA ke LB LM LA i La o LA L.3e 1. L. -
FE:] LAy LA L kg LIE 4,709 181 LA L.ag Ll L.42 L4} Lt L4o Lods L4 L.xl Lot 1. L.0% L4k B B -9:
iy Leb L# LA LW LBe iy LA8 e Lag  L8q 148 Lag LaE s 1Y L3y L1t Ll 1o Lae Lk et .9 L g
L
. " Lo 1.54 L.56 (%1 [PERY [W=L] L.as k32 (S 1.4 L.l1 L1 1.3 L L.8) 1,42
-1 T T TR Vel Lsa Lo hss v U T O R W T Lo Lar Lo Lar
Tm 260 3.4 1,08 340 04 180 186 L4 Lt s . .
' 80 o0 p00 300 B4 340 L.8s 3,40 L TS 149 Lds Lz kB 1ok Lt L4l 1.2 Ll Lae L3 L Ll Lot L1l
A9 .40 240 2400 3.4 ro0 2,00 100 bLOD 40 i.00 1.8% (L) L.61 .23 1.43 L.as L4d LA hodt ; 1,1t L3y LIS 1,11 LlL 1.2
e e .w LAl 8 .3 . a8 NUREATY T B BN o R -au LI L

& N denotes sample size; n denaotes number of replications.

This behaviar of higher fractiles suggests a simple esti- and the eumulative probability f into o, and % is the
mator of e from order statistics. For some large f (for samplefractile given by (3.1).

example, f = .95) first caleulate An “optimal” value of f in (3.2) apparently cannot be

. _ i determined analytically. An ineentive to choose large

PO (.827) =ty 3.1y values of f is that differences between fractiles for differ-

! 2¢ E72 — £.28 ent values of « increase with f (see {6], Table 8). On the

. . other hand, the sampling dispersion of a fractile estimate

from the sample. Given that  is a symmetric stable vari- inversely proportional to the density of the underlying

able with exponent a, and scale ¢, % is an estimator of thef  gictriution at the chosen fractile, and the density will

fractile of the standardized symmetric stable distribution  goiline a5 we choose fractiles further into the tails of the

with exponent a. Thus an estimate of a can be obtained 54 1ihution. Monte Carlo experiments remain as yet the
by searching a “table” of standardized symmetric stable only approach to this problem.

c.d f.’s for the value, eall it &;, whose f fractile matches % Tables 2 and 3 report Monte Carlo sampling distribu-

most closely. Formally, tions of & for five values of f in the interval .93 <f<.99

& = G(f, 4) (3.2) a:r}d for nine sample. si‘zes N. The tables show the means

(@), standard deviations (s(4€)) mean square errors

where & is a function that uniquely maps the fractile 2z (M.B.E.), medians (dmes), and other selected fractiles.
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Table 3. MONTE CARLO DISTRIBUTIONS OF &g FOR N=24, n=2494; N=49, n=1219; N=74, n=804

o

2.0 1.9 1.7 1.5 1.3 L1 L.0
Pzrametar =
... fractila ¥
4 49 T4 24 &y 74 2 49 14 24 49 14 2 49 74 24 44 T4 4% 49 T4
S 1.77 L83 1,85 1.67 1.7 1.8 148 1,60 1,66 1,30 L1.41  1.44 L1l L.21 1.2 5 Lol 1.4 86 .92 .95
1(d L2500 195 172 Lae8 L2201 194 36l L2689 L228 L3867 2N L% W47 L0253 .28 W15 L2200 191 .89 203 A7
a1 L16  1.32  1.42 88 1,26 1.4 66 1,02 1,14 TR PR A5 69 .79 08 .57 .68 6 W51 LB
.05 L3l 147 1.53 LIl 1,38 1.4 88 1,18 1.28 g1 .88 Log 60 82,92 50 .68 77 W45 62 L4
. 1.3¢ 1,53 1.59 1.25 1,45 1.52 Lal 1,26 1,35 A3 L7 1,15 0 .80 .94 58 .75 .82 .57 6B .T%
.25 157 1,68 1,72 Lk 1,59 .64 1,22 L4l L.47 Loy 1,22 1,28 47 L6 1,10 270 .86 42 65 .78 L83
&y 1.8 1.90  1.93 .76 1.40 1.a3 1,48 1,58 1,42 1,27 1,38 l.4z 1.08 l.13  1l.12 Al L8 1.3 JE:: T TR
18 2.00  1.00 1,00 2.00  2.00  2.400 174 1.82  1.80 1.52 1.57 1.97 1,32 1,36 1,34 .1z L.l 1,14 l.gz  L.05 1,04
.90 2,00 2.00  2.a0 2,00 2,60 2.00 2,00 2,00 2,00 1.86 1.80 1.79 1,57 1.5 1.5% 1,35 1.0 1,30 1,23 1.19 1,18
.95 2,00 2,00  2.00 2,00 2,00 2,00 2,00 2.0 2,00 2,00 1,97 1.91 1,80 1,64 1,63 1.49 1,40 1,38 137 l.a 1,27
.99 2,00 2.00 2,00 2,00 2,00 2.00 2,00 2.00 2,00 2,00 2.00  2.00 2.00 2,00 2.00 1.48 1,63 1.65 74 148 148
Hisi%' 1.15 .67 .52 148 .46 L4 1,78 .82 .46 172 .81 .58 187 .12 1 125 .57 .4a .03 .48 L34

Sinee the value of « for a stable distribution must be in
the interval 0 <e <2, observed values of 4, greater than
2 were assigned the value 2. No values of 4, at the lower
bound a=0 were observed in our experiments—hecause
we only generated data for distributions with 1 <« <2,

Concentrating on Table 2, when «>1.9, the best esti-
mator, in terms of both low bias and standard deviation,
18 &.as. This reflects the fact that when « is cloge to 2, one
must laok further into the tails of symmetric stable dis-
tributions to find noticeable differences in the values of a
given fractile for different values of « (see [6, Table 3]).
And large samples permit one to obtain reliable estimates
of these extreme fractiles.

But if one does not have both a large sample and
knowledge that the true value of « is elose to 2, then
& a9 is a relatively poor estimator. In terms of both mini-
mum biss and dispersion it is dominated by both Q.
and &7 when @ <{1.9, and its inferiority relative to these
two estimators is more substantial the lower the value of
[4' 8

When « is elose to 1.0 there is no substantial advantage
in using estimates of & bhased on fractiles lower than the
.95. For example, in Table 2, the standard deviations of
&g are never substantially lower than those of either
& g5 oF & q7; indeed s(d 4s) and s(4.e7) are always lower than
s{@.e) when «>1.3, and the dominance of these two
estimators is stronger the higher the value of «. Though
not reported, values of f<.93 have been also tried {(e.g.,
F=.90, .85), but the sampling distributions of &, obtained
were more dispersed than those for f > .93.

Tables 2 and 3 show that all &, estimators have some
downward bias for all values of « when N <99. For
larger sample sizes and for a<1.7, the estimators &g,
& 95, and & o7 show trivial bias but more usually none at ail.
In large samples the bias of these estimators when « is
close to 2 results from the truneation of the sampling
distributions at the value 8=2.

But though @ e and & .47 are “robust” relative to other
estimators in the ¢lass defined by (3.2), they may be in-
efficient wis-d-vis other classes of estimators. &, has few
competitors” and two we had thought most promising
were tested.

First, sinee sample fractiles are not perfectly positively
correlated, some average of & for different values of f
might have a lower sampling dispersion than o; alone.
But choosing an aptimum average would itself be a diffi-
cult problem. We know that for f<.93, 4, is not in-
dividually as reliable as for higher values of f. On the
other hand, closely adjacent wvalues of f would cause
components of the average to be highly intercorrelated.
One compromise is the composite estimator,

61 = [d.03 + 6.95]/2.

But in our experiments & turned out to be slightly more
biased and to have slightly higher standard deviation
than & g7.

An estimator completely unrelated to &, was suggested
in [5]. A sum of m independent, identically distributed,
stable variables is stably distributed with the same
characteristiec exponent but with scale parameter

Cm = Mm%,

where ¢; is the scale parameter for individual terms in the
sum. Solving this expression for « and substituting esti-
mates of ¢, and ¢; gives an estimatar

4. = log.m/(log. &m — log. &) (3.8)

We tested &, for 55 samples of size N =999 and sum-
ming intervals m=2, 5, 10, The scale parameters esti-
mates 2, and & were obtained from (2.1). That is, for
each sample of N =999, (2.1) was used to compute £,
then to compute & for non-overlapping sequential sums

? Indead, to ohtain 2 feeling for tha frustrations met in earlier attempts to esti-
mate a«, sea [5].
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Table 4. POWERS OF THE SHAPIRO-WILK STATISTIC (SW), THE STUDENTIZED RANGE (SR), AND a4
AS GOODNESS-QF-FIT TESTS FOR SAMPLE SIZES N=24, 49, 74
o
PR{1) 1.9 1.7 1.5 1.3 L.1 1.0
sW SR & o sW | SR & o S0 SR & s SR &g W SRO& sWoOSR &
N = 24, n = 249
.010 .08 .07 .06 .23 .19 .20 T I 7 .59 .46 .59 .76 .56 .79 .83 .59 .86
L0L9 .10 .09 .08 .28 .25 .28 Y I R Y1 65 .57 .66 .41 .68 .84 .87 .70 .89
.048 Jd4 0 L6 .13 L3200 .36 .32 .52 .54 LS54 70 .69 T4 L84 .78 .88 .90 .81 .93
096 .19 W22 .19 A7 Ak A0 A7 63 .62 T8 .75 80 .86 .83 .92 .92 .B& .95
N =49, n = 1219
010 L6 Jlh Loz V% YA S X 7L .66 L4l a8 .81 .71 .97 .89 91 .98 .92 .96
.030 18 17 .06 A5 W4T L2 75 L7l LS54 .90 .85 .75 .97 .92 .95 .99 .94 98
049 .22 .35 L1l 510 .60 .32 77 .80 .62 .92 .91 .85 .98 .96 .97 .99 .96 .99
.098 27 .3 a7 .56 .69 .43 81 .86 7L .93 .94 .90 .99 .97 .98 .99 .98 1,00
N=74 n = 804
~olo .21 .25 .03 .55 .63 .18 .83 .84 .51 W96 L9483 .99 .98 96 .99 .99 .98
020 23 .26 04 .58 .65 .21 .86 .85 .55 J96 95 L85 .99 .98 .97 .99 .99 .99
.050 27 L3 .10 W62 .74 L34 .88 .91 .é9 g8 .97 90 .99 ,99  ,98  1.00 .99 .99
.99 L3 LA 7 .66 .78 A5 .90, .93 78 ] .98 L4 99 .99 .99 1.0¢ .99 1,00

of two observations and then similarly for sums of five
and ten. The results of our tests for each of the three
summing intervals were clear cut: & is an inefficient
estimator relative to 4.7 In every case the standard
deviation of &, was at least twice that of the correspond-
ing distribution of & .47.

In short, for .95 < f<.97, the simple interfractile esti-
mator &; has sampling properties that are “robust” against
variation in the true value of «. This estimator has high
reliability in large samples and is more efficient than the
avallable competitors we have tested.

4, SOME GOODNESS-OF-FT TESTS OF NORMALITY
AGAINST MON-MORMAL STABLE ALTERNATIVES

Models based on normality assumptions are commonly
justified by appeal to the Central Limit Theorem, since
the variables under consideration are often sums of
random variables. But the Gaussian is just one member of
the class of limiting distributions, so that other distri-
butions for which the Generalized Central Limit Theorem
also applies (viz., non-normal stable distributions) are
appealing alternatives in goodness-of-fit tests of Gaussian
null hypotheses.

Tables 4 and 5 report the powers of several goodness-

of-fit tests of normality against non-normal symmetric
stable alternatives. The test statisties examined are the
Shapire-Wilk (SW), the studentized range (SR}, and
& for f = 96, .99. Let 2; be the jth order statistic from a
sample of size N, Then the studentized range [3] and the

- Shapiro-Wilk statistic [13] are defined as

SR = (4 — 1) /[N 1_ N pIARCIE 5)*]”2,

SW = 30N awosalwips — )/ e (s — B
where % is the sample mean of the’ﬁj, I(N/2) is the great-
est integer equal to or less than N/2, and the weights
an—js1 are the approximated coefficients suggested by
Shapiro and Wilk {13, p. 596]. The statistic & is, of
course, the estimator of « defined by (3.2) and discussed
in Seetion 3.%

8 The snalysis surnmarized in Tables 4 2nd 5 was alsa performed for the follawing
goadness-of-fit statistics: Sherman's statistic [15]; the Kalmaogorov-Smirnov [§],
Cramér-Von Mises [2], and Anderson-Darling [1] tests; Durbin’s [4] Modifiad
Median, Madified Probability, and Modified Kolmogorov tests; and chi-square with
0 d.f. In aach casa these statistice had lower power than SR and W for the sym-
metric stable alternatives considered. Of course, it is not too surprising that S8R and
AW parformed better. They wera specifically designed for a Gaussian null hypothesis
whila the other testa are distribution free.



336

Journal of the American Statistical Association, June 1971

Table 5. POWERS OF THE SHAPIROQ-WILK STATISTIC (SW), THE STUDENTIZED RANGE (SR}, AND o g
AS GOODNESS-QF-FIT TESTS FOR SAMPLE SIZES N=99, 199, ..., 599
o
1.9 1.7 1.9 1.7 1.9 1.7
PR(I} PRCI) ER(I)
8 SR & o swoSR & o swo SR & . SW SR & g SWo SR & s8R & oo
N =199, n =604 N o= 199, n = 299 N = 299, n = 199
.010 L230.33 .28 .63 .72 .67 .l L35 .54 .18 8L .91 .78 .010 4 LB 17 .86 .98 .42
.020 L6039 .30 65 7B T4 .Q20 L1686 L6222 .82 .94 .82 .00 450,73 L% .87 .99 .90
.050 L300 42 .39 .68 .80 .81 .050 A0 L6h L34 .85 .95 .90 .050 A7 ,75 .32 .92 1,00 94
.099 L3748 LS .72 .84 L85 .100 A3 67 b4 .87 .96 .95 L1040 49 81 52 .92 1,00 ,98
B o= 399, n = 149 N o= 499, n = 119 N =393, n=9%
.007 A9 .71 Lot .93 1.00 .95 . 008 .57 .84 .13 .97 1.00 .93 .01 .57 .90 24 .97 1.00 .96
.020 L T R X .93 1,00 .93 017 .54 .86 .18 .98 1,00 .94 020 .58 .90 .35 .97 1,00 .98
057 .51 .81 47 .93 1.00 .98 . 050 .58 .87 .14 .8 1.00 .97 050 AL 91 L6l .97 1.00 .98
. 100 ,55 .85 .97 .94 1,00 .98 .100 .58 .88 .62 .98 1.00 .98 . 100 L6l .92 .75 ,97 1.00 1.00

Monte Carlo distributions of each statistic were aob-
tained for nine sample sizes N and seven values of «,
ineluding null distributions for a=2. For 8W and &,
departures from normality lead to low values of the test
statistics. Thus, for given N and « <2, the power for a
Type I error PR(I) was the proportion of times the Monte
Carlo test statistic was below the PR(J) fractile of the
Mante Carle null distribution. On the other hand, since
non-normal stable distributions would be expected to
vield large values of the studentized range, the power of
S8R, given «<2, N and PR(I), was the proportion of
times SR exceeded the 1-PR{I) fractile of the Monte
Carlo distribution of SR for «=2.

As indicated in Footnote 4, the Monte Carlo data
distributions for different values of o are obtained from
the same underlying sample of cumulative probabilities
so that when the null distributions are computed from
the Monte Carlo data, the resulting test powers measure
the pure effect of varying « in the non-null distribution.?
But in fact our procedures are dictated as much by
necessity as by virtue. Exaect fractiles of the null dis-
tributions of test statistics reported in Tables 4 and 5
have been tabulated [3] only for the studentized range,
and then only for a limited number of sample sizes and
fractiles.

For the larger sample sizes (Table 5} results are re-
ported only for & =1.9, 1.7. Lower values of o are omitted
since when N >89, hoth SR and SW have almost perfect

8 This should not imply, however, that true hest powers are reported in Tables 4
snd 5. Even though the Monte Carle sample sizes are large, there ia still enough
sampling variation to cast doukt an the seeuracy of the second digit of each entry.

power against alternatives with o< 1.5. For the sample
sizes reported in Table &, SR shows more power than SW
far all «. But for N =24, 49 (Table 4), 8W shows more
power than SR in some cases. This is in econformance
with the results of Shapire, Wilk, and Chen [14] who do
not consider the larger sample sizes. Even in the smaller
samples, however, the advantage of SW over SR is
marginal except for N=24 and a~1. Thus given the
relative difficulty of obtaining the ecoefficient weights
ay_;p1 required to estimate SW, the studentized range
SR would seem to be a good general technique for
goodness-of-ft tests of normality against non-normal
stable alternatives.

Finally, any procedure for estimating o can be used
as the basis of goodness-of-fit tests of normality. Tables
4 and 5 suggest, however, that & performs poorly as a
goodness-of-fit test compared to SW and especially SR.
On the other hand, although SW and SR work well in

Table 6. TESTS OF STABILITY
Differences fFor sums of
Distribution N = 999

2 5 10
Stable: & = L.7 1.699 -, 0161 -.0097 ~. 07491
{.066) {.088) (.165) (.205)
Stable: o = 1.3 1.298 -.0151 -.0333 ~, 1074
(.036) {.056} {.134) (. L74%
Mixture of Normals 1,031 L3773 _T425 L8331
(.21 {.064) {.112y {.135)
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C.D.F. OF STUDENTIZED RANGE
(SR} FOR N =599
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distinguishing the normal distribution from other mem-
bers of the stable class, they would not be very powerful
(vis-d-vis &,) in distinguishing among non-normal stable
distributions (and thus in estimating «). To support this
statement, we offer a single but representative example:
the Monte Carlo ¢.d.f.'s of SR and &.4 for N =599 are
shown in Figures 1 and 2. The overlapping sections of the
SR e.d.f.’s for adjacent values of & are much longer than
those for &.47, except betweon « =1.9 and « =2.0. These re-
sults, typical of other sample sizes and of SW, explain
why SR (or SW) is the better goodness-of-fit test of
normality, while d; is better in estimating the characteris-
tic exponent of a non-normal stable distribution.

5. AN EXPERIMENT TQO TEST STABILITY

Data analysis techniques based on sample moments are
embedded in the soeial sciences. Eeonomists, psycholo-
gists, and sociologists frequently dismiss non-normal
stable distributions as data models because

a. They cannot helieve that processes generating prices,
breakdowns, or riots, can fail to have second moments
{usually because the relevant variables are bounded); and

b. The widely ohserved “thick-tails® of empirical dis-
tributions could be generated, for example, by a process
that is o suitable mizture of normals rather than by non-
naormal stable distributions (ef. [12]).

The statement in {a) will be considered later. Now we
consider one way to check the statement in (b).

Our suggested test is based on the definition of the
stable class: every sum of independent stable variates
with a given characteristie exponent « has a stable dis-
tribution with the same «. Thus if we estimate o for an
entire random sample and then reestimate it for non-
overlapping sums of observations drawn from the sample,
the two estimates will tend toward equality (after
accounting for bias and sampling dispersion} if the sample
is actually drawn from a stable distribution. If the sample
is not drawn from a stable distribution but rather from
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& For each distrihution, only the extremes and every twentieth point are platted.

some process with finile second mament, the sums should
yield an estimate of @ closer to 2 than the estimate ob-
tained from the individual ohservations.

Table 6 reports an experiment with this procedure
baged on 55 random samples of 999 observations each
for (a) two stable distributions («=1.3, 1.7), and (b) a
process that is a Gaussian mixture in which a given draw-
ing is, with equal chanee, either from a normal distribu-
tion with mean zero and standard deviation s=1 or from
another normal again with mean zero but with s=9. For
each of these processes and for each of the 55 samples of
size N =099, 4,; was computed aecording to (3.2). The
means and standard deviations (in parentheses) of these
estimates are shown in the first column of Table 6. Each
sample of 999 was also transformed first into a sample of
499 non-overlapping sums of 2 observations, then into
199 sums of five observations, and finally into 99 sums
of 10 cbservations; and #.4; was estimated for each of
the three samples of sums. The difference between the
value of & g7 obtained from a sample of sums and &.¢
obtained from the corresponding unsummed data sample
was then computed. The averages and standard devia-
tions (in parentheses) of these differences are shown in
the last three columns of Table 6.

When the true process is non-normal stable, the esti-
mates of « drift downward slightly as the number in
the sum i& inereased. This drift is due to the known down-
ward bias in &.ar (see Section 3) that increases as the
sample size is decreased. On the other hand, the esti-
mated « from the mixture of normals increases substan-
tially as the number in the sum increases. For the samples
of 999, the mean estimated « is 1.031. For sums of 2 from
the same sample, the mean estimated « is 1.031-+.377
= 1.408, and for sums of 10 the mean estimated « jumps
to 1.864. The largest of the 55 estimates for the un-
summed data is 1.084. For the sums, none of the 165
estimates is helow 1.25. These preliminary results sug-
gest that our proposed procedure is likely to be of some
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value in distinguishing “thick-tailed” mixtures of normals
from non-normal stable processes.

Finally, the numbers produced by computers are, of
course, bounded (by 10% in our case) so that our “stable®
distributions are truncated and all their moments exist.
Nevertheless, summing these truncated variables did not
produce convergence toward a normal distribution, and
in fact the data provide results indistinguishable from
those that would be obtained from an unbounded stable
process. The reason is clear: the bound is so large that
the chance of hitting it is negligible. (In fact, the largest
number generated in this study was 20,036.) Still the
results are sufficient to dispel the (somewhat naive)
notions that boundedness in itself is sufficient either to
justify normality assumptions for sums of random vari-
ables or to reject models which assume that the under-
lying variables behave as ¢f they were generated by
processes whose higher-order moments do not exist.

4. SUMMARY

To review, simple Interfractile range estimators of the
scale and characteristic exponent of symmetric stable
distributions perform well compared to available com-
petitors. The distribution of the secale estimate Z defined
by (2.1) approaches its asymptotic normal distribution
at small sample sizes {e.g., N>50), so that its “large
sample” properties (which can be determined analytieally)
will describe its sampling behavior in many applications.
Unlike the mean absolute deviation (MAD), ¢ has a
sampling distribution that is fairly insensitive to the
true value of «, which is usually unknown. And ¢ is a
more efficient estimate of scale than the MAD, except
when e« is close to 2.

Similarly, the interfractile estimator of a defined by
(3.1) and (3.2) is easy to compute, seems to be reliable
(at léast in large samples), and is more efficient than
alternative estimators we have examined,

Finally, our Monte Carlo experiments also recommend
the Studentized range for goodness-of-fit tests of a
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Gaussian null hypothesis against non-normal stable
alternatives at all sample sizes.
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