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Determinants of GNMA Mortgage Prices

Michael J. Brennan* and Eduardo S. Schwartz*

This paper contrasts three different arbitrage-based
models for the pricing of GNMA securities, and analyzes
the effect of different assumptions about the call policy
pursued by the issuers of the underlying mortgages. Both
the nature of the interest-rate uncertainty captured by the
model and the assumed call policy have a major effect on the
yield differentials predicted between GNMA securities and
Treasury Bonds.

Although GNMA mortgage-backed securities, like US Treasury
Bonds, are backed by the full faith and credit of the US Treasury, they
trade at yields that differ systematically from those of Treasury Bonds
of the same coupon and maturity. Several studies, [10][12][13]{11][8],
have analyzed these yield differentials on the basis of the particular
features of the GNMA security, notably the amortization and call
provisions. These studies have for the most part relied on a simple
model of the yield curve that determines the yields on all default-free
securities as a function of a single-state variable, the yield on an
instantaneously maturing bond, and a single market price of risk
parameter. The basis of the model is a no-arbitrage condition in a
continuous time setting.

*Commerce and Business Administration, University of British Columbia, Vancouver,
British Columbia V6T 1W5 Canada.
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In the first part of this paper, we demonstrate the principles
underlying all arbitrage-based models of the yield curve, and show
how the general model may be specialized to yield the Brennan-
Schwartz, [2][3](4][5][6] two-interest rate model, which may in turn
be restricted to yield the single-interest rate models employed in
previous studies of GNMA securities. In the second part of the paper
we use parameter estimates of the Brennan-Schwartz model derived
from an earlier detailed study of the US Treasury Bond market [5]to
arrive at estimates of the pricing errors likely to arise from use of the
simple single-state variable models. We then offer some new estimates
of the equilibrium yield differentials between GNMA securities and
Treasury Bonds under alternative yield curve scenarios and assump-
tions about issuer call policy. It appears that assumptions about call
policy are critical to the value estimates. We conclude by suggesting
how the estimation of an empirical call frequency function could be
used to arrive at a more accurate pricing model.

ALTERNATIVE MODELS FOR PRICING INTEREST
DEPENDENT CLAIMS

Arbitrage Pricing in Continuous Time Models!

Consider a frictionless economy in which securities may be traded
continuously in perfectly competitive markets. The state of the econ-
omy at time t is assumed to be described by an m-vector of state
variables, X(t) = (X; (t), .., Xm (t) ), which follow a Joint stochastic
process of the general type:

Qx.”m_QHA?:mQNm AHV

where dz, is the increment of a Wiener process and E[dz] = 0,dz? = dt,
dz, dz; = p; dt. The parameters of this stochastic process may depend
upon the current values of the state variables and on calendar time.

Since X constitutes a complete description of the current state of the
economy, it follows that the value of any security ) may be written as a
function of the state variables and time G’ (X:t). Similarly the instan-
taneous payout rate on security j may be written as ¢’ (X:t).

The instantaneous return to the holder of the security is given by the
sum of the payout C’dt and the instantaneous price change dG'. Using
Ito's Lemma to derive the latter, the instantaneous return from
holding the security may be written as

m
dG'+ Cdt =G w' dt + 3 G n, dz, (2)

where 1=1

' This section borrows heavily from Cox. Ingersoll and Ross 19].
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and
Gi=aG'/aX,, G\ = 3aG'/at, etc.

Now let r denote the instantaneously riskless interest rate, and

consider a portfolio P of m arbitrarily chosen securities with a long
m

position of b; units of security j (j=1.,...m) and a short position of £ b,G’
=1

in the riskless security. The net investment in this portfolio is zero and

the instantaneous change in its value is given by

m m
dP= I b;(dG' +Cdt)- £ bG rdt (4)
=1 =1
m mim
=3 bG W -r)dt+ I I bGQindz (5)
=1 j=1i=1

If the portfolio composition b; (j=1,..,m) is chosen so that

3 .
T bGin=0 (i=1,.,m) (6)
=1

the instantaneous change in the value of the portfolio will be non-
stochastic, and to avoid arbitrage profits it is necessary that the return
on the portfolio be identically zero so that

3 n .
IbGW-r=0 (7N
=1

(6) and (7) describe a system of (m+1) linear equations in the m
unknowns b, (j=1,..,m)}, and the system will have a solution only if the
equations are linearly dependent so that there exist values of A
(1=1,...m) such that

3 N
Qu At_ - n.v = s/l 7_ A“__ ™ CHM....SV Am‘
i=1

Moreover, since the securities included in the portfolio were selected
arbitrarily, equation (8) must hold for all securities for the same value:

nfx (i1 m)Y altthanah thacn valiine mav ha ctntn danandant
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Equation (8) bears a striking resemblance to the Ross [19] Arbitrage
Pricing Theory and, like that theory, expresses the risk premiumon a
security as a linear function of the proportional sensitivities of the
security value to each of the state variables, G\/G'.

Nothing further may be said about the nature of A, the ‘market price
of risk’ for state variable i, without a more complete description of the
economy, including investor tastes and investment opportunities.
However to obtain an operational model it may be necessary to make
explicit assumptions about A; as we shall see below.

Substituting for 4’ in (8) from (3) and dropping the superscript, the
no-arbitrage condition (8) is seen to imply that the value of any security
must satisfy the partial differencial equation.

m m m
123 T Gapammt EGB-Ain)+G+C-rG=0 9)
i=1k=1 i=1

This equation, which has been referred to by Cox, Ingersoll and Ross
{9] as the Fundamental Partial Differential Equation for Contingent
Claims,. suffices in principle to determine the value of any security
once the relevant boundary conditions for the security are appended
and the payout function C(-) defined. In practice, as we shall see below,
there will remain the difficult problem of choosing the state variables
that are relevant for the value of any particular security. However,
before turning to this issue we will consider the payout functions for
Treasury and GNMA securities and the boundary conditions that may
be inferred from the characteristics of the securities.

Payouts and Terminal Conditions for GNMA Securities
and Treasury Bonds

The Treasury Bond The Treasury Bond is assumed to mature at
time T, to have a par value of unity and to pay a coupon continuously at
the rate c. Therefore the payout function is

CXt)=c (10)

and the value of the bond at maturity satisfies
GXT)=1 (1
The GNMA Security The GNMA security is essentially a govern-

ment guaranteed portfolio of mortgages with identical term and
coupon rate. The mortgages are freely callable and different valuation

t See Merton [17] for a similar equation or Cox, Ingersoll and Ross {9] for a complete
manaral annilihrinm maodel
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models are appropriate depending upon the assumptions made about
the call policy followed by the issuers of the mortgages.

We consider first the case of an ‘optimal’ call policy that is chosen to
minimize the value of the mortgage (the issuer’s liability) and hence
the value of the GNMA security itself. If the issuers of all the
mortgages underlying a given GNMA security pursue an optimal call
policy. then the whole of the security will be called for redemption at
the same time. Otherwise partial redemptions are likely; we will say
more about these below.

Let F(t) represent the principal amount outstanding at time t under
a GNMA security which also has a coupon rate c¢. Then for a T year
fully amortizing security with continuous payments the total payout
rate is

oy = <O (12)

1-e

where F(0) is the original principal amount, and the principal out-
standing at time t is
w _ mwﬁd.:

Ft)=  F(O) AI_Ilﬂlv (13)

-e

Since the security is fully amortizing, its value at maturity satisfies
the boundary condition

GXT)=FT)=0 (14,

A call policy can be specified as a set of state variable vectors ME. ta
(O.T), such that the security is called when X(t) eX(t). This implies that
under a given call policy the value of the security satisfies

GXt) =F®) + P(X.t)  for X e X(t) (15

where P(-) is the penalty for early prepayment.
For an optimal, value-minimizing, call policy the security value als«
satisfies the Merton-Samuelson [18] high contact condition.

G(X:)=P(X.t) forXe X(t) (16

1=1,...m

Thus, under the assumption that the mortgages are called optimally
the value of the GNMA security satisfies the partial differentia
equation (9), where the payout function is given by (12), subject to th
boundary conditions (14), (15) and (16).

Following Dunn and McConnell [13], we consider next the case of :
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suboptimal call policy. We assume first that the rate at which the
outstanding principal is called for redemption can be written as a
function of the state variables and time, = (X;t) per unit of outstanding
mortgages. Let f denote the fraction of the underlying mortgages that
remains outstanding. Then

df = - m (X:)f dt (1N

and the value of the GNMA security is now a function of f also. We
write it as H(X;t.[) and note that

H(X;t.N = fTHXt,. 1) = h{(X:D) (18)
The cash flow to the holder of the security is now
CX:it.h = J@mﬁ +riF) (19)
-e

Treating f as the (m+1) state variable the partial differential equation
(9) becomes

m m m
1/2 3 % Hapanm + ¥ Hi(B-Am) + Ho- mH (20)
=1 k=1 i=1
+ cfF(0) +mfF-rH=0

MIOA._.

Using the homogeneity property (18), this is equivalent to

m m m
1/2 £ % hapanim + T hi (Bi-Aim) + he (21
i=1 k=1 i=1

+C+m(F-h)-rh=0

where C = ¢F(0) / (1-e®). The value of the GNM A security when none of
the original mortgages have been called (f=1) is given by the solution to
{21) subject to

h(X:T)=0 (22)

This result can then be scaled using (18) to take account of calls that
have already been made (f<1).

Equation (21) can also be derived by assuming that calls are
stochastie so that w(-) represents the intensity of a Poisson process
saverning the event of c¢all of all of the mortgages underlving the
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security. This is the approach followed by Brennan and Schwartz [31
and by Dunn and McConnell {12][13].

It is also possible of course to assume that a part of the GNMA
security will be called optimally and the rest autonomously at the rate
w (-). In this case the two parts can be valued separately according to
the principles described here, and the results summed.

The Brennan-Schwartz Two-State Variable Model

In order to implement the general valuation model described in the
first section of this article it is necessary to specify a limited number of
state variables that are relevant to the pricing of the security under
consideration. The more state variables are included, the more realistic
will be the model: however, it will also be less tractable. Ina series of
papers Brennan and Schwartz have proposed and developed a two-
state variable model that is applicable to the pricing of interest-
dependent claims such as default-free bonds and the options written
on them.

The fundamental assumption underlying this model is that the
prices of all default-free bonds at any moment in time can be
expressed in terms of the values of two, possibly unknown, stochastic
factors. X and Xa, which follow a stochastic process of the tyne (1)
Then the price of a bond with continuous coupon rate C, face value o
unity and maturity r, can be written as B(X,.X2,7,0).

The instantaneously riskless rate, the “short rate,” is the yield or
the currently maturing discount bond and is defined by

f(X Xo) = lim -0 B(Xu, X2 .0) (23:

—0 T
Similarly, the “consol rate” is defined as the yield on a bond whose
maturity is infinite
c
WAX_. X, %0, ¢)

(X, X2) = (243

If equations (23) and (24) can be inverted and the state variables X
and X, expressed as twice differentiable functions of the potentiall:
observable interest rates, r and |, then, as pointed out by Cox, Ingersol
and Ross [9], bond prices may be expressed as functions of the stat.
variables proxies, r and |, and the value of any default-free securit
may be expressed simply as B(r.L.t) for a given payout function C(r.l.t
and boundary conditions.

The state variable proxies r and | are assumed to follow th
stochastic process

to

dr = B (r.1,t)dt + nu (r.1.t)dz, (
Al = A (e L WAL + o (r 10X
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where dz. dz, = pdt. This conforms to the general class of processes
{1). so that under the assumptions of this section the value of any
default-free claim satisfies the following specialization of the partial
differential equation (9):

1/2 B + Bapmnz + 1/2Buns + Be (81 -~ Aim) (26)
+Bi(B2-Aam) +Bi+C-rB=0.

Equation (26) contains two undetermined ‘market price of risk’
parameters, A, and A2. However, the value of a consol bond paying a
continuous coupon at the rate of $1 per period is I', and its derivatives
with respect to r and | are readily computed. Substitution of these
derivatives for the value of the consol bond into (26) yields the
following expression for A2, the market price of consol rate risk:

Aa(rlt) = - 2+ (B - 1* + rl)/me 27
I

Finally, substituting from (27) in (26) the Brennan-Schwartz two-
state variable equation for valuing interest-dependent claims is

1/2 Bent + Bupmnz + 1/2Bunz + B.(B1 - Aim) (28)
+Bin21+P-rh+B+C-rB=0

Single-State Variable Models

Prior analyses of the pricing of the GNMA security have posited an
even simpler model of the yield curve than that described in the
previous section; in this mode! it is assumed that the vaiues of all
default-free securities may be expressed in terms of a single stochas-
tic state variable that may be taken as the current short rate [8][11]
{12][13]. This assumption implies that once the short rate is known
the whole yield curve is determined, and hence does not admit the
possibility that for the same value of the short rate the yield curve
should sometimes slope up and sometimes slope down. In contrast,
the Brennan-Schwartz two-state variable model, by allowing for
independent variation in the consol rate, does admit such a possibility.

In fact the single-state variable model can be derived from the
Brennan-Schwartz model by restricting the stochastic process (25)
by the assumptions?

B (r.]) = y(r)
m (r,1) = {(r)

When these restrictions iare imposed in equation (28), it is seen that

LIE § SN Fromtle i kil ncriiimn thot tha madal naramotore arn tirmn indannndant
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the stochastic state variable | enters the equation only when multi-
plied by a partial derivative of B with respect to L. Since | does not
enter the boundary conditions for either Treasury Bonds or GNMA
securities, it follows that the values of both securities may be written
as functions only of r and t, F(r,t), where F(r,t) satisfies the restricted
version of (28):

12Fai+F (v -M) +F+C-rF=0. (29)

(29) is the standard partial differential equation of single-state
variable models for default-free securities, including bonds and the
options written on them. We shall refer to this as the ‘short rate
model’.

It is also possible to derive the Black-Scholes [1] partial differential
equation for pricing options from the two-state variable model by
requiring that the short rate remain constant by constraining the
stochastic process so that 81 = m = 0. With these constraints equation
(28) becomes

1/2 B} + Bin3/1 + ¥ -r) + B+ C-rB=0. (30)

To see the equivalence of (30) to the Black-Scholes-Merton partial
differential equation for the value of an option on an asset with
payouts, consider the change of variable

L=C/l (31)

L will be recognized as the market value of a consol bond paying a
continuous coupon at the rate C. Then, defining B(l,t) = H(L,t) as the
value of an option on the consol bond, it is easily shown that

Bi=-L Huw! (32)
Bu = - L* Hu/1* + 2H, L/ (33)
W. = m. Aw&/

Using [to’s Lemma it follows from (32) that n2 = loL where o’Lis the
variance of the rate of return on the consol. Making the appropriate
substitutions in (28) and setting C = 0 yields the equivalent partial
differential equation:

1/2Hw L%+ Hu(rL-C) + Hi-rH = 0. (35;

This is the Black-Scholes-Merton equation for the value of an
option on a security with payout rate C. It follows therefore that use
of the Black-Scholes-Merton equation (35) to value debt options is
eanivalent to using the Brennan-Schwartz equation (28) under the
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assumptions that the underlying asset is a consol bond and the
instantaneously riskless interest rate is nonstochastic.

EMPIRICAL ESTIMATES

Parameter Estimates Jor the Brennan-Schwartz Model*

The coefficients of the partial differential equation (28) that
underlies the Brennan-Schwartz model depend on two types of
function: 8,, B, n, n2 and p that derive from the stochastic process
(25), and A, (-) the market price of risk function. We shall take up
first the estimation of the stochastic process and then the estimation
of A A.v

The specific form of the stochastic process that was assumed for
purposes of estimation was

dr=[a, + b, (1-r) ldt + ro,dz, (36)
dl = l(az + bor + ¢,l)dt + lozdzs.

This formulation presupposes that the scale of the unanticipated
increment in each of the interest raies is proportional to the current

the essence of expectations-based theories of the term structure,
which is that long rates are based upon expectations about future

‘ate so that b;>0. The coefficient of dt in the consol rate equation was
»btained by treating A, (-), the market price of consol rate risk, as a
inear function of r and | and solving equation (27) for B2 (): it should
ve observed that B2 () does not enter the partial differential equation
28) and hence will not affect our estimates of security values.

The equation system (36) was estimated in discrete form using
nonthly data from the CRSP U.S. Government Bond file for the
reriod 1958-1979. r was taken as the annualized yield to maturity on
he US Government Treasury Bill whose maturity was closest to 30
ays on the last trading day of each month. The consol rate, I, was
pproximated by the annualized yield to maturity on the highest
telding US Government Bond with a maturity exceeding 20 years;
"no such bond was available in a particular vear, then the highest-

ielding bond with a maturity of more than 15 years was used
1stead.

A mare complete descrintion js avatlable in Brennan and Schwartz [5).
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The process actually estimated was

dr=| - .0887 +.1102(1-r)}dt +.1133r dz, (37)
(.0526) (.0301)
dl=[ .0089 +.0036r - -00371] dt + .0298! dz, (38)

(-:0069) (.0017) (.0020)

and p = .21, where standard errors are in parentheses.

A1 (), the market price of short-term interest rate risk, was
assumed to be an intertemporal constant for purposes of estimation.
The details of the estimation are presented in Brennan and Schwartz
[6). The principle employed was to solve the partial differential
equation (28) with C=0 and boundary condition B(r,,T) = 1. The
resulting present value factors were then used to value the bonds
represented each month on the CRSP Government Bond File, and by
minimizing the price prediction errors an estimate of -0.45 was
obtained for A,.

Alternative Predictors of Debt Call Option Values

A GNMA security differs from a Treasury Bond both because it is
an amortizing security and because it is callable. It is a relatively
straightforward task to determine in principle the yield differential
due to the amortizing feature since an amortizing security is equiva-
lent to a portfolio of non-amortizing securities. Therefore the critical
element of models for predicting the GNMA security-Treasury Bond
vield differential is the model for valuing the call feature. For this
reason it is interesting to compare the call option values predicted by
the full Brennan-Schwartz model and by the two single-state vari-
able models obtained by imposing restrictions on the stochastic
process — the ‘short-rate’ model and the Black-Scholes model.

Table 1° reports the values of call options on a 20-year bond
predicted by the three models. The values were computed as follows.
For the Brennan-Schwartz model hond values were estimated for
each value of (r l,t) by solving the partial differential equation (28)
subject to the boundary condition (11) and payout function (10), using
the parameter values whose estimation was described in the section
previous to this one. The resulting bond values were used in the
boundary conditions for the call option whose value, V(r,1.t), also
satisfies (28). Then for r = 10% the values of ] corresponding to
different bond values were determined and the value of the option for
that value of 1 and r = 10% was found.

The Black-Scholes values were found by solving (28) with the
restriction 8, =m = 0and C = 0, taking ! as the yield to maturity on the

® This is Table A-1 of Brennan and Qehwarts 171
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underlying security whose value determines the boundary condition
for the call option.

For the short-rate model the specific forms of the functions y(r)
and {(r) employed to represent the drift and instantaneous standard
deviation of the stochastic process for r are

v(r)=.1102(r - r)

{(r)=.1133(r)

The speed-of-adjustment coefficient and standard deviation para-
meter are taken from the estimated short-rate process (31). Instead
of pre-specifying the target interest rate, T, both the underlying
security and the call option were valued for a range of values of T by
solving the differential equation (28) with 5, = 0, subject to the
appropriate boundary conditions. To determine the option values
reported in Table 1, the value of T was found which was consistent
with the given bond price and r = 10%; the relevant values of T are
reported in the bottom line of the table. The option value was then
determined for these values of r and r.

[t is apparent from Table 1 that both single-state variable models,
the Black-Scholes model and the short-rate model, substantially
understate the value of short-term call options on 20-year bonds
relative to the Brennan-Schwartz two-state variable model. Similar,
though less pronounced biases were found for options on 5-year
bonds. The cause of the bias appears to be the reduced level of
uncertainty about future bond prices that results from ignoring the
stochastic nature of one of the two-state variables.

Since a2 is not equal to zero, these results suggest that estimates of
the equilibrium yield differential between GNMA securities and
Treasury Bonds based on single-state variable models, which assume
02 equal to zero, are likely to understate the true differentials.® This
impression is confirmed by the results we obtain by applying the
two-state variable to the valuation of GNMA securities to which we
now turn.

Estimates of GNMA Security-Treasury Bond Price and
Yield Differentials

In this section we report the prices and promised yields of 8%
30-year GNMA securities and Treasury Bonds for different values of
the state variables describing the yield curve. The parameter values

¢ See for example Buser and Hendershott (8] who estimate the stochastic process for r
assuming a two-state variable model by including the long rate as the target towards
which the short rate adjusts, and vet ignore stochastic variation in ! in pricing GNMA
securities. This corresponds prec. sely to what we did in implementing the short-rate

TABLE 1

Values of Call Option on 10%, 20-Year Bond

GNMA MORTGAGE PRICES

24 months

12 months

$900 $950 $1000

6 months
$900 $950 $1000 $1050

Option Maturity

$10S0 $1100

$1000

$1050 $1100 $900 $950

$1100

Bond Price

Option Values

784 1140
101.3

45.4

130 26.9
108 227

231 61.6 1041 6.3 172 33.0 68.9 108.1

10.7

2.8
1.5
0.0

Brennan-Schwartz
Black-Scholes
‘Short-rate’

68.2

38.0

100.0?
1041

619
55.0

45 135 264

100.0?
102.2

7.3 163 572

0.0
(8.9) (8.3)

0.0 275 584 1067
(8.3)

0.0
'3.9)

00 254

(8.3)

0.0
(8.9)

525

239

(6.7)

(7.2)

(1.7

(6.7)

(7.2)

(7.7)

(6.7)

(7.2)

(7.7)

/
%

T

Target rate:

$1000 plus accrued Interest

10%

Exercise Price:

Short Rate (r):

head of the column when r= 10%

! This is the unique target rate for the short rate which yields the bond price at the

1 Optimal to exercise.
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for the model are those whose estimation was described in the
previous section, and the bonds are assumed to have a par value of
$100.

The Treasury Bond values were found by solving numerically the
partial differential equation (28) subject to (10) and (11). The GNMA
security values were found for three different assumptions about
mortgage calls. Values under the optimal call policy were found by
solving (28) subject to (12), (14), (15) and (16). Two different assump-
tions about suboptimal call policy were made.

First, following Dunn and McConnell [12][13], it was assumed that
there is an autonomous probability rate m(r,lt) that the whole
security will be called in year t; and that in addition the security is
called if it is optimal to do so, taking account of the probability of
future autonomous call. We refer to this assumption as the optimal
call policy with autonomous calls. The probability rates of autono-
mous call used by Dunn and McConnell and adopted by us reflect
FHA experience and depend only on time and not on the state
variables r and 1. Moreover, since the FHA experience reflects total
calls, both optimal and suboptimal, the Dunn and McConnell as-
sumption overstates the probability of call. Therefore our second
assumption is that calls are purely autonomous. It should be stressed
that neither of these assumptions is entirely satisfactory: presumably
the autonomous call rate depends on r and | since the values of these
variables will determine the net cost or benefit of a call that will be
taken into consideration by the mortgage issuer in making his call
decision. Unfortunately we have no information about the form of the
empirical autonomous call rate =(r,l,t).

The GNMA security was valued under the assumption of an
optimal call policy with an autonomous call rate by solving (21)
subject to (22) and the boundary condition arising from the optimal
call poliey:’

he(r,1,t) = hi(r,1,t) = 0, for h(r,1,t) = F(t) (39)

was taken from Dunn and McConnell [12]. To take account of
autonomous calls only, the security was valued without imposing
condition (39).

The results are summarized in Tables 2, 3, 4 and 5. Referring to
Tables 2 and 3 we note first that under the optimal call policy the
value of the GNMA security may exceed as well as fall short of that of
the Treasury Bond: the higher is the long rate the more likely it is

7 The prepayment penaity was assumed to be zero, and other costs and benefits of

prepayments were ignored. Fora detailed discussion of these see Hendershott and Hu
- Ve )b s T awd Uillan: MIRD
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TABLE 2

Prices of 8%, 30-Year Treasury Bond
and GNMA Securitics per $100 of Principal

Treasury Bond GNMA Security
Optimal Call FHA Cail Experience
Pollcy (1) (2)
¢= 6% 123.2 100.0* 100.0* 1154
r = 6% 8% 96.7 92.6 96.6 99.7
10% 78.9 79.9 86.6 87.4
12% 66.3 69.1 773 77.7
r = 8% %= 6% 1228 99.6 99.8 114.4
8% 96.5 91.9 95.6 98.9
10% 78.8 79.6 86.0 86.9
12% 66.3 68.9 76.9 77.2
ro= 10% ¢= 6% 1224 98.7 99.0 113.4
8% 96.3 91.1 94.6 98.2
10% 78.7 79.2 85.4 86.3
12% 66.3 68.7 76.5 76.8
ro= 12% U= 6% 122.0 97.6 98.0 112.4
% 96.1 90.4 93.6 974
10% 78.6 78.8 84.7 85.7
12% 66.2 68.5 76.0 76.3

(1) Optimal Call Policy with Autonomous Call Rate
(2) Autonomous Calls only

*Optimal to Call

that the GNMA security will trade at a premium relative to the bonc
Since under an optimal call policy the call feature can only decreas.
the value of the security, it is apparent that this phenomenon can onl;
be due to the amortizing feature of the GNMA. At high interest rate
the probability of call is slight and the call feature has little influenc
on value; on the other hand since both securities are trading belov
par the shorter average term of the GNMA due to the amortizatio:
feature causes it to trade at a premium, This effect is enhanced unde

the suboptimal call policies since autonomous calls serve to furthe

reduce the average maturity of the GNMA. It is interesting to not.
that in the simulations reported in the pioneering work by Dunn anc
McConnell [12][13] the GNMA price never exceeds the bond price

This is because the single-state variable model they employ permit.
too little flexibility in the choice of yield curve scenarios: indeed thei

parameters were chosen so that the long-run mean of the instan

taneously riskless rate, r is 5.6%, effectively excluding the possibilit;
of high yields on long-term bonds. The highest 30-year yield gener
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TABLE 3

Price Differentials between 8%, 30-Year Treasury
Bonds and GNMA Securities per $100 of Principal

(Numbers in parentheses indicate that the Treasury Bond
price exceeds that of the GNMA Security)

GNMA Security

Optimal Cal! FHA Call Experience

Policy (1) (2)

L = 6% (23.2) (23.2) (7.2)

ro= 6% 8% (4.1) {0.1) 1.0
10% 1.0 7.7 8.5

12% 2.8 11.0 11.3

r = 8% R = 6% (23.2) (23.0) (8.4)
8% (4.6) (0.9) 2.4

10% 0.8 7.2 8.1

12% 2.6 10.6 10.9

ro= 10% £ = 6% (23.7) (23.4) (9.0}
8% (5.2) (1.9) 1.9

10% 0.5 6.7 8.6

12% 2.4 10.2 10.5

ro= 12% £ = 6% (23.4) (24.0) (9.5)
8% (5.7) 2.5 1.3

10% 0.2 6.1 7.1

12% , 0.3 9.8 10.1

(1) Optimal Call Policy with Autonomous Calls
(2) Autonomous Calls only

ated by their model was 8.72% and this was for a short rate of over
20%.

Dunn and McConnell found that the Treasury Bond value was
more sensitive to the level of interest rates than was the value of
GNMA security. This is to be expected in view of both the call feature
and the amortization of the GNMA: a similar effect is apparent in
Tables 2 and 3 if the level of interest rates is measured by the long
rate, |. However, quite the opposite relation holds for the short rate r:
the Treasury Bond is less sensitive to this variable than the GNMA.
The reason for this is the shorter average term of the GNMA which
causes it to behave more like a short-term security. However, the
values of both the GNMA and the bond are much less sensitive to r
than to .

It is of interest also to compare the size of the bond-GNMA price
differentials predicted by the two models under similar yield curve
scenarios. Dunn and McConnell find that when both r and the 30-
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year yield are 8% the differential is $2.87 per 3100 of par value. Qur
model predicts a differential of $4.60 forr = 1| = 8%. As was discussed
in the previous section, the reason for this is the much greater
uncertainty about the future course of interest rates that is inherent
in the two-state variable model: the value of the call option increases
with uncertainty. It is worth noting that in the simulations of Dunn
and McConnell the 30-year rate ranges only from 7.5% to 8.9% as the
short rate varies from zero to 21%.

Tables 4 and 5 compare the promised yield to maturity on the bond
and GNMA security. Not too much significance can be attached to
these numbers since with the possibility of early call there is no
simple relation between promised and expected yields. Nevertheless,
it is of interest to note that under the optimal call policy the promised
yield on the GNMA always exceeds that on the Treasury Bond even
though, as we have seen its price may sometimes be higher than that
of the bond: the range of the promised yield differential is 0.3% to
1.8% depending upon the yield curve scenario. However with the
suboptimal call policies the promised yield on the GNMA, which does
not take account of calls, may be above or below that of the bond: it is
most likely to be below when the long rate is high and the securities

TABLE 4

Promised Yields on 8% 30-Year Treasury Bond and GNMA Securities

Treasury Bond GNMA Security

Optimal Call FHA Call Experlence

Policy (1) (2}

r = 6% = 6% 6.3% 8.0% 8.0% 6.6%
8% 8.3 8.8 8.3 8.0

10% 10.3 10.5 9.5 9.5

12% 12.2 12,4 11.0 109

r o= 8%% = 6% 6.3 8.0 8.0 6.6
8% 8.3 8.9 8.4 8.1

10% 10.3 10.5 9.6 9.5

12% 12.2 12.4 11.0 11.0

ro= 10%¢ = 6% 6.3 8.1 8.1 6.7
8% 8.3 9.0 8.5 8.2

10% 10.3 10.6 9.7 9.6

12% 12.2 12,5 11.0 11.0

ro= 12%¢ = 6% 6.4 8.2 8.2 6.8
8% 8.4 9.0 8.7 8.3

10% 10.3 10.7 9.8 9.7

12% 12.2 12,5 11.2 1na

(1) Optimal Cali Policy with Autonomous Cail Rate
{2) Autonemous Calls only
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TABLE 5

Promiscd Yicld Ditferentials between 8%, 30-Year Treasury
Bonds and GNMA Sccurities

(Numbers in parentheses indicate that GNMA vyicld is
fess than Treasury Bond Yicld)

GNMA Security
Optimal Cafl FHA Call Expericnce

Policy () (2)
ro= 6% = 6% 1.7% 1.7% 0.3%
8% 0.5 0.0 {0.3)
10% 0.2 (0.8) (0.8)
12% 0.2 (1.2 (1.3)
0.3

= 8%€¢ = 6% 1.7 1.7
' ' % 0.6 0.1 (0.2)
10% 0.2 {0.7) (0.8}
12% 0.2 (1.2) (1.2)
ro= 10% 0 = 6% 1.8 1.8 0.4
8% 0.7 0.2 (0.1)
10% 0.3 (0.6) (0.7)
129 0.3 (1.2) (1.2)
ro= 12% Q¢ = 6% 1.8 1.8 0.4
8% 0.6 0.3 (0.1}
10% 0.4 {0.5) (0.6}
12% 0.3 (1.0) (1.1)

(1) Optimal Call Policy with Autonomous Calls
(2) Autonomous Calls only

are selling below par because of the shorter average term of the
GNMA. Finally, we note that the promised yield on the GNMA
declines as autonomous calls are introduced and as optimal calls are
eliminated.

Returning to Tables 2 and 3, we find that the GNMA mmnclg value
is quite sensitive to the assumption made about call nc:a& for
example when r = 1 = 8% the equilibrium value of the OZK.P is less
than that of the bond by $4.60 under the optimal call co__n.S under
the optimal call policy with autonomous redemptions the difference
falls to $0.90 with autonomous calls only, the GNMA value actually
exceeds the bond value by $2.40. Thus the assumption about call
policy may change the value of the GNMA by as much as $7.00 per
$100 of face value. .

It seems that if further progress is to be made in devising useful
predictive models of GNMA prices not only will it be necessary to

v 21 iln lennla cinelo.ctate variable model in favour of two-state
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variable or even more complex models, it will also be necessary to
model more precisely the function n(r.1.t) predicting mortgage calls.
We will conclude therefore with a suggestion as to how this problem
may be approached

Animportant advance in estimation of an empirical call frequency
function that recognizes the effect of interest rates on calls has been
made in a paper by Green and Shoven [14]. These authors posit that
the probability of a call depends both upon the age of the mortgage
and upon the exercise value of the call option (normalized by the
original face value of the mortgage). They employ a proportional
hazards model that presupposes that the probability of call can be
factored into two functions, one of which depends only on the age of
the mortgage, and the other which depends only on the exercise value
of the call. In our notation the call frequency function is written as

m(r,1t) = A(t)eBXr LY (40)

where X(t) = [B(r,1,t) - F(t)/F(T) and B(r,L.t) is the present value of
the remaining payments on the mortgage assuming no prepayments.
X(-) is the (normalized) exercise value of the call option. Green and
Shoven estimate the parameters, A(t), 8, from a large sample of
Caiifornian morigages. B(r,l,t) is approximated by the value of the
remaining mortgage payments discounted at the current (30-year)
mortgage rate.

It is the expected call frequency that is relevant in valuing a
GNMA security and insofar as the parameters of the empirical call
frequency function can be taken as stationary the GNMA may be
more accurately valued by substituting expression (4) for = in the
partial differential equation (21). Clearly, the next step is to compare

the price predictions of such an empirically based model with
observed GNMA prices.

We thank Patric Hendershott for helpful comments and advice on an earlier
draft of this paper,

* Dunn and McConnell [12] allow the prepayment probability rate to depend upon the
level of interest rates.
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