References

Table 1

Maximum likelihood parameter estimates of the Markov regime switching model of short term riskless interest rate dynamics:

\[r_{t+1} = \sigma_r^2 \epsilon_{t+1} \] \hspace{1cm} (16)

\[\ln(\sigma_r^2) = \theta + \beta I_t. \] \hspace{1cm} (17)

Short term riskless rates are proxied by one-month Treasury yields obtained from the CRSP riskfree file. The sample period is June 1964 to December 1989*.

<table>
<thead>
<tr>
<th></th>
<th>(p)</th>
<th>(q)</th>
<th>(\theta)</th>
<th>(\beta)</th>
<th>(\gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate</td>
<td>0.9351</td>
<td>0.0393</td>
<td>-5.1987</td>
<td>-1.6900</td>
<td>0.6792</td>
</tr>
<tr>
<td>Std Error</td>
<td>(0.0421)</td>
<td>(0.0264)</td>
<td>(0.8907)</td>
<td>(0.2442)</td>
<td>(0.1679)</td>
</tr>
</tbody>
</table>

*The Markov regime switching model assumes that the 'base' instantaneous volatility \(\sigma_r \) follows a two stage Markov chain characterized by \(p \) (the probability of remaining in the high volatility state once in the high volatility state) and \(q \) (the probability of switching to the high volatility state from the low volatility state). The model is cast in state-space form and the resultant likelihood function is evaluated using a nonlinear filter. The first sixty observations of the sample period are used to initialize the filtering procedure.
Table 2

Maximum likelihood parameter estimates of the stochastic volatility model of short term riskless interest rate dynamics:

\[
\ln(\tau e_{t+1}^2) = x_t + 2\gamma \ln(\tau_t) + \ln(\epsilon_{t+1}^2) \\
x_{t+1} - \mu = \beta(x_t - \mu) + \xi \epsilon_{t+1}^2.
\]

(18) (19)

Short term riskless rates are proxied by one-month Treasury yields obtained from the CRSP riskfree file. The sample period is June 1964 to December 1989*.

<table>
<thead>
<tr>
<th></th>
<th>μ</th>
<th>β</th>
<th>ξ</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate</td>
<td>-6.231</td>
<td>0.9152</td>
<td>0.3480</td>
<td>0.6871</td>
</tr>
<tr>
<td>Std Error</td>
<td>(1.4175)</td>
<td>(0.0538)</td>
<td>(0.1156)</td>
<td>(0.2576)</td>
</tr>
</tbody>
</table>

*The stochastic volatility model assumes that the logarithm of $\sigma^2(t) = x(t)$ follows a diffusion process. The model is cast in state-space form and the resultant likelihood function is evaluated using an integration-based nonlinear filter which assumes that the prior on the state is normally distributed. The first sixty observations of the sample period are used to initialize the filtering procedure.
Figure 1: Simulated Interest Rates Assuming $\gamma = 1.4999$
Figure 4
Estimated Volatility of Interest Rate Changes

Annualized Volatility

Year

64 68 72 76 80 84 88 92