<table>
<thead>
<tr>
<th>Nominal Contract Maturity (months)</th>
<th>Average number of days to maturity</th>
<th>Month of first price observation</th>
<th>Number of monthly observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nearby</td>
<td>20.5</td>
<td>1983.3</td>
<td>134</td>
</tr>
<tr>
<td>2</td>
<td>51.0</td>
<td>1983.3</td>
<td>134</td>
</tr>
<tr>
<td>3</td>
<td>81.4</td>
<td>1983.3</td>
<td>134</td>
</tr>
<tr>
<td>6</td>
<td>172.7</td>
<td>1983.3</td>
<td>134</td>
</tr>
<tr>
<td>9</td>
<td>262.0</td>
<td>1983.11</td>
<td>134</td>
</tr>
<tr>
<td>12</td>
<td>355.2</td>
<td>1983.11</td>
<td>94</td>
</tr>
<tr>
<td>15</td>
<td>446.6</td>
<td>1984.10</td>
<td>73</td>
</tr>
<tr>
<td>18</td>
<td>537.9</td>
<td>1989.9</td>
<td>55</td>
</tr>
<tr>
<td>21</td>
<td>629.5</td>
<td>1990.11</td>
<td>17</td>
</tr>
<tr>
<td>24</td>
<td>720.7</td>
<td>1990.11</td>
<td>15</td>
</tr>
</tbody>
</table>

Table 1
<table>
<thead>
<tr>
<th></th>
<th>6 Month</th>
<th>9 Month</th>
<th>12 Month</th>
<th>15 Month</th>
<th>18 Month</th>
<th>21 Month</th>
<th>24 Month</th>
</tr>
</thead>
<tbody>
<tr>
<td>S&R</td>
<td>0.06</td>
<td>0.10</td>
<td>0.08</td>
<td>0.05</td>
<td>0.01</td>
<td>-0.026</td>
<td>-0.32</td>
</tr>
<tr>
<td>S&R_tailed</td>
<td>0.06</td>
<td>0.09</td>
<td>0.08</td>
<td>0.04</td>
<td>0.01</td>
<td>-0.23</td>
<td>-0.28</td>
</tr>
<tr>
<td>E&C</td>
<td>0.05</td>
<td>0.09</td>
<td>0.09</td>
<td>0.04</td>
<td>0.02</td>
<td>-0.18</td>
<td>-0.23</td>
</tr>
<tr>
<td>E&C_tailed</td>
<td>0.05</td>
<td>0.08</td>
<td>0.09</td>
<td>0.04</td>
<td>0.02</td>
<td>-0.16</td>
<td>-0.20</td>
</tr>
<tr>
<td>BRE_{2,4}</td>
<td>0.02</td>
<td>0.06</td>
<td>0.11</td>
<td>0.17</td>
<td>0.21</td>
<td>-0.02</td>
<td>-0.06</td>
</tr>
<tr>
<td>BRE_{2,4,6}</td>
<td>n.a.</td>
<td>0.02</td>
<td>0.04</td>
<td>0.08</td>
<td>0.06</td>
<td>-0.09</td>
<td>-0.12</td>
</tr>
<tr>
<td>G&S_{2,4}</td>
<td>0.04</td>
<td>0.07</td>
<td>0.11</td>
<td>0.13</td>
<td>0.16</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>G&S_{2,4,6}</td>
<td>n.a.</td>
<td>0.02</td>
<td>0.05</td>
<td>0.08</td>
<td>0.07</td>
<td>-0.04</td>
<td>-0.05</td>
</tr>
<tr>
<td>Number of Observations</td>
<td>116</td>
<td>116</td>
<td>85</td>
<td>67</td>
<td>54</td>
<td>17</td>
<td>15</td>
</tr>
</tbody>
</table>

Mean Hedging Errors

Table 2a

This table reports the means of the monthly errors in hedging a forward commitment of one barrel of oil deliverable at a fixed future maturity, under different strategies, over the period May 1985 to December 1994 or subperiods for which futures price data were available. S&R: Stack and Roll strategy; E&C: minimum variance hedge of Edwards and Canter (tailed strategies adjust the hedge for the time value of money). BRE_{2,4,6} (BRE_{2,4}): strategy derived from Brennan model of futures prices implemented using 2 and 3 month (2 and 6 month) maturity futures contracts. G&S_{2,4} (G&S_{2,4,6}): strategy derived from Gibson and Schwartz model of futures prices implemented using 2 and 3 month (2 and 6 month) maturity futures contracts.
<table>
<thead>
<tr>
<th></th>
<th>6 Month</th>
<th>9 Month</th>
<th>12 Month</th>
<th>15 Month</th>
<th>18 Month</th>
<th>21 Month</th>
<th>24 Month</th>
</tr>
</thead>
<tbody>
<tr>
<td>S&R</td>
<td>0.70</td>
<td>0.99</td>
<td>1.30</td>
<td>1.44</td>
<td>1.66</td>
<td>0.92</td>
<td>0.99</td>
</tr>
<tr>
<td>S&R_{ratio}</td>
<td>0.64</td>
<td>0.90</td>
<td>1.16</td>
<td>1.27</td>
<td>1.43</td>
<td>0.81</td>
<td>0.86</td>
</tr>
<tr>
<td>E&C</td>
<td>0.44</td>
<td>0.65</td>
<td>0.89</td>
<td>0.97</td>
<td>1.14</td>
<td>0.66</td>
<td>0.71</td>
</tr>
<tr>
<td>E&C_{ratio}</td>
<td>0.43</td>
<td>0.60</td>
<td>0.79</td>
<td>0.85</td>
<td>0.97</td>
<td>0.58</td>
<td>0.62</td>
</tr>
<tr>
<td>BRE_{1/5}</td>
<td>0.31</td>
<td>0.54</td>
<td>0.77</td>
<td>0.90</td>
<td>1.08</td>
<td>0.38</td>
<td>0.41</td>
</tr>
<tr>
<td>BRE_{2/5}</td>
<td>n.a.</td>
<td>0.19</td>
<td>0.38</td>
<td>0.51</td>
<td>0.67</td>
<td>0.36</td>
<td>0.41</td>
</tr>
<tr>
<td>G&S_{1/5}</td>
<td>0.29</td>
<td>0.46</td>
<td>0.61</td>
<td>0.64</td>
<td>0.69</td>
<td>0.33</td>
<td>0.35</td>
</tr>
<tr>
<td>G&S_{2/5}</td>
<td>n.a.</td>
<td>0.17</td>
<td>0.29</td>
<td>0.34</td>
<td>0.40</td>
<td>0.23</td>
<td>0.26</td>
</tr>
<tr>
<td>Number of Observations</td>
<td>116</td>
<td>116</td>
<td>85</td>
<td>67</td>
<td>54</td>
<td>17</td>
<td>15</td>
</tr>
</tbody>
</table>

Standard Deviation of Monthly Hedging Errors

Table 2b

This table reports the standard deviations of the monthly errors in hedging a forward commitment of one barrel of oil deliverable at a fixed future maturity, under different strategies, over the period May 1985 to December 1994 or subperiods for which futures price data were available. See note to Table 1a.
Legends

Figure 1: Monthly Rollover Gains for the 2 month NYMEX Light Oil Futures Contract, March 1983 - December 1994.
The figure shows the time series of the month-end differences between the prices of the nearby futures contract and the 2 month contract.

Figure 2: Monthly Rollover Gains for the 3 month NYMEX Light Oil Futures Contract, March 1983 - December 1994.
The figure shows the time series of the month-end differences between the prices of the nearby futures contract and the 3 month contract.

Figure 3: Term Structure of Oil Futures Prices.

Figure 4: Time Series of Speed of Adjustment Estimates.
The figure shows estimated values of α, the speed of adjustment parameter for the Brennan model, and δ, the speed of adjustment parameter for the Gibson-Schwartz model.
The estimates are derived from monthly convenience yield estimates from March 1983 up to date, using the exact discrete form corresponding to the diffusion process.

Figure 5a: Cumulated Hedge Errors: 12 month Hedge
The figure shows the cumulated monthly errors in dollars from hedging a fixed maturity 12 month commitment using Stack and Roll (S&R) and Edwards and Canter (E&C) hedges.

Figure 5b: Cumulative Hedge Errors: 12 month Hedge.
The figure shows the cumulated monthly errors in dollars from hedging a fixed maturity 12 month commitment using Brennan (BRE) and Gibson and Schwartz (G&R) hedges.

Figure 5c: Cumulative Hedge Errors: 12 month Hedge.
The figure shows the cumulated monthly errors in dollars from hedging a fixed maturity 12 month commitment using Stack and Roll (S&R) and Gibson and Schwartz (G&R) hedges.

Figure 5d: Cumulated Hedge Errors: 18 month Hedge
The figure shows the cumulated monthly errors in dollars from hedging a fixed maturity 18 month commitment using Stack and Roll (S&R) and Edwards and Canter (E&C) hedges.

Figure 5e: Cumulative Hedge Errors: 18 month Hedge.
The figure shows the cumulated monthly errors in dollars from hedging a fixed maturity 18 month commitment using Brennan (BRE) and Gibson and Schwartz (G&R) hedges.

Figure 5f: Cumulative Hedge Errors: 18 month Hedge.
The figure shows the cumulated monthly errors in dollars from hedging a fixed maturity 18 month commitment using Stack and Roll (S&R) and Gibson and Schwartz (G&R) hedges.

Figure 5g: Cumulated Hedge Errors: 24 month Hedge
The figure shows the cumulated monthly errors in dollars from hedging a fixed maturity 24 month commitment using Stack and Roll (S&R) and Edwards and Canter (E&C) hedges.

Figure 5h: Cumulative Hedge Errors: 24 month Hedge.
The figure shows the cumulated monthly errors in dollars from hedging a fixed maturity 24 month commitment using Brennan (BRE) and Gibson and Schwartz (G&R) hedges.

Figure 5i: Cumulative Hedge Errors: 24 month Hedge.
The figure shows the cumulated monthly errors in dollars from hedging a fixed maturity 24 month commitment using Stack and Roll (S&R) and Gibson and Schwartz (G&R) hedges.

Figure 6a: Hedge Ratios for the Edwards and Canter 12 month hedge.
The figure shows the estimated number of 2 month futures contracts to be held long to hedge a 12 month fixed maturity commitment using the Edwards and Canter tailed hedge.

Figure 6b: Hedge Ratios for the Brennan and Gibson and Schwartz 12 month hedge.
The figure shows the estimated number of 2 and 6 month futures contracts to be held in order to hedge a 12 month fixed maturity commitment using the Brennan (BRE) and Gibson and Schwartz (G&S) models.

Figure 7: Spot and Futures Prices of Oil, second half of 1990.
The figure shows the spot and futures prices of the NYMEX Light Oil contract, month ends June-December, 1990.
Monthly Rollover Gains for 3 month
Oil Futures Contract 1983-1994

Figure 1

Figure 2
Oil Futures Prices by Maturity
Selected Dates 1983 - 1993

Figure 3
Estimated Speeds of Adjustment:
Brennan and G&S Models

Figure 4
Cumulative Errors -12 month hedge
Stack & Roll and Edwards & Carter

Figure 5a
Cumulative Errors -12 month hedge
Brennan and Gibson & Schwartz

Figure 5b
Cumulative Errors -12 month hedge
Stack & Roll and Gibson & Schwartz

Figure 5c
Cumulative Errors -18 month hedge
Stack & Roll and Edwards & Carter

Figure 5d
Cumulative Errors -18 month hedge
Brennan and Gibson & Schwartz

Figure 5e
Cumulative Errors -18 month hedge
Stack & Roll and Gibson & Schwartz

Figure 5f
Cumulative Errors - 24 month hedge
Brennan and Gibson & Schwartz

Figure 5h
Cumulative Errors - 24 month hedge
Stack & Roll and Gibson & Schwartz

Figure 5i
Positions in the 2 month contract for
12 month hedge: Edwards and Canter

Figure 6a
Figure 6b

Positions in the 2 & 6 month contracts for 12 month hedge: Brennan and G&S

\[\text{Diagram showing positions over time with different symbols for G&S:2, G&S:6, BRE:2, BRE:6}} \]
Spot and Futures Prices of Oil:
second half of 1990

Figure 7