Red Wings bounce Predators

Detroit is up 2-0 in series, but must take control today in Game 3 at Nashville.

Detroit’s win Tuesday night in Game 2 of the Western Conference semifinals was one of those games that was hard to analyze, except to say that the team that played the sloppier game like this, that, and win an occasional close game, is Detroit now the Predators are kicking themselves.

Wings got theirs Saturday, and the Predators are hitting the brakes. The Predators, the Predators, the Predators, the Predators

Detroit is up 2-0 in series, but must take control today in Game 3 at Nashville.

Detroit’s win Tuesday night in Game 2 of the Western Conference semifinals was one of those games that was hard to analyze, except to say that the team that played the sloppier game like this, that, and win an occasional close game, is Detroit now the Predators are kicking themselves.

Wings got theirs Saturday, and the Predators are hitting the brakes. The Predators, the Predators, the Predators, the Predators

Detroit is up 2-0 in series, but must take control today in Game 3 at Nashville.

Detroit’s win Tuesday night in Game 2 of the Western Conference semifinals was one of those games that was hard to analyze, except to say that the team that played the sloppier game like this, that, and win an occasional close game, is Detroit now the Predators are kicking themselves.

Wings got theirs Saturday, and the Predators are hitting the brakes. The Predators, the Predators, the Predators, the Predators

Detroit is up 2-0 in series, but must take control today in Game 3 at Nashville.

Detroit’s win Tuesday night in Game 2 of the Western Conference semifinals was one of those games that was hard to analyze, except to say that the team that played the sloppier game like this, that, and win an occasional close game, is Detroit now the Predators are kicking themselves.

Wings got theirs Saturday, and the Predators are hitting the brakes. The Predators, the Predators, the Predators, the Predators

Detroit is up 2-0 in series, but must take control today in Game 3 at Nashville.
The consequences of crushed roof deaths and injuries are clear as early as the 1960s. A 1968 study by the National Highway Traffic Safety Administration (NHTSA) estimated that one of every 100 deaths in motor vehicle accidents involved occupants in rollover accidents, an estimated but it is a significant portion of those deaths and injuries cannot be estimated. But the government considered a serious problem, and GM and Ford both proposed a flat roof strength test to determine how well occupants are protected in severe crashes, including rollovers. In 1971, after a Consumer Federation of America-funded experiment produced compact car that crushed roofs and injuries, the government began to consider a new standard.


Q: What is a "roll cage" in vehicles? A: A roll cage is a framework of metal tubing used to reinforce the interior of a vehicle, especially on rally cars and other high-performance vehicles. Roll cages are designed to protect the occupants in the event of a rollover accident. They are typically made from lightweight materials such as aluminum or mild steel, and they are engineered to absorb energy in a controlled manner during a rollover event. Roll cages help to maintain the structural integrity of the vehicle, even when it is turned upside down, protecting the occupants from severe impacts and injuries.
Argonauts argue decades-old test is fair and easy to repeat

By Jeff Plungis and Bill Vine
The Detroit News

WASHINGTON — In an age of computer models, high-tech crash tests and multimillion-dollar round-the-clock testing, the federal government uses an ancient and easily administered road test to determine whether new cars and trucks are strong enough to protect their passengers in side impacts.

The newly created National Highway Traffic Safety Administration (NHTSA), established by the 1966 Highway Safety Act, uses the test on a standard cart, placed on a rigid horizontal surface.

In contrast to modern day computer analyses, the minimum level of protection in the rolltest is based on criteria that decide how far the roof must deflect in a rollover test.

"The roof test really does not reflect what happens in the real world," said Ricardo Matta, who headed the NHTSA from 1991 to 1993. "It is a test that is not really relevant to crash analysis."

The cart is an unyielding object on one side -- and dummy on the other in an attempt to reproduce a rollover situation, or to allow a crush to happen less than 5 inches or other parts of the car to crumple. It is an absurd test that is woefully outmoded by the current state of science, he said.

"The tests are not relevant to real world rollovers," Matta said. "No one has ever used this test to determine the impact of a rollover."

In the 1960s and 1970s, when automobile safety testing was in its infancy, the roof test was seen as the problem of a roving cart that could be used to determine whether the roof structure was strong enough to protect the passenger in a rollover.

But the cart system has some limitations. It can only be used in a stable manner and it cannot be used to determine the impact of a rollover. It cannot be used to determine the impact of a rollover by simply dropping a car onto the top of a steel plate.

Matta said the test was developed in the 1960s when the U.S. was trying to develop a new test for measuring the strength of the roof structure.

In the 1960s and 1970s, the roof test was seen as the problem of a roving cart that could be used to determine whether the roof structure was strong enough to protect the passenger in a rollover.

But the cart system has some limitations. It can only be used in a stable manner and it cannot be used to determine the impact of a rollover. It cannot be used to determine the impact of a rollover by simply dropping a car onto the top of a steel plate.

Matta said the test was developed in the 1960s when the U.S. was trying to develop a new test for measuring the strength of the roof structure. The cart system was also developed by the U.S. Army in the 1960s to test the strength of the roof structure in a rollover.

"The cart system was developed by the U.S. Army in the 1960s to test the strength of the roof structure in a rollover," Matta said. "It was not designed to test the impact of a rollover."