LEARN MORE BY ATTENDING AN ONLINE INFORMATION SESSION:
RSVP at www.anderson.ucla.edu/x19461

\[
\begin{align*}
\frac{dX_t}{dt} &= (a_t - bX_t)dt + \sqrt{X_t}c_t dW_{1t} \\
\frac{dY_t}{dt} &= (d_t - eY_t)dt + \sqrt{Y_t}f_t dW_{2t} \\
\frac{dr_t}{dt} &= (\mu X + \theta Y)dt + \sigma_t \sqrt{Y}dW_{3t}
\end{align*}
\]

X short-term component of interest rates
Y long-term component of interest rates & volatility
r riskless interest rate

THE LONGSTAFF-SCHWARTZ MODEL USED BY WALL STREET TO DESCRIBE THE FUTURE EVOLUTION OF INTEREST RATES
— conceived by two of our UCLA Anderson MFE Professors

Professor Francis Longstaff
Founding Faculty Director
UCLA Anderson MFE Program

Professor Eduardo Schwartz
California Chair in Real Estate and Land Economics
UCLA Anderson MFE Program
AS FINANCE BECOMES MORE QUANTITATIVE, THE MFE DEGREE OFFERS A VALUABLE COMPETITIVE EDGE.

WHY AN MFE DEGREE?

MAKE CONSTANT USE OF YOUR QUANTITATIVE SKILLS. CHALLENGE YOURSELF DAILY. BE CREATIVE IN YOUR APPROACHES. THESE ARE THE REWARDS OF THE MASTERS IN FINANCIAL ENGINEERING (MFE). THE FINANCE INDUSTRY NEEDS PEOPLE WHO POSSESS DEEP MATHEMATICAL MODELING SKILLS AND COMPUTATIONAL EXPERTISE. OUR MFE PROGRAM MEETS THAT NEED BY MERGING MATHEMATICAL, STATISTICAL, AND COMPUTER SCIENCE TOOLS WITH FINANCE THEORY TO EQUIP OUR STUDENTS FOR A HIGHLY REWARDING CAREER — DOING WHAT THEY DO BEST.

FOUNDATION BUILDING (NOV – DEC)

Fundamentals of Investments
Financial Accounting
Macroeconomic Essentials
Financial Computing Workshops

WINTER QUARTER (JAN – MAR)

Intro to Derivatives
Corporate Finance & Risk Management
Introduction to Stochastic Calculus
Empirical Methods in Finance
Financial Computing Workshops

SPRING QUARTER (MAR – JUN)

Derivative Markets
Computational Methods in Finance
Fixed Income Markets
Quantitative Asset Management
Financial Institutions Seminar

SUMMER (JUN – SEPT)

Applied Finance Project
Summer Internship

FALL QUARTER (SEP – DEC)

Credit Markets
Financial Engineering Electives
Applied Finance Project
Financial Institutions Seminar

If your interest lies in a career at the nexus of mathematical theory and application, the MFE Program at UCLA Anderson can provide you with the knowledge and practice needed to succeed in the finance industry. Brownian motion, PDEs, Monte Carlo simulations, Poisson Distributions, Serial Correlations — financial engineers (also known as "quants") apply these concepts and many more to build models, solve problems, evaluate opportunities and manage risks in financial markets. The field is not only quantitative, it is also creative and challenging; since financial markets are ever-changing, the data used to build and test models for investing, trading and risk management are constantly evolving.

If your interest lies in a career at the nexus of mathematical theory and application, the MFE Program at UCLA Anderson can provide you with the knowledge and practice needed to succeed in the finance industry. Brownian motion, PDEs, Monte Carlo simulations, Poisson Distributions, Serial Correlations — financial engineers (also known as "quants") apply these concepts and many more to build models, solve problems, evaluate opportunities and manage risks in financial markets. The field is not only quantitative, it is also creative and challenging; since financial markets are ever-changing, the data used to build and test models for investing, trading and risk management are constantly evolving.

Graduates from the MFE Program work in quantitative finance in areas such as:

- mathematical model-building for pricing and risk management
- researching and developing trading strategies
- structuring derivatives transactions
- quantitative investment
- corporate risk management

>> WORLD-CLASS FACULTY

UCLA Anderson MFE faculty are among the best in the world. Consistently top-rated, they are leaders in cutting-edge financial engineering research, as well as the practical implementation of current theory. MFE faculty have developed globally-renowned financial models, including a number that are widely used on Wall Street.

>> CHALLENGING & FOCUSED CURRICULUM

Not all MFE Programs are integrated into a business school environment. As a fully-integrated part of the UCLA Anderson School of Management, our MFE Program is based on the business school paradigm of merging theory and principle with up-to-the-minute business practice – so that you can immerse yourself in a rewarding career immediately upon graduation. To prepare, you’ll take part in our Summer Internship program and in the intensive Applied Finance Research Project, a real-world practical application.

>> A POWERFUL NETWORK

Grow personally and professionally by engaging with the UCLA Anderson Alumni Network. With over 37,000 alumni worldwide, many are currently employed at some of the world’s leading investment banks, asset management firms and hedge funds, including: Citigroup, Credit Suisse, JP Morgan, Goldman Sachs, Blackrock, Morgan Stanley, Nomura and PIMCO.

>> CAREER COACHING AND SERVICES

The MFE Program has staff solely dedicated to assisting MFE students with internship and career placement. Through one-on-one sessions, emphasis is placed on career management, presentation, communication skills and résumé development, as well as interviewing and negotiating skills.

>> LEARN MORE BY ATTENDING AN ONLINE INFORMATION SESSION:

RSVP at www.anderson.ucla.edu/x19461

>> MFE CURRICULUM

FOUNDERING BUILDING (NOV – DEC)

Fundamentals of Investments
Financial Accounting
Macroeconomic Essentials
Financial Computing Workshops

WINTER QUARTER (JAN – MAR)

Introduction to Derivatives
Corporate Finance & Risk Management
Introduction to Stochastic Calculus
Empirical Methods in Finance
Financial Computing Workshops

SPRING QUARTER (MAR – JUN)

Derivative Markets
Computational Methods in Finance
Fixed Income Markets
Quantitative Asset Management
Financial Institutions Seminar

SUMMER (JUN – SEPT)

Applied Finance Project
Summer Internship

FALL QUARTER (SEP – DEC)

Credit Markets
Financial Engineering Electives
Applied Finance Project
Financial Institutions Seminar

Graduates from the MFE Program work in quantitative finance in areas such as:

- mathematical model-building for pricing and risk management
- researching and developing trading strategies
- structuring derivatives transactions
- quantitative investment
- corporate risk management

>> WORLD-CLASS FACULTY

UCLA Anderson MFE faculty are among the best in the world. Consistently top-rated, they are leaders in cutting-edge financial engineering research, as well as the practical implementation of current theory. MFE faculty have developed globally-renowned financial models, including a number that are widely used on Wall Street.

>> CHALLENGING & FOCUSED CURRICULUM

Not all MFE Programs are integrated into a business school environment. As a fully-integrated part of the UCLA Anderson School of Management, our MFE Program is based on the business school paradigm of merging theory and principle with up-to-the-minute business practice – so that you can immerse yourself in a rewarding career immediately upon graduation. To prepare, you’ll take part in our Summer Internship program and in the intensive Applied Finance Research Project, a real-world practical application.

>> A POWERFUL NETWORK

Grow personally and professionally by engaging with the UCLA Anderson Alumni Network. With over 37,000 alumni worldwide, many are currently employed at some of the world’s leading investment banks, asset management firms and hedge funds, including: Citigroup, Credit Suisse, JP Morgan, Goldman Sachs, Blackrock, Morgan Stanley, Nomura and PIMCO.

>> CAREER COACHING AND SERVICES

The MFE Program has staff solely dedicated to assisting MFE students with internship and career placement. Through one-on-one sessions, emphasis is placed on career management, presentation, communication skills and résumé development, as well as interviewing and negotiating skills.

>> LEARN MORE BY ATTENDING AN ONLINE INFORMATION SESSION:

RSVP at www.anderson.ucla.edu/x19461
\[dX_t = (a_t - bX_t)dt + \sqrt{X_t}c_t dW_{1t} \]
\[dY_t = (d_t - eY_t)dt + \sqrt{Y_t}f_t dW_{2t} \]
\[dr_t = (\mu X + \theta Y)dt + \sigma_t \sqrt{Y} dW_{3t} \]

/// KEY

- **X**: short-term component of interest rates
- **Y**: long-term component of interest rates & volatility
- **r**: riskless interest rate

THE LONGSTAFF-SCHWARTZ MODEL USED BY WALL STREET TO DESCRIBE THE FUTURE EVOLUTION OF INTEREST RATES

— conceived by two of our UCLA Anderson MFE Professors

LEARN MORE BY ATTENDING AN ONLINE INFORMATION SESSION:
RSVP at www.anderson.ucla.edu/x19461