Advertising Spending, Competition and Stock Return

Amit Joshi*
Dominique M. Hanssens

April 21, 2008

*Amit Joshi is an Assistant Professor at the University of Central Florida and Dominique M. Hanssens is the Bud Knapp Professor of Marketing, UCLA Anderson School of Management. The authors gratefully acknowledge the financial support of the Marketing Science Institute.

Corresponding Author: Amit Joshi, Department of Marketing, College of Business Administration, P.O. Box 161400, Orlando, FL 32816-1400. Tel: 407-823-5355. Fax: 407-823-3891
Advertising Spending, Competition and Stock Return

Marketing decision makers are increasingly aware of the importance of shareholder value maximization, which calls for an evaluation of the long-run effects of their actions on product-market response as well as investor response. However, the marketing literature to date has focused on the sales or profit response of marketing actions such as advertising spending and new-product development, and the goals of marketing have traditionally been formulated from a customer perspective. There have been no studies of the long-term investor response to marketing actions, in particular the stock returns of publicly traded firms.

Our research investigates one important aspect of this impact, the long-run relationship between advertising spending and market capitalization. We hypothesize that advertising can have a direct effect on valuation, i.e., an effect over and above its indirect effect via sales revenue and profit response. Our empirical test is based on several years of data for two industries. We use multivariate time-series methods that disentangle the long-run effects and short-run effects, as well as the direct and the indirect effects of advertising on firm valuation. The empirical results provide support for our hypothesis that advertising spending has a positive and long-run impact on firms’ market capitalization. Thus, even if product-market response to the advertising is demonstrably weak, investors are willing to pay a premium for aggressive advertisers. We quantify the magnitude of this investor response effect for own firms as well as competition and discuss its implications for future research.
Introduction

The shareholder value principle advocates that a business should be run to maximize the return on shareholders’ investment. Shareholder Value Analysis (SVA) is thus becoming a new standard for judging managerial action (Doyle 2000). In this changing scenario, where short-term accounting profits are giving way to SVA, it is imperative that all investments made by managers be viewed in the context of shareholder returns. Thus, every investment, be it in the area of operations, human resources or marketing may now have to be justified from the SVA perspective. The common yardstick used by most investors in this context is the share price, or more generally, the wealth created by a firm is measured by its market capitalization.

This evolution presents a great opportunity for marketing. Indeed, traditional accounting, by focusing on short-term profits at the expense of intangible assets, may marginalize marketing. For example, current accounting criteria may dictate the arbitrary reduction of sales training budgets in order to meet quarterly profits, but this reduction may have a negative impact on the firm in the long run (Cleland and Bruno 1996). In contrast, SVA takes a long-term perspective and encourages managers to make profitable investments.

In order to capitalize on this opportunity, marketing will have to justify its budgets in shareholder value terms. This is a difficult task, as the goals of marketing are traditionally formulated in customer attitude or sales performance terms. Furthermore, marketing may impact business performance in both tangible and intangible ways. Consequently, marketing budgets are vulnerable, especially advertising spending, as noted in the MAX conference on Improving Advertising Budgeting (Donath 1999). While the effects of advertising on sales have been researched in depth (see e.g. Hanssens, Parsons and Schultz 2001 for a review), there has been little effort to study the direct impact of advertising on stock price (Figure 1). Thus the primary
motivation of our paper is to investigate the impact of advertising spending on firm value above and beyond its effect on sales revenues and profits.

Tangible and Intangible Effects. Firm value has been classified as tangible and intangible value (Simon and Sullivan 1993). From a marketing perspective, tangible assets include sales and profits, and the impact of marketing instruments on these has been well documented for both the short run (e.g. Blattberg, Briesch and Fox 1995, Lodish et al 1995) and the long run (e.g. Nijs et al 2001, Pauwels et al 2002). In modern economies, however, a large part of firm value may reflect its intangible assets, such as brand equity (Chan, Lakonishok and Sougiannis 2001). Since these intangible assets are not required to be reported in firms’ financial statements under the generally accepted U.S. accounting principles, their valuation is complicated further. At the same time, research suggests that non-financial indicators of investments in “intangible” assets, such as customer satisfaction, may be better predictors of future financial performance than historical accounting measures, and should supplement financial measures in internal accounting systems (Ittner and Larcker 1998).

Intangible assets may be classified as: (i) market specific factors such as regulations that lead to imperfect competition, (ii) firm-specific factors, such as R&D expenditures and patents, and (iii) brand equity (Simon and Sullivan 1993). To date, the finance and policy literatures have established a relationship between firm value and factor (i), which is beyond the scope of this paper.

Firm-specific factors (factor (ii)) have been shown to have a positive impact on firm value. Research has linked firm value to R&D expenditures (Doukas and Switzer 1992, Chan,
Lakonishok and Sougiannis 2001), discretionary expenditures such as R&D and advertising (Erickson and Jacobson 1992, Griliches 1981, Pakes 1985, Jaffe 1986), and innovation (Bayus et al 2003, Pauwels 2004).

A few marketing papers deal with the link between brand-related intangible assets (iii) and firm value. These include studies on the stock-market reaction to the changing of a company’s name (Horsky and Swyngedouw 1987), to new-product announcements (Chaney et al 1991), perceived quality (Aaker and Jacobson 1994), brand extensions (Lane and Robertson 1995) and brand attitude (Aaker and Jacobson 2001). Furthermore, the linkages between advertising and brand-related intangible assets, including perceived quality (Moorthy and Zhao 2000) and brand attitude (Berger and Mitchell 1989), have been well established. Research has also established that the impact of marketing variables on brand-related intangible assets may be moderated by the type of branding strategy adopted by a firm (Rao et al 2004, Joshi 2005). Recent work in marketing has also established a strong relationship between customer satisfaction and firm value (Fornell et al 2006). Based on the results in these studies, we may expect advertising to have an indirect impact on firm value (through an increase in sales and profits), as well as a direct effect (by building brand-related intangible assets). Our research thus relates factors (ii) and (iii) to firm value.

Capital Market Efficiency. Most of the studies mentioned above use the “Event Study” methodology, where stock prices / abnormal stock returns are tracked around a time window surrounding the concerned event(s). As such, these studies address the long-run impact of the change on stock prices only if markets are (nearly) perfectly efficient, under the Efficient Capital Markets hypothesis (ECM hereafter). The ECM hypothesis (Fama 1970) states that the current stock price contains all available information about the future expected profits of a firm. Future profit expectations are the only driver of stock price, and hence stock prices may be modeled as a
random walk, in which changes in these expectations are incorporated immediately and fully. However, more recent work in finance, marketing and strategy suggests that the ECM hypothesis may not always hold (Merton 1987, Fornell et al 2006). In particular, researchers have questioned the appropriateness of the assumptions of immediate dissemination of all available information. Indeed, Kothari (2001) acknowledges that there is increasing evidence that “markets may be informationally inefficient” and “prices might take years before they fully reflect available information”. In marketing, Pauwels et al. (2004) demonstrate that marketing activities such as new-product introductions contain information that takes several weeks to be fully incorporated in firm value. This finding motivates the use of long-run or persistence models instead of event windows to study the impact of intangible assets on firm value.

In conclusion, while there is some evidence of a possible relationship between marketing activities and financial performance, this relationship has not received adequate attention. Specifically, no studies have directly examined the long-run effects of advertising expenditures on firm value. If the ECM hypothesis holds, we would find no long-run effects, since the impact of advertising would be fully contained in next-period’s stock price. The fact that some studies suggest otherwise indicates there can be an effect build-up beyond the short run.

In this study, we use persistence or VAR modeling (Dekimpe and Hanssens 1995a) to study the long-term effect of advertising expenditures on stock return. VAR models allow us to investigate long-run investor response to advertising, while recognizing the endogeneity of discretionary expenditures (such as advertising and R&D) with profits, and hence firm value. In addition, we will illustrate the economic impact of our results by simulating changes in market capitalization under different advertising spending scenarios. We begin with the development of our hypothesis.
Hypothesis Development

We hypothesize that advertising will impact firm value through two effects: *spillover* and *signaling*, which we discuss in turn.

**Spillover.** Advertising seeks to differentiate a firm’s products from those of its competitors, thereby creating brand equity for its products (Aaker 1991). We hypothesize that this equity, which is created through marketing activity, and is ostensibly directed at customers and prospects, can *spill over* into investment behavior as well. For example, Frieder & Subrahmanyam (2001) find that investors favor stocks with strong brand names, even though these powerful brands did not generate superior short-run returns. The authors acknowledge that “*individual investors may believe, correctly or not, that they can expect greater appreciation potential in the stock of companies whose products are recognized brand names.*” Overall, their results indicate that brand awareness and perceived brand quality in consumer products may spill over to the demand for stocks of their companies.

Research in behavioral decision theory provides support for the spillover effect. Heath and Tversky (1990) find that individuals prefer to bet in areas where they feel confident and have knowledge about the uncertainties involved, compared to more ambiguous areas. Such a preference could carry over to investment decisions in that investors may prefer to hold branded stocks for which the flow of public information is higher. Further support is provided by Huberman (2001), who finds that investors often invest in the familiar, while ignoring principles of portfolio theory. Insofar as advertising generates familiarity (MacInnis and Jaworski 1989), we would expect that heavily advertised stocks are more attractive investment options.

As we hypothesize that advertising impacts customer response as well as investor response, it becomes necessary to consider the branding strategies used by firms, since the
advertising expenditures by a firm interact with the type of branding adopted (Rao et al 2004). The literature identifies three broad strategies that firms use (Laforet and Saunders 1994). Companies like Microsoft or Nike are classified as having a Corporate branding strategy, wherein the company name is synonymous with their product brands. In the House of Brands strategy, product brands are distinct from the company name (e.g. P&G, Unilever). Finally, the Mixed branding strategy arises when firms use a combination of the above two strategies (e.g. Ford, Toyota). The Corporate branding strategy has been associated with higher values of Tobin’s Q on account of it enabling firms to better leverage their overall brand equity (Rao et al. 2004). Based on these findings, we propose that advertising will have a direct impact on firm value for firms that use a corporate branding strategy, and restrict our investigation to firms that use this strategy \(^1\).

**Signaling.** In addition, advertising can also act as a signal of financial well-being or competitive viability of a firm. Numerous signaling mechanisms can influence investor behavior. Among the more recent research on this effect is Mathur and Mathur (2000) on the stock market’s reaction to the announcement of “green” marketing strategies, and Mathur et al (1997) on the celebrity endorsement effect on firm valuation. The latter study finds that Michael Jordan’s much publicized return to NBA basketball resulted in an average increase in the market-adjusted values of his client firms of almost 2 percent, or over $1 billion in market capitalization. Thus, advertising in various forms may serve as a signal of future earnings potential. In a study of the impact of environmental friendliness on firm value, Gifford (1997) found that merely establishing a pro-environment practice was insufficient, and that firms had to advertise this fact to the investment community before it translated into increased financial returns. In this case, \(^1\) We leave the investigation of the advertising impact on firm value for firms with other types of branding for future research.
advertising provides information that does not necessarily impact the sales of the firm, but has a direct effect on its stock price. Similarly, Mizik and Jacobson (2003) find that value creation (e.g. R&D) alone does not enhance firm value, and that it is necessary to have value appropriation (e.g. through advertising) for that to occur.

Further evidence in favor of signaling effects is provided by Chauvin and Hirschey (1993) who report that “data on advertising and R&D spending appear to help investors form expectations concerning the size and variability of future cash flows”. Although their analysis is restricted to short-run effects, the results point in the direction of a positive impact of advertising on firm value. More recently, the signaling effect of advertising was examined in the accounting and auditing literature (Simpson 2008). The author finds an impact of advertising expenditures on both own and competitive firm market values, and also reports that firms voluntarily disclose their own advertising expenditures only if past disclosures lead to an increase in own firm value. This research is notable in that it demonstrates a competitive aspect of the advertising signaling effect, i.e. firms in the same space as the advertiser may suffer a decline in their valuation. We will incorporate this competitive aspect of advertising in our empirical analysis.

Direct and indirect effects. While not the primary focus of our research, our model will need to account for the effects of sales revenue and R&D (along with profitability) on valuation. Extensive prior research on the effects of advertising on sales provides an empirical generalization that the short-term elasticity on own brand sales is positive but low (Leone and Schultz 1980) and that advertising will have a long-run effect only if the short run effect is significant (Lodish et al 1995). Thus, advertising can impact firm value indirectly through an increase in sales revenues.

Furthermore, research in marketing and strategy has also demonstrated the positive impact of new-product introductions on sales (Morbey and Reithner 1990, Nijs et al 2001). Since
product innovation requires research and development, it has also been established that R&D expenditures have a positive impact on the *market value* of the firm (Doukas and Switzer 1992, Cockburn and Griliches 1988).

While the studies above provide evidence that advertising may have a positive effect on valuation, we do not know its possible magnitude. In the short run, advertising will likely work through the indirect route, i.e., increasing valuation through lifting sales and profits. The direct effect is expected to appear only in the long run, when advertising succeeds in differentiating a firm’s products in the minds of consumers and investors. Based on the arguments above, we propose:

*H1:* Advertising will have a positive long-run effect on stock return above and beyond its impact through sales revenues and profits.

**Model**

*Model Specification*

The relation between profits (P) and valuation has been examined extensively in the finance literature (valuation $\propto P$). On the other hand, the direct relationship between advertising (A) and valuation is more ambiguous. Only effective advertising can generate sales profitably, and not all advertising is effective. Furthermore, even effective advertising can reduce profit in the short run, since the advertising budget is a direct expenditure against current revenue. Lastly, there could be a *branding effect* of an ad campaign by itself, over and above the additional cash flows generated by the advertising, which could impact the intangible assets of a firm. Thus we will need a systems model as opposed to a single-equation approach to study our hypotheses.
In addition, the workings of advertising need to be studied in the long run because its impact lasts well beyond the accounting period in which the advertising is spent. In so doing, we must recognize that company value, sales, profits and advertising expenditures can all have feedback effects on one another. For example, a higher profit in a period may lead to increased advertising budgets, which in turn may boost sales and future profits. In order to disentangle these effects, we use a dynamic systems representation, in particular a vector-autoregressive (VAR) model in which the advertising and performance variables are jointly endogenous.

From a finance perspective, two important decisions need to be made – which covariates to select to control for market factors and which measures of stock return to use. For the former, Fama and French (1996) demonstrated the importance of using a three-factor model, which controls for firm size, market-to-book value and return relative to market portfolio when investigating stock return. Jegadeesh and Titman (1993) demonstrated the necessity of also accounting for momentum when studying stock return. As for the latter, alternative cross-sectional measures of the market value (or stock return) of the firm may be used. Currently, there exists no consensus on which abnormal return metric is the most appropriate for analysis. Thus, in keeping with the latest research (Jacobson and Mizik 2008), we use multiple measures to assess the impact of advertising. In marketing, the market-to-book ratio (MBR henceforth) is among the most frequently used dependent variables. However, Barber and Lyon (1997) demonstrate the superiority of a control-firm (or matched-firm) approach, in which the target firm’s performance is compared with similar firms when analyzing long-run (one- to five year) abnormal stock returns. Thus, we use both MBR and control firm measure of abnormal return in our analysis.

We arrive at the Control or Matched Firm Return (MFR henceforth) stock-return metric as follows. Monthly returns for the firms in our study are obtained using the CRSP database. We
then match each firm for each month with a control firm or (portfolio of firms) closest in size to our target firm, as defined by the market value of equity. Using the CRSP database allows us to choose matching firm(s) that are closest in size and market-to-book value to our target firm (Barber and Lyon 1997). It should be noted that research in finance has found that the matching set of firms need not be from the same industry as the focal firm (Barber and Lyon 1996), which makes it easier to construct this variable.

In addition to valuation, profits, sales and advertising expenditures, we include a feedback equation for R&D expenditures, as previous studies have concluded that stock prices react favorably to R&D spending (e.g. Griliches 1981, Pakes 1985 and Jaffe 1986).

Since the variables Advertising (A), Sales Revenue (R), Profit (P) and R&D expenditures (RD) can all be jointly endogenous with stock return (MFR), a VAR model in differences with J lagged periods is:

\[
\begin{bmatrix}
\Delta MFR_t \\
\Delta R_t \\
\Delta P_t \\
\Delta A_t \\
\Delta RD_t 
\end{bmatrix} =
\begin{bmatrix}
\gamma_{MFR,t} \\
\gamma_{R,t} \\
\gamma_{P,t} \\
\gamma_{A,t} \\
\gamma_{RD,t}
\end{bmatrix} + \sum_{j=1}^{J}
\begin{bmatrix}
\pi_{11} & \pi_{12} & \pi_{13} & \pi_{14} & \pi_{15} \\
\pi_{21} & \pi_{22} & \pi_{23} & \pi_{24} & \pi_{25} \\
\pi_{31} & \pi_{32} & \pi_{33} & \pi_{34} & \pi_{35} \\
\pi_{41} & \pi_{42} & \pi_{43} & \pi_{44} & \pi_{45} \\
\pi_{51} & \pi_{52} & \pi_{53} & \pi_{54} & \pi_{55}
\end{bmatrix}
\begin{bmatrix}
\Delta MFR_{t-j} \\
\Delta R_{t-j} \\
\Delta P_{t-j} \\
\Delta A_{t-j} \\
\Delta RD_{t-j}
\end{bmatrix} +
\begin{bmatrix}
\Delta MFR_{t-j} \\
\Delta R_{t-j} \\
\Delta P_{t-j} \\
\Delta A_{t-j} \\
\Delta RD_{t-j}
\end{bmatrix}
\]

This representation combines market-response and decision-response effects. Consider the partitioned coefficient matrix for the first lag in this model:

---

2 For the sake of brevity we use MFR to represent both our stock return methods (MBR and MFR). In a time-series context, we know from the finance literature that MFR will have a random-walk component, so the VAR models will be specified in differences (\(\Delta\)) or a mixture of levels and differences. In what follows we assume the former. For ease of exposition, exogenous variables are not shown.
In this matrix, the top-left partition represents the market-response coefficients for stock return (momentum), sales revenue and profit, respectively. The (3 x 2) matrix in the top-right corner shows the direct response effects of advertising and R&D on firm value, revenue and profit. The bottom-right partition captures firm-specific decision rules between advertising and R&D spending. Finally, the bottom-left matrix measures performance feedback effects. For example, an increase in next-period advertising spending due to higher sales revenue would be captured by the coefficient $\pi_{42}$. In the systems of equations (1), $[u_{MFR}, u_{R}, u_{P}, u_{A}, u_{RD}]'$ ~ N (0, $\Sigma_u$), and the order of the system, $J$, is determined by minimizing Schwartz’ Bayes Information Criterion.

All variables, except MFR and firm profits, are taken in natural logarithms, so that the response effects may be interpreted as elasticities. However, some firms incur losses (negative profits) and negative MFR in certain time periods in the sample. Although logarithms could still be taken using an additive constant, this is an arbitrary data adjustment that biases the elasticity interpretation, and therefore we prefer to measure these variables in levels.

Our analysis comprises five parts. First, we test for evolution of all the variables in our study. A priori, we expect to find the performance variables to be evolving, following random-walk theory and extant marketing literature (Dekimpe and Hanssens 1995b). If evolution is found, we test for the presence of cointegration, or long-term co-evolution. For example, profits
and advertising expenditures may both be evolving, but if advertising budgets were set in function of profits, we would expect a long-run relationship between the two variables. Depending on the outcome of these tests, suitable VAR models are estimated subsequently.

Next, impulse response functions (IRFs) are derived from the models estimated. The IRFs trace the over-time impact of a unit shock to any endogenous variable on the other endogenous variables. Following Dekimpe and Hanssens (1999), we use generalized IRFs (or simultaneous shocking) to ensure that the ordering of variables in the system does not affect the results and also to account for contemporaneous or same-period effects. Given a VAR model in differences, the total shock effect at lag k is obtained by accumulating the lower-order IRFs. Following Nijs et al. (2001), we determine the duration of the shock (maximum lag k) as the last period in which the IRF value has a $|t|$ statistic greater than 1.

Finally, we calculate the variance decomposition of the IRFs, i.e., the percentage of the forecast error variance of firm value that is attributable to advertising shocks, separate from the contributions of R&D, sales and profit shocks. This analysis separates the direct impact of advertising on firm value from its indirect impact via sales and profits.

**Industry Setting and Data**

*Industry Setting*

As our hypothesis posits that advertising will positively impact value for firms that use corporate branding, we focus on industries where such a branding strategy has been the norm. Furthermore, we choose industries that were in different stages of the product life cycle, to help generalize our findings. The PC manufacturing industry experienced unprecedented growth in the 1990’s (Figure 2), and was clearly in the growth phase of its life cycle. Dell, a relatively new

---

3 Note that traditional single-equation advertising response models such as the Koyck model emerge as special
participant, became the dominant PC manufacturer in the world, while older players such as HP and IBM diversified their businesses (e.g. printers, services) to compensate for lost market share in the PC market. A survey of PC industry related articles appearing in the Wall Street Journal (WSJ hereafter) from 1991 to 2000 reveals that capturing market share with aggressive advertising and pricing was the focus of most PC manufacturers. Advertising messages “moved from emphasizing superior technology across offerings to highlighting perceived flaws in competitors” (WSJ Oct 21 1992), while Dell highlighted its 1st place in the first J.D. Power customer satisfaction survey for the industry (WSJ May 14 1991). Apple unveiled a $100 million ad campaign in 1994 to launch its new iMac, partly with the intention of improving dealer morale (WSJ Aug 14 1998). Overall, the major competitors in the industry were using advertising campaigns to establish positions of superiority in a growing market and thus ensure long-run success (Bronnenberg et al 2000).

In contrast, the sporting goods market was well established, with brands such as Nike and Reebok looking to gain market share at the expense of smaller competitors, through aggressive advertising and celebrity endorsements. A survey of articles in the WSJ reveals the highly competitive nature of the market (“New Reebok Ads Enrage Rival by Taunting Nike’s Star Endorsers” WSJ Feb 6 1991; “Reebok Signs up Newest Star in Basketball for $15 million” WSJ Jan 6 1993).

Thus, despite their different stages in the product life cycle, it is clear that aggressive advertising was a key element in the strategies of firms in these two industries. For the PC industry, advertising would help establish the brand, while in the sporting goods industry, it would help in gaining market share over other established brands.

---

cases of our VAR model, by setting the appropriate response parameters equal to zero.
Data

We obtained 15 years (1991-2005) of monthly data on revenue, income, stock return, advertising and R&D expenditures for the leading players in the PC manufacturing industry (Apple, Compaq, Dell, HP and IBM) and 10 years of data (1995-2004) for the sporting goods industry (Nike, Reebok, K-Swiss, Skechers). The stock-return data were converted to MFR data using the procedure outlined above. The five PC manufacturers accounted for 70% of the PC desktop market and almost 80% of the portable computer market at the end of 2005. Similarly, the leaders of the sporting goods market are represented in our sample, with the four firms accounting for $19 billion in sales revenue for 2004, which is about 28% of the industry. While the PC manufacturing industry was in a growth phase in the 1990’s (Figure 2), the sporting goods industry was in a mature phase (Figure 3). Dell emerged as the leading contender in the PC industry, while firms like Apple struggled. In the sporting goods industry, however, Nike maintained its market leadership, despite the entrance of a new competitor (Skechers). This variability in performance and marketing efforts over time, both within each industry as well as across the two industries, provides a unique opportunity to study the long-term impact of advertising on stock return.

Insert Figures 2 and 3 about here

Data on income, stock return, sales and R&D expenditures were obtained from the CRSP and COMPUSTAT databases. Firm-specific information and accounting data are obtained from the COMPUSTAT database. Data on monthly advertising expenditures were provided by TNS Media Intelligence. The monthly Consumer Price Index was used to deflate all monetary variables.
Results

We found that results from using either MBR or MFR were comparable. Thus, we only discuss results obtained from using MFR. Augmented Dickey-Fuller tests were used to verify the presence of unit roots in the data. MFR was found to be stationary, as predicted by the finance literature. Most sales revenues and advertising expenditures were found to be evolving, in line with the empirical generalizations described in Dekimpe and Hanssens (1995b)\(^4\).

The estimated VAR models in differences, with the appropriate lags determined by the SBIC, showed a good fit, with \(R^2\) ranging from 0.148 to 0.196 in changes (0.894 to 0.988 in levels) for the PC industry and 0.177 to 0.299 in changes (0.895 to 0.963 in levels) for the sporting goods industry (see Table 1). Model adequacy was verified by performing portmanteau tests on the residuals, also shown in Table 1. The results indicate that the model residuals are white noise.

The accumulated advertising and R&D elasticities are given in columns 2 and 3 of Table 2. The advertising elasticities have the expected magnitude for all firms under study and are statistically significant for three of the five firms in the PC industry and two firms in the sporting goods industry. Furthermore, all significant IRFs indicated persistent effects. Hence, for Apple, Compaq, IBM, K-Swiss and Skechers, advertising spending has a persistent impact on sales revenue.

\(^4\) Detailed results available on request.
The positive sign and the small magnitude of R&D elasticities are attributable to the uncertainty and the long gestation period generally associated with R&D. Further, the R&D elasticities are persistent for Compaq, Dell and IBM. Hence, a shock to R&D expenditure has a long-term impact on firm sales revenue. We find that the R&D elasticities for all sporting-goods firms are insignificant, which may reflect the relatively low importance and variability of R&D spending in this industry (about 2 to 3% of sales). These results replicate previously established findings in the field, and thereby confirm their importance as covariates in our model.

Next, we examine the total effect of advertising on stock return. The last column in Table 2 shows the accumulated advertising elasticities on MFR. Note that these values combine the direct and the indirect advertising effects on firm value over time. The effect of an advertising shock accumulates over 8, 6, 7 and 7 periods for Apple, Compaq, Dell and HP respectively (or, the IRFs for these 3 firms are significant for 8, 6, 7 and 7 periods, respectively). Similarly, for Nike, Reebok and Skechers, the advertising shock accumulates over 6, 6 and 8 periods respectively. Since changes in advertising spending are typically not reported to investors, they are informed only through actual exposure. This explains why the effect of a change in advertising is not absorbed in stock price instantly. Instead, there is a long-run effect beyond the first period, consistent with our expectation, and hence we find partial support for our hypothesis.

Apple, Compaq, Dell and HP have positive and significant investor response elasticities, ranging from .007 to .01. The elasticity for IBM is positive but not significantly different from zero, which may be explained by the large size and scope of this company’s operations. Indeed, the PC division of IBM accounted for only 11% of its revenue, in contrast with 78% for Apple and 63% for Compaq.
In the sporting-goods industry, three of the firms under study show positive and significant investor-response elasticities, ranging from .005 to .009. The highest elasticity is found for Skechers, which is also the youngest firm in this industry in our data.

Overall, the investor-response elasticities are of an order of magnitude that is lower than the typical sales-response elasticities. This is to be expected, as the dependent variable is excess return, which is the (scaled) residual of the random-walk process that is known to underlie the behavior of stock prices. Even so, these low elasticities can generate a sizeable economic impact, as we will explore below.

Variance Decomposition

In order to measure the direct impact of advertising on stock return relative to other factors, we examine the forecast error variance decomposition (FEVD) of firm value. The FEVD calculates the contribution of the various covariates to the forecast variance of MFR. The results are presented in Tables 3a and 3b. This analysis is only meaningful for firms with significant investor-response elasticities from the IRF analysis.

Insert Tables 3a and 3b about here

Tables 3a and 3b show that advertising expenditures initially have a small impact on MFR. In the first few periods after the impulse, firm value is largely determined by past value, as predicted by the random-walk model. However, the impact of advertising increases over time (see

---

5 The elasticities obtained are aggregate elasticities across all products of the firms. While advertising expenditures and elasticities can vary across products, there is only one company stock price, which reflects overall performance, thus the need for aggregation.

6 The investor-response elasticities for innovation and promotion in the automobile industry are even lower, yet still statistically significant (see Pauwels et al. 2004).
Figure 4 for an example). Thus, for Apple, advertising explains only 0.569% of the forecast error variance in period 1, but 4.68% of the variance by period 8. Unlike the IRFs, the variance decomposition does not involve simultaneous shocking and hence the percentages represented here indicate the impact of advertising on firm value *over and above* its effect on sales and profits\(^7\). In conclusion, we find that advertising shocks often increase firm value in the long run, and beyond the impact that may be expected from their effect on revenues and profits.

*Insert Figure 4 about here*

**Impact of Competition**

We verify how robust our results are to the inclusion of competition by re-estimating our model (1) for each firm after including a competition variable (\(\Delta C_t\)). Since we lack sufficient degrees of freedom to simultaneously include advertising expenditures from all competing firms in one model, we estimate competition in pairs of firms\(^8\). Thus, for the PC industry, where we have 5 firms in our dataset, we estimate 20 separate models. The analysis reveals cointegration between the advertising expenditures of competing firms, prompting the use of vector error correction (VEC) models (Dekimpe and Hanssens 1999). After including the competitor advertising variable (\(\Delta C_t\)), we estimate a system of the form:

---

\(^7\) Cholesky Decomposition was used to estimate FEVD. The results are not sensitive to the ordering of the variables.

\(^8\) This may bias our coefficients if the advertising expenditures are correlated. However, we find that all correlations between advertising variables are less than .04 in magnitude, thereby ruling out bias.
\[
\begin{pmatrix}
\Delta MFR_j \\
\Delta R_j \\
\Delta P_j \\
\Delta A_j \\
\Delta RD_j \\
\Delta C_j
\end{pmatrix} = \begin{pmatrix}
\alpha_{\Delta MFR} & 0 & 0 & 0 & 0 \\
0 & \alpha_R & 0 & 0 & 0 \\
0 & 0 & \alpha_P & 0 & 0 \\
0 & 0 & 0 & \alpha_A & 0 \\
0 & 0 & 0 & 0 & \alpha_{RD} \\
0 & 0 & 0 & 0 & 0 & \alpha_C
\end{pmatrix}
\begin{pmatrix}
e_{MFR,j-1} \\
e_{R,j-1} \\
e_{P,j-1} \\
e_{A,j-1} \\
e_{RD,j-1} \\
e_{C,j-1}
\end{pmatrix} + \sum_{j=1}^{J} \begin{pmatrix}
\pi_{11} & \pi_{12} & \pi_{13} & \pi_{14} & \pi_{15} & \pi_{16} \\
\pi_{21} & \pi_{22} & \pi_{23} & \pi_{24} & \pi_{25} & \pi_{26} \\
\pi_{31} & \pi_{32} & \pi_{33} & \pi_{34} & \pi_{35} & \pi_{36} \\
\pi_{41} & \pi_{42} & \pi_{43} & \pi_{44} & \pi_{45} & \pi_{46} \\
\pi_{51} & \pi_{52} & \pi_{53} & \pi_{54} & \pi_{55} & \pi_{56} \\
\pi_{61} & \pi_{62} & \pi_{63} & \pi_{64} & \pi_{65} & \pi_{66}
\end{pmatrix}
\begin{pmatrix}
\Delta MFR_{-j} \\
\Delta R_{-j} \\
\Delta P_{-j} \\
\Delta A_{-j} \\
\Delta RD_{-j} \\
\Delta C_{-j}
\end{pmatrix} + \begin{pmatrix}
u_{MFR,j} \\
u_{R,j} \\
u_{P,j} \\
u_{A,j} \\
u_{RD,j} \\
u_{C,j}
\end{pmatrix}
\]

(3)

The addition of one extra variable in the above system of equations results in 12 additional coefficients to be estimated. To avoid overparameterization, we restrict insignificant coefficients from model (1) to be zero when estimating model (3). The investor response elasticities obtained from this model are shown in Table 4.

Insert Table 4 about here

The competitive elasticities are predominantly negative for Apple, Compaq and Dell and insignificant for HP and IBM. The own-investor response elasticities, after accounting for competition, are shown as the diagonal values in Table 4\(^9\). A comparison with the values in Table 2 reveals that the own elasticities retain their sign and significance, while their magnitudes are marginally different. Overall, the inclusion of competition does not alter the support for hypothesis H1.

---

\(^9\) Own elasticities displayed are the average elasticities for the 4 paired models we estimate for each firm.
The competitive elasticities can be better understood in the context of the relative market valuations (MV share henceforth) of these firms (Figure 5). Competitive elasticities of small MV share firms are negative (and generally significant), while those of large MV share firms are not significant. A firm’s advertising expenditure has a negative impact on the market valuation of competing firms if they are of comparable size, and no impact on firms much larger (in MV) than themselves. This result can be explained by the fact that the cross sales elasticities of the marketing expenditures are not significant.\(^{10}\)

The inclusion of competition thus provides the interesting insight that advertising not only impacts own firm valuation positively, but that it can also have a negative effect on competitors. As noted earlier, this finding corroborates that of Simpson (2008) in the auditing literature, but differs in two important aspects. First, Simpson (2008) is based on the relationship between firm income and competitor advertising, and thus considers only the indirect effect in Figure 1. Second, the author operationalizes competitive advertising as the sum of total advertising by competitors. Our research addresses both the direct and indirect effects of advertising, and we report firm-by-firm competitive elasticities.

\(^{10}\) Detailed results are available from the first author.
Empirical Validation

To check the validity of our model, we conducted two tests. The first checks for the presence of structural breaks in the data. Since these data span a period of fifteen years for the PC industry and ten years for the sporting goods industry, structural breaks in one or more of the series could occur. If a series in our sample were comprised of two stationary regimes separated by a structural break, it could appear to be evolving (Perron 1990). To guard against this, we carried out rolling-window unit-root tests (Smith and Taylor 2001, Pauwels and Hanssens 2006): a suitably long window of observations is selected (40 in this case), and the window is moved along the length of the series (180 observations for PCs and 120 for sporting goods). All the Dickey-Fuller (DF) statistics thus obtained are then compared to their unit-root critical values. These rolling-window unit-root tests indicated no evidence of structural breaks in the data.

Second, we test for the possible effect of temporal aggregation in our series. While the MFR and advertising series were available at the monthly level, sales, R&D and profit series were only available quarterly. Using all series at the quarterly level causes a degrees of freedom problem, unless the data can be pooled across firms (Bass and Wittink 1975). Thus we re-estimated our VAR model in quarterly panel form for each industry. This resulted in (60 x 5) = 300 observations for the PC industry and 149 observations for the sporting goods industry (Skechers entered the market in the 4th quarter of 1997). The poolability of the model was tested using the Chow F Test, extended to a system of equations (Chow, 1960):

\[
F = \frac{(RRSS - URSS)}{R} / \frac{URSS}{d},
\]
where \( RRSS \) is the restricted (pooled model) sum of squared residuals, \( URSS \) is the sum of squared residuals in the unrestricted model (trace of the variance-covariance matrix), \( r \) is the number of linearly independent restrictions and \( d \) is the number of degrees of freedom for the unrestricted model. For a model with firm-specific intercepts and fixed response effects, this test yields \( F \)-values of 2.27 (PC) and 2.13 (sporting goods), which are below the critical value of 2.4 at the 95% confidence level. Hence, we conclude that the data are partially poolable, with firm-varying intercepts and common slopes\(^{11}\):

\[
\begin{bmatrix}
\Delta \text{MFR}_{i,t} \\
\Delta R_{i,t} \\
\Delta A_{i,t} \\
\Delta P_{i,t} \\
\Delta RD_{i,t}
\end{bmatrix} = \left[\gamma + \tilde{\beta}_{\text{Compaq}} + \tilde{\beta}_{\text{Dell}} + \tilde{\beta}_{\text{HP}} + \tilde{\beta}_{\text{IBM}}\right] + \sum_{j=1}^{J} \begin{bmatrix}
\pi_{11}^{j} & \pi_{12}^{j} & \pi_{13}^{j} & \pi_{14}^{j} & \pi_{15}^{j} \\
\pi_{21}^{j} & \pi_{22}^{j} & \pi_{23}^{j} & \pi_{24}^{j} & \pi_{25}^{j} \\
\pi_{31}^{j} & \pi_{32}^{j} & \pi_{33}^{j} & \pi_{34}^{j} & \pi_{35}^{j} \\
\pi_{41}^{j} & \pi_{42}^{j} & \pi_{43}^{j} & \pi_{44}^{j} & \pi_{45}^{j} \\
\pi_{51}^{j} & \pi_{52}^{j} & \pi_{53}^{j} & \pi_{54}^{j} & \pi_{55}^{j}
\end{bmatrix} \begin{bmatrix}
\Delta \text{MFR}_{i,t-j} \\
\Delta R_{i,t-j} \\
\Delta A_{i,t-j} \\
\Delta P_{i,t-j} \\
\Delta RD_{i,t-j}
\end{bmatrix} + \begin{bmatrix}
\Delta \text{MFR}_{i,t} \\
\Delta R_{i,t} \\
\Delta A_{i,t} \\
\Delta P_{i,t} \\
\Delta RD_{i,t}
\end{bmatrix} + \begin{bmatrix}
\Delta \text{MFR}_{i,t} \\
\Delta R_{i,t} \\
\Delta A_{i,t} \\
\Delta P_{i,t} \\
\Delta RD_{i,t}
\end{bmatrix}\]

(3)

The \( R^2 \) in changes for the panel VAR model is 0.237 (0.939 in levels) for the PC industry and 0.269 (0.966 in levels) for the sporting goods industry. The optimal number of lags, determined by the SBIC criterion, is 2, and the residual portmanteau test indicated that residuals are white noise. The most important confirmatory result is that the advertising elasticity of MFR is significant and positive for both industries (PC: 0.007, \( t \)-stat = 1.94 and sporting goods: 0.006, \( t \)-stat = 1.76)\(^{12}\). Thus our generalized estimate of the long-run advertising effect on firm valuation

\(^{11}\) In Equation (3), \( \gamma \) is the common vector of intercepts. \( \tilde{\beta}_{j} \) is a \((5 \times 1)\) vector of company specific dummy variables. Thus, \( \tilde{\beta}_{\text{Compaq}} \) is 1 when variables correspond to Compaq and 0 otherwise.

\(^{12}\) Significant at \( p<.05 \) for a one-tailed test.
is between 0.006 and 0.007, and both the structural-break test and the temporal-aggregation test validate the results of our model.

**Market Capitalization Projections of Increased Advertising Spending**

The estimated investor response elasticities may be used to project the impact on market capitalization of various changes in the advertising level of firms with significant response effects. These forecasts quantify the economic impact of advertising spending on firm value. Indeed, even though the elasticities are small in magnitude, they can translate into a substantial impact on market capitalization. We discuss, in turn, the simulation results and their interpretation from the perspective of relative advertising spending (advertising-to-sales ratios).

Table 5a shows the change in market valuation for a 10% increase in advertising spending for the PC brands with significant customer as well as investor response to advertising, viz. Apple and Compaq. No competitive reaction takes place in these scenarios. In projecting the market valuation figures, we adjusted for the increased advertising spending, as well as the effects of a reduction in firm profits (and hence, stock returns). Compaq achieves gains in total market value that exceed the loss from the implied profit reduction in all four years of the simulation, while Apple gains in only one of the four years. These results derive from the opposing forces of cost increases (profit reduction), revenue and profit enhancement, and brand equity gains.

In contrast to the no-reaction scenario in Table 5a, Table 5b shows the change assuming that competition responds by doubling their advertising expenditures as well. We consider the competitor with the highest cross elasticity from Table 5 as being the responder. In all cases, the direct effect of advertising on valuation is insufficient to justify a sizeable increase in spending,
i.e. a consumer response (indirect) effect is required as well. We therefore examine more closely the role of relative advertising spending, as well as profit-maximizing spending.

Conclusions and Future Research

This study has provided conceptual and empirical evidence of a positive relationship between advertising expenditures and the market value of firms. The results show that there is an investor response effect of advertising over and above its expected effects through revenue and profit sales increases. The pooled estimate of the investor response elasticity in two industries is between .006 and .007.

Several limitations help set an agenda for future research. First, we have only studied two industries, viz. PC manufacturers and sporting goods. A replication of the model in other industries and time periods will provide further cross-validation of the results. Second, this work may be extended to the differential impact of advertising media on market valuation. Third, it would be interesting to examine our hypotheses for firms that use either a house-of-brands or a mixed-branding strategy. Finally, our model could be extended to separate the volume effect of branding from the price premium effect (Ailawadi, Lehmann and Neslin 2003).

There are some limitations in our dataset as well. As in most valuation studies, revenue and profit data are aggregated to the firm level, i.e. they are not broken down by division. When applied to tracking stocks where there is a closer match between the product category and the corporate identity, our approach may reveal higher advertising-to-market value elasticities.
Similarly, our advertising data did not include a breakdown of spending on product advertising vs. brand-image advertising.

Nevertheless, our results succeed in linking advertising directly to firm value, and thus underline the importance of building intangible assets. The direct relation between advertising and firm value provides managers with a new, more comprehensive metric of advertising effectiveness, viz., firm value. Even though the investor-response elasticity is small in magnitude, advertising can induce substantial changes to the market capitalization of firms.

Our findings open up several areas for further research. Among these, the presence of a long-run effect of advertising on the market value of a firm, possibly through the creation of brand equity, suggests that any action that grows brand equity may affect firm value. Thus, order of entry, distribution intensity or even choice of media may be hypothesized to affect the brand equity of a firm and thereby its market value. Another area of interest is the potential relationship between the quality of advertising execution and its impact on firm value. Anecdotally, Apple is highly regarded for its advertising campaigns. Its “1984” advertisement was rated the ‘Best Ever Super Bowl Ad’ by ESPN, and won a CLIO award (the world’s largest advertising competition). Between 1990 and 1998, various Apple Computers advertisements won 23 CLIO awards in different categories, compared to 1, 0, 7 and 11 awards for Compaq, Dell, HP and IBM respectively. Future research should examine to what extent such differences in perceived advertising quality have an influence on the investor community. Finally, since market value is affected by both the level and the volatility of sales revenue, further research needs to examine the effect of marketing variables on volatility.
Table 1: Model Fit and Residual Analysis

<table>
<thead>
<tr>
<th></th>
<th>$R^2$ (In Changes)</th>
<th>$R^2$ (In Levels)</th>
<th>Q- Stat</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple</td>
<td>0.148</td>
<td>0.894</td>
<td>91.09</td>
<td>&lt;0.0003</td>
</tr>
<tr>
<td>Compaq</td>
<td>0.188</td>
<td>0.911</td>
<td>117.57</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>Dell</td>
<td>0.196</td>
<td>0.893</td>
<td>135.82</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>HP</td>
<td>0.172</td>
<td>0.944</td>
<td>67.38</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>IBM</td>
<td>0.152</td>
<td>0.988</td>
<td>84.40</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>Nike</td>
<td>0.299</td>
<td>0.963</td>
<td>85.28</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>Reebok</td>
<td>0.258</td>
<td>0.934</td>
<td>100.62</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>K-Swiss</td>
<td>0.275</td>
<td>0.948</td>
<td>131.44</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>Skechers</td>
<td>0.177</td>
<td>0.895</td>
<td>117.98</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td></td>
<td>Advertising Elasticity</td>
<td>R&amp;D Elasticity</td>
<td>Investor Response Effects</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------------------------</td>
<td>----------------</td>
<td>---------------------------</td>
<td></td>
</tr>
<tr>
<td>Apple</td>
<td>.248**</td>
<td>-.005</td>
<td>.010**</td>
<td></td>
</tr>
<tr>
<td>Compaq</td>
<td>.110**</td>
<td>.313**</td>
<td>.007**</td>
<td></td>
</tr>
<tr>
<td>Dell</td>
<td>.015</td>
<td>.122**</td>
<td>.008**</td>
<td></td>
</tr>
<tr>
<td>HP</td>
<td>.013</td>
<td>.008</td>
<td>.008**</td>
<td></td>
</tr>
<tr>
<td>IBM</td>
<td>.146**</td>
<td>.080*</td>
<td>.009</td>
<td></td>
</tr>
<tr>
<td>Nike</td>
<td>.085</td>
<td>.386</td>
<td>.005*</td>
<td></td>
</tr>
<tr>
<td>Reebok</td>
<td>.110</td>
<td>.117</td>
<td>.007*</td>
<td></td>
</tr>
<tr>
<td>K-Swiss</td>
<td>.096**</td>
<td>-.028</td>
<td>.002</td>
<td></td>
</tr>
<tr>
<td>Skechers</td>
<td>.107*</td>
<td>-.076</td>
<td>.009*</td>
<td></td>
</tr>
</tbody>
</table>

* Significant at p<.10 for a one-tailed test. ** Significant at p<.05 for a one-tailed test.
Table 3: Forecast Error Variance Decompositions

3a: PC Industry

<table>
<thead>
<tr>
<th>Period</th>
<th>Apple MBR</th>
<th>Adv</th>
<th>Compaq MBR</th>
<th>Adv</th>
<th>Dell MBR</th>
<th>Adv</th>
<th>HP MBR</th>
<th>Adv</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>87.481</td>
<td>0.596*</td>
<td>92.971</td>
<td>1.435</td>
<td>94.183</td>
<td>0.943</td>
<td>97.772</td>
<td>0.953</td>
</tr>
<tr>
<td>2</td>
<td>83.571</td>
<td>2.038</td>
<td>90.315</td>
<td>2.856</td>
<td>91.632</td>
<td>2.644</td>
<td>84.369</td>
<td>2.010</td>
</tr>
<tr>
<td>3</td>
<td>80.287</td>
<td>3.670</td>
<td>84.583</td>
<td>3.241</td>
<td>88.742</td>
<td>2.997</td>
<td>81.189</td>
<td>3.134</td>
</tr>
<tr>
<td>4</td>
<td>78.733</td>
<td>4.587</td>
<td>83.875</td>
<td>4.542</td>
<td>84.950</td>
<td>4.201</td>
<td>80.905</td>
<td>3.124</td>
</tr>
<tr>
<td>5</td>
<td>78.488</td>
<td>4.651</td>
<td>83.489</td>
<td>5.338</td>
<td>84.112</td>
<td>5.184</td>
<td>80.849</td>
<td>3.248</td>
</tr>
<tr>
<td>6</td>
<td>78.442</td>
<td>4.679</td>
<td>83.433</td>
<td>5.452</td>
<td>82.895</td>
<td>5.523</td>
<td>80.840</td>
<td>3.266</td>
</tr>
<tr>
<td>7</td>
<td>78.440</td>
<td>4.679</td>
<td>83.330</td>
<td>5.676</td>
<td>80.799</td>
<td>5.715</td>
<td>80.831</td>
<td>3.285</td>
</tr>
<tr>
<td>8</td>
<td>78.438</td>
<td>4.681</td>
<td>83.327</td>
<td>5.677</td>
<td>79.854</td>
<td>5.692</td>
<td>80.828</td>
<td>3.288</td>
</tr>
<tr>
<td>9</td>
<td>78.438</td>
<td>4.681</td>
<td>83.308</td>
<td>5.716</td>
<td>79.850</td>
<td>5.726</td>
<td>80.828</td>
<td>3.289</td>
</tr>
<tr>
<td>10</td>
<td>78.438</td>
<td>4.681</td>
<td>83.307</td>
<td>5.717</td>
<td>79.849</td>
<td>5.727</td>
<td>80.827</td>
<td>3.290</td>
</tr>
</tbody>
</table>

3b: Sporting Goods Industry

<table>
<thead>
<tr>
<th>Period</th>
<th>Nike MBR</th>
<th>Adv</th>
<th>Reebok MBR</th>
<th>Adv</th>
<th>Skechers MBR</th>
<th>Adv</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>98.268</td>
<td>0.077</td>
<td>99.116</td>
<td>0.183</td>
<td>98.433</td>
<td>0.095</td>
</tr>
<tr>
<td>2</td>
<td>96.580</td>
<td>0.878</td>
<td>96.734</td>
<td>0.639</td>
<td>92.737</td>
<td>1.452</td>
</tr>
<tr>
<td>3</td>
<td>91.414</td>
<td>2.787</td>
<td>91.092</td>
<td>0.822</td>
<td>89.831</td>
<td>1.954</td>
</tr>
<tr>
<td>4</td>
<td>89.126</td>
<td>4.003</td>
<td>90.313</td>
<td>1.464</td>
<td>88.669</td>
<td>2.822</td>
</tr>
<tr>
<td>5</td>
<td>88.960</td>
<td>4.108</td>
<td>89.881</td>
<td>1.894</td>
<td>88.420</td>
<td>3.223</td>
</tr>
<tr>
<td>6</td>
<td>88.696</td>
<td>4.118</td>
<td>89.821</td>
<td>1.951</td>
<td>88.402</td>
<td>3.523</td>
</tr>
<tr>
<td>7</td>
<td>88.600</td>
<td>4.185</td>
<td>89.710</td>
<td>2.065</td>
<td>88.395</td>
<td>3.528</td>
</tr>
<tr>
<td>8</td>
<td>88.588</td>
<td>4.189</td>
<td>89.707</td>
<td>2.065</td>
<td>88.392</td>
<td>3.529</td>
</tr>
<tr>
<td>9</td>
<td>88.574</td>
<td>4.198</td>
<td>89.687</td>
<td>2.085</td>
<td>88.391</td>
<td>3.529</td>
</tr>
<tr>
<td>10</td>
<td>88.564</td>
<td>4.208</td>
<td>89.685</td>
<td>2.086</td>
<td>88.391</td>
<td>3.529</td>
</tr>
</tbody>
</table>

* Read: if Matched Firm Return (MFR) for Apple is projected 1 to 10 periods into the future, only 0.596% of the forecast error variance in the first forecast period is explained by shocks to advertising expenditures. This percentage grows to 4.681% of the variance by the tenth forecast period. In contrast, 87.481% of the forecast error variance in period 1 is explained by momentum (variance in past values of MFR). This percentage declines to 78.438% of the variance by period 10.
Table 4: Investor Response Effects with Competition

<table>
<thead>
<tr>
<th>Impact On</th>
<th>Apple</th>
<th>Compaq</th>
<th>Dell</th>
<th>HP</th>
<th>IBM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple</td>
<td>0.0088**</td>
<td>-0.0018**</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Compaq</td>
<td>-0.0011*</td>
<td>0.0081**</td>
<td>-0.0012*</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Dell</td>
<td>-0.0028*</td>
<td>-0.0013*</td>
<td>0.0072**</td>
<td>-0.0010</td>
<td>-0.0014</td>
</tr>
<tr>
<td>HP</td>
<td>0.0000</td>
<td>-0.0021</td>
<td>0.0019</td>
<td>0.0067*</td>
<td>0.0011</td>
</tr>
<tr>
<td>IBM</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0016</td>
<td>0.0018</td>
<td>0.0053</td>
</tr>
</tbody>
</table>

* Significant at p<.10 for a one-tailed test.
** Significant at p<.05 for a one-tailed test.
Coefficients smaller than 10^-4 displayed as 0.0000
Table 5a: Market Valuation Impact of a 10% Advertising Increase

<table>
<thead>
<tr>
<th></th>
<th>Apple</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Net Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>Current MV*</td>
<td>Increase due to Revenue</td>
<td>Increase due to Direct Effect</td>
<td>Reduction due to Cost</td>
<td>New MV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>$1,500</td>
<td>$1.42</td>
<td>$0.08</td>
<td>$2.72</td>
<td>$1,499</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>$3,700</td>
<td>$3.51</td>
<td>$0.19</td>
<td>$4.53</td>
<td>$3,699</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>$12,700</td>
<td>$12.06</td>
<td>$0.64</td>
<td>$5.36</td>
<td>$12,707</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>$3,700</td>
<td>$3.51</td>
<td>$0.19</td>
<td>$8.06</td>
<td>$3,696</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Compaq</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Net Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>Current MV</td>
<td>Increase due to Revenue</td>
<td>Increase due to Direct Effect</td>
<td>Reduction due to Cost</td>
<td>New MV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>$35,600</td>
<td>$23.52</td>
<td>$1.40</td>
<td>$4.15</td>
<td>$35,621</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>$57,800</td>
<td>$38.18</td>
<td>$2.28</td>
<td>$5.42</td>
<td>$57,835</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>$36,600</td>
<td>$24.18</td>
<td>$1.44</td>
<td>$6.04</td>
<td>$36,620</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>$19,800</td>
<td>$13.08</td>
<td>$0.78</td>
<td>$5.23</td>
<td>$19,809</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

* Market Valuation

All figures in millions of dollars
Table 5b: Market Valuation Impact of 10% Increase in Own and Competitive Advertising

<table>
<thead>
<tr>
<th>Year</th>
<th>Current MV</th>
<th>Increase due to Revenue</th>
<th>Increase due to Direct Effect</th>
<th>Reduction due to Cost</th>
<th>Reduction due to Competition</th>
<th>New MV</th>
<th>Net Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>$1,500</td>
<td>$1.42</td>
<td>$0.08</td>
<td>$2.72</td>
<td>$0.42</td>
<td>$1,498</td>
<td>No</td>
</tr>
<tr>
<td>1998</td>
<td>$3,700</td>
<td>$3.51</td>
<td>$0.19</td>
<td>$4.53</td>
<td>$1.04</td>
<td>$3,698</td>
<td>No</td>
</tr>
<tr>
<td>1999</td>
<td>$12,700</td>
<td>$12.06</td>
<td>$0.64</td>
<td>$5.36</td>
<td>$3.56</td>
<td>$12,704</td>
<td>Yes</td>
</tr>
<tr>
<td>2000</td>
<td>$3,700</td>
<td>$3.51</td>
<td>$0.19</td>
<td>$8.06</td>
<td>$1.04</td>
<td>$3,695</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Current MV</th>
<th>Increase due to Revenue</th>
<th>Increase due to Direct Effect</th>
<th>Reduction due to Cost</th>
<th>Reduction due to Competition</th>
<th>New MV</th>
<th>Net Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>$35,600</td>
<td>$23.52</td>
<td>1.40</td>
<td>$4.15</td>
<td>$6.41</td>
<td>$35,614</td>
<td>Yes</td>
</tr>
<tr>
<td>1998</td>
<td>$57,800</td>
<td>$38.18</td>
<td>2.28</td>
<td>$5.42</td>
<td>$10.40</td>
<td>$57,825</td>
<td>Yes</td>
</tr>
<tr>
<td>1999</td>
<td>$36,600</td>
<td>$24.18</td>
<td>1.44</td>
<td>$6.04</td>
<td>$6.59</td>
<td>$36,613</td>
<td>Yes</td>
</tr>
<tr>
<td>2000</td>
<td>$19,800</td>
<td>$13.08</td>
<td>0.78</td>
<td>$5.23</td>
<td>$3.56</td>
<td>$19,805</td>
<td>Yes</td>
</tr>
</tbody>
</table>

All figures in millions of dollars
* Market Valuation
Figure 1

Advertising and Firm Valuation

Possibly negative in short run

+ (Direct Effect)
Figure 2

Market-to-Book ratio and Advertising in the PC industry*

*For ease of exposition, Market-to-Book ratio has been expressed in logs and advertising in levels
**Figure 3**

Market-to-Book ratio and Advertising in the Sporting Goods Industry*

*For ease of exposition, Market-to-Book ratio has been expressed in logs and advertising in levels*
Figure 4

Forecast Error Variance Decomposition*:
An Illustration in the PC Industry

*Read as mentioned for Table 4
Figure 5

Market Valuation Shares for the PC Competitors

* Share only reflects firms in our database.
References


Horsky, Dan, and Patrick Swyngedouw (1987), ”Does it pay to change your company name? A stock market perspective,” Marketing Science, 6, 320-325.


