Stock Price Dynamics With Overconfident Investors

Jiang Luo,* Avanidhar Subrahmanyam,** and Sheridan Titman***

*Nanyang Business School, Nanyang Technological University, Singapore.
**Anderson Graduate School of Management, University of California at Los Angeles.
***McCombs School of Business, University of Texas at Austin.
We thank Hui Chen, Harrison Hong, Petko Kalev, Mohsin Khawaja, Zheng Qiao, and participants at the 2018 Behavioral Finance and Capital Markets Conference in Melbourne, Australia, for useful comments and suggestions.
Stock Price Dynamics With Overconfident Investors

Overconfidence has two dimensions: Overestimating one’s own ability and underestimating others. These features parsimoniously account for short-run momentum, long-term reversals, and drift following public signals. Investors receive information at different times, and when late-informed trade in earlier rounds, they believe the early-informed have learned little of consequence. This causes underreaction, and hence, short-run momentum. Overestimation of own signals’ precision causes “over-trading” and hence, long-term reversals. Overconfident investors with private information underestimate public information’s quality, implying post-earnings drift. We explain how long-run reversals can disappear while shorter-term momentum prevails, provide empirical implications, and link momentum to price quality and liquidity.
1 Introduction

Since Jegadeesh and Titman (1993) financial economists have puzzled over evidence that stocks that perform relatively well over a six to twelve month period tend to exhibit positive excess returns over the following 12 months. This momentum phenomenon is observed in most stock markets around the world.\(^1\) Jegadeesh and Titman (1993) show that part of the momentum effect reverses after one year. This latter evidence is consistent with the longer term reversals originally documented in De Bondt and Thaler (1985). Jegadeesh and Titman (2001) show that while long-run reversals are present in their early sample period, they disappear in their later sample period.

In this paper, we develop a dynamic model in which short-term momentum and long-term reversals parsimoniously result from investor overconfidence. This cognitive limitation also accords with drift following public information releases. Our work is particularly relevant given the prevalence of the overconfidence bias, and its many applications in explaining financial phenomena.\(^2\) The model provides plausible explanations for momentum and the subsequent reversals, as well as observations of weakening momentum and disappearing reversals. We also provide implications, described below, that relate to some recent empirical findings.

There are two key ingredients within our setting. First, like Froot, Scharfstein, and Stein (1992) and Hirshleifer, Subrahmanyam, and Titman (1994), we adopt a setting where some investors become informed before others. Second, investors in our model are risk averse, and exhibit overconfidence, which manifests in two dimensions: they not only overestimate the quality (precision) of their own information, but also are skeptical about the quality of others’ information signals (i.e., they underestimate their competition). This latter aspect

\(^1\)The international evidence is described in Rouwenhorst (1998) and Rouwenhorst (1999), Griffin, Ji, and Martin (2005), and Chui, Titman, and Wei (2010). Asness, Moskowitz, and Pedersen (2013) show that momentum extends to other asset classes such as currencies and commodities. Also, our model accords with both cross-sectional and time-series momentum (Moskowitz, Ooi, and Pedersen (2012)). Goyal and Jegadeesh (2017) argue that time-series momentum strategies based on exogenous benchmarks (such as buying stocks whose returns exceed zero) are not market-neutral (unlike standard momentum strategies). They show that accounting for market performance materially mitigates time-series momentum profits.

\(^2\)De Bondt and Thaler (1995) surmise that “perhaps the most robust finding in the psychology of judgment is that people are overconfident.” See also Lichtenstein, Fischhoff, and Phillips (1982) for evidence on the pervasive nature of this bias. Odean (1998) and, more recently, Daniel and Hirshleifer (2015) provide excellent discussions of how overconfidence affects securities markets.
of overconfidence is related to the concept of “cursedness” in Eyster and Rabin (2005) and Eyster, Rabin, and Vayanos (2017), where investors discount the importance of the stock price as a source of information and what Eyster, Rabin, and Vayanos (2017) refer to as “dismissiveness,” where investors underappreciate the precision of other investors’ information. This facet of overconfidence has been in the literature since Odean (1998), and accords with Johnson and Fowler (2011), who state (p. 317) that “overconfidence amounts to an ‘error’ of judgement or decision-making, because it leads to overestimating one’s capabilities and/or underestimating an opponent...” (see also Ando (2004)). In contrast to other papers, we embed these different aspects of overconfidence within a dynamic setting where traders receive information signals at different times. Further, our overconfident investors are not myopic but solve a fully dynamic problem with intertemporal hedging.

In our model, there are two rounds of trade (at Dates 1 and 2), and different classes of overconfident investors receive noisy information early (at Date 1) or late (at Date 2). All investors overestimate the quality of their own information, which tends to cause overreaction. In addition, those investors that learn nothing on the initial date (late-informed) incorrectly assume that other investors (early-informed) learn little of consequence. Specifically, late-informed investors are skeptical about the quality of the early-informed’s signal. This skepticism causes the late-informed to provide too much liquidity to the early-informed, which means that the early-informed trades move prices too little at Date 1. If the mass of skeptical late-informed investors is not too small, prices underreact and exhibit short-run momentum in equilibrium. Further, there is a long-run reversal. The reason is that the late-informed investors overestimate the quality of their own Date-2 signal, which causes overreaction and a subsequent reversal to fundamentals.

We extend the model to incorporate disclosures, which can be analysts’ revisions, earnings releases, or other information obtained from public sources. Given that overconfident investors with their own signals would tend to be skeptical about the quality of information from these outside sources, they underreact on average to such announcements. This accords with post-event drift following earnings releases and analysts’ revisions (Bernard and

4An overconfident investor reasons as follows: “An analyst or a manager can teach me little about this stock that I don’t already know.”
Thomas (1989) and Womack (1996)). It also is useful to consider how changes in market structure affect momentum profits within our setting. For example, because of improvements in technology the speed of information flows has probably increased (Economides (2001)), which implies public disclosures occurring earlier in time (at Date 2 in the model). As we show, such accelerated disclosures can reduce the magnitude of reversals without necessarily affecting the momentum effect. The finding in Jegadeesh and Titman (2001), that momentum profits are similar in the pre- and post-1982 period even though reversals substantially decrease post-1982, is consistent with this observation.

The model can also be used to explore the implications of the recent emergence of quantitative investors (Patterson (2010); Abis (2017)). To explore this, we extend the model to include rational uninformed investors, who represent these “quants.” We show that these investors tend to mitigate momentum (Chordia, Subrahmanya, and Tong (2014)), but as long as they are risk averse, they do not completely eliminate the pattern. Further, our analysis provides insights about the relation between liquidity and momentum. Specifically, greater skepticism implies that the late-informed provide more liquidity to the early-informed, which makes markets more liquid, and also enhances momentum. This implies that if overconfidence and, consequently, skepticism, differ across stocks (e.g., investors tend to be more skeptical about the quality of others’ technology-related information) or over time, then we will observe a positive relation between momentum and liquidity. Indeed, Avramov, Cheng, and Hameed (2016) find that momentum profits are markedly larger when the market is more liquid, which accords with the model. Our setting also implies a link between the variance of noise trading and momentum. Because other investors demand price discounts to accommodate noise trades, a large increase in the variance of noise trading implies an attenuation and even reversal of momentum profits. This implies that phenomena such as fire sales by mutual funds, and investors’ sales for liquidity needs during economic

5The representative investor model of Daniel, Hirshleifer, and Subrahmanyam (1998), while based on overconfidence, does not deliver drift following earnings announcements. This is because the overconfident investor over-assesses the noise variance of only the private signal. Conditional on public signals alone, returns are unpredictable. Our modeling of heterogeneous investors, together with the recognition that overconfidence not only leads to overestimation of the quality of one’s own information, but also to underestimation of the quality of other information sources, naturally leads to drift following public signal releases.

6Conrad and Yavuz (2017) provide evidence suggesting that stocks that contribute most to momentum profits do not reverse. They consider the full 1963-2010 sample; the evolution of momentum and reversals over time is not the focus of their paper. Further, the point estimates of the long-term reversal coefficients are negative (with a maximum one-sided p-value of 9%) even for high momentum stocks (see their Table III), suggesting statistical power issues in reliably detecting long-term reversals.
downturns, will tend to reduce, and may even reverse, momentum.

Earlier literature (e.g., Odean (1998)) indicates that if investors overestimate the precision of their information (due to overconfidence), then prices deviate more from fundamentals. This occurs because investors put too much weight on the noisy signal. The other aspect of overconfidence, skepticism, mitigates this distortion in our setting, because skeptical investors underweight others’ signals. Excessive skepticism “overcorrects” the distortion, however. The intuition is that as skepticism becomes large, prices respond so little to fundamentals that the gap between prices and fundamentals actually increases.

We show in a novel result that the skepticism aspect of overconfidence alone can lead to delayed overreaction (and therefore, momentum) as well as subsequent reversals. Thus, the existing evidence on momentum and reversals can be rationalized without assuming that overconfident investors over-assess the precision of their own information. The continuing overreaction arises because the late-informed discount the possibility that the information they receive is already incorporated in past prices. This overreaction result runs contrary to the intuitive notion that skepticism about information quality always results in underreaction.

Some existing models addressing return predictability generate underreaction and momentum, but not subsequent reversals (e.g., Grinblatt and Han (2005), and Da, Gurun, and Warachka (2014)). Other models generate momentum and reversals due to multiple cognitive biases (e.g., biased self-attribution and overconfidence drive the Daniel, Hirshleifer, and Subrahmanyam (1998) model; and Barberis, Shleifer, and Vishny (1998) use conservatism and representativeness). In Hong and Stein (1999), informed “news watchers” do not condition on the market prices to back out the information of others causing underreaction and thus momentum. Further, “trend-chasers” mechanically trade in the direction of past price changes. These investors continue to trade in the direction of news even after the news is fully incorporated into prices, causing an overreaction, followed by reversals. While acknowledg-

7See Huberman and Regev (2001) for evidence of markets reacting to stale information.
8Underreaction also occurs in the static model of Eyster, Rabin, and Vayanos (2017), where “cursed” traders ignore the information content of prices. The same phenomenon occurs in Odean (1998), if investors under-assess the precision of either their own or others’ information signals.
9Cespa and Vives (2011) and Andrei and Cujean (2017) rely on rationality and risk aversion to generate momentum and reversals. Though these papers provide important economic insights, the Sharpe ratios achievable via momentum seem too large to be explained by rational models (Brennan, Chordia, and Subrahmanyam (1998)).
edging the insights of these models, we show that core stylized facts on return predictability, namely, short-term momentum, long-run reversals, and post-event drift, all obtain in a simple setting where overconfident investors receive information at different times. We thus add parsimony and clarity to the earlier work that links investors’ biases to asset prices. Further, in previous work, there are no analyses which address why momentum might remain but reversals might disappear over time, or why momentum and reversals might weaken over time. Our paper fills this void. We also provide several empirical implications, and relate liquidity and price informativeness to momentum.

This paper is organized as follows. Section 2 presents the model. Section 3 extends the model, and examines how rational uninformed investors, news releases, and noise trades affect momentum. Section 4 studies other patterns such as price quality and liquidity. Section 5 shows that skepticism alone can lead to both momentum and reversals. Section 6 relates our analysis to the diminution of momentum and reversals over time, and also presents untested implications. Section 7 concludes. All proofs, unless otherwise stated, appear in the appendix.

2 The Model

There are $J + K$ stocks traded at Dates 0, 1, and 2. The liquidation value of the j’th ($j = 1, ..., J$) stock at Date 3 is given by

$$V_j = \bar{V}_j + \sum_{k=1}^{K} (\beta_{jk} f_k) + \theta_j,$$

where \bar{V}_j is public knowledge and is the unconditional mean, and θ_j represents the firm-specific risk. The liquidation value of the $J + k$’th ($k = 1, ..., K$) stock at Date 3 equals the realization of the k’th factor, i.e.,

$$V_{J+k} = f_k.$$

Thus, this security is a portfolio mimicking the k’th factor. All f’s and θ’s follow independent normal distributions with mean zero.

There are two types of informed investors: a mass m of “early-informed” and a mass $1 - m$ of “late-informed” investors. For the j’th ($j = 1, ..., J$) stock, the early-informed observe a private signal of the firm-specific risk θ_j at Date 1, $s_j = \theta_j + \mu_j + \epsilon_j$. Late-informed
investors observe a private signal at Date 2, $\gamma_j = \theta_j + \mu_j$. μ_j and ϵ_j are independent normal random variables with mean zero, and are independent of θ_j. Here, we let γ_j strictly dominate s_j. This assumption, which greatly simplifies our derivation, captures the idea that information received later contains more news and therefore tends to be more precise than early information.\footnote{It is possible to model non-nested information structures, but we lose closed-form solutions and have to analyze the model numerically. Similar results obtain.}

Throughout the paper, unless otherwise specified, random variables follow a normal distribution with zero mean. The variance of a random variable ζ is denoted by ν_{ζ}. An overconfident (skeptical) belief about the variance of the random variable ζ is denoted ω_{ζ} (κ_{ζ}). Specifically, the early-informed overestimate the quality of their Date-1 information s_j in that they believe ϵ_j has a smaller variance (i.e., $\omega_{\epsilon_j} < \nu_{\epsilon_j}$). Late informed investors also overestimate the quality of their late Date-2 information γ_j in that they believe μ_j has a smaller variance (i.e., $\omega_{\mu_j} < \nu_{\mu_j}$). We assume that the late-informed are skeptical about the quality of early-informed investors’ Date-1 information s_j in that they believe ϵ_j has a larger variance (i.e., $\kappa_{\epsilon_j} > \nu_{\epsilon_j}$).

Late informed may also exhibit skepticism in another form; specifically, they may believe that the early informed have not observed a fundamental component of value when in fact the latter traders have. This can be accommodated within our model structure as follows. Suppose that the firm specific variable θ_j can be decomposed into two components: $\theta_j \equiv \theta_{j1} + \theta_{j2}$, where θ_{j1} and θ_{j2} follow independent normal distributions with mean zero and variance $(1 - \Delta_j)\nu_{\theta_j}$ and $\Delta_j\nu_{\theta_j}$, respectively. $\Delta_j \in [0, 1)$ is a constant parameter. Both early- and late-informed investors observe a signal θ_{j2} at Date 2. Late informed believe that the early signal contains only information about θ_{j1}, that is, $s_j = \theta_{j1} + \mu_j + \epsilon_j$ (accordingly, they believe that the late signal $\gamma_j = \theta_{j1} + \mu_j$). For now, we fix $\Delta_j \equiv 0$; thus, $\theta_{j2} \equiv 0$ and $\theta_{j1} \equiv \theta_j$, which is equivalent to assuming that skepticism only involves underestimation of the early informed’s signal quality. In Section 5, we allow $\Delta_j > 0$ to obtain additional insights on skepticism’s effects on asset prices.

For the $J + k$’th ($k = 1, \ldots, K$) stock, i.e., the k’th factor, we assume that all investors observe publicly available signals about f_k each dates. Specifically, they observe $s_{J+k} = f_k + \mu_{J+k} + \epsilon_{J+k}$ at Date 1, and $\gamma_{J+k} = f_k + \mu_{J+k}$ at Date 2, where μ_{J+k} and ϵ_{J+k} are
independent normal random variables with mean zero. We assume that investors assess these factor signals in an unbiased way. There is also a risk free asset, the price and return of which is normalized to be 1.

For now, we fix the total supply of each stock, which is normalized to be zero. With fixed supply, the stock price reveals early- and late-informed investors’ private information, and trade happens because the early- and late-informed use different values of the model parameters in their optimization problems. This framework allows us to obtain clear intuition about how beliefs affect stock prices. In Section 3.3, we examine how allowing noise trades affects the equilibrium.

The \(i \)’th early- or late-informed investor’s utility function is the standard exponential:

\[
U(W_{i3}) = -\exp(-AW_{i3}),
\]

where \(W_{i3} \) is final wealth, and \(A \) is a positive constant representing the absolute risk aversion coefficient. The investor is endowed with \(W_{i0} \) units of the risk free asset.

2.1 The Equilibrium

We can decompose the \(J + K \) original stocks into the risk-free asset and the basic securities including the \(J \) firm-specific risks and the \(K \) factor-mimicking portfolios.\(^\text{11}\) The \(j \)’th \((j = 1, \ldots, J)\) basic security has a payoff \(\theta_j \). The \(J + k \)’th \((k = 1, \ldots, K)\) basic security has a payoff \(f_k \). Note that one unit of the \(j \)’th \((j = 1, \ldots, J)\) original stock includes \(\bar{V}_j \) units of the risk free asset, \(\beta_{jk} \) units of the \(k \)’th factor \((f_k)\), and one unit of the \(j \)’th firm-specific risk \((\theta_j)\).

Lemma 1 Trading the original stocks is equivalent to trading the basic securities in that the price of the \(j \)’th \((j = 1, \ldots, J)\) non-factor original stock, denoted \(P_t(V_j) \) \((t = 0, 1, \text{ and } 2)\), is a linear combination of the prices of the basic securities:

\[
P_t(V_j) = \bar{V}_j + \sum_{k=1}^{K} (\beta_{jk} P_{J+k,t}) + P_{j,t},
\]

and the price of the \(J + k \)’th \((k = 1, \ldots, K)\) original factor security is given by \(P_t(V_{J+k}) = P_{J+k,t} \). \(P_{j,t} \) and \(P_{J+k,t} \) are the prices of the basic securities.

\(^{11}\)See, for example, Van Nieuwerburgh and Veldkamp (2010), Banerjee (2011), and Daniel, Hirshleifer, and Subrahmanyam (2001) for a similar exercise.
Conjecture that the equilibrium prices of the j'th ($j = 1, \ldots, J$) firm-specific risk (θ_j) at Dates 0, 1, and 2 take a linear form:

$$P_{j0} = 0, \quad P_{j1} = \alpha_{j1}s_j, \quad P_{j2} = \alpha_{j2}\gamma_j,$$

(2)

where the parameters α_{1j} and α_{2j} are to be determined. Further postulate that the prices of the k’th factor (f_k) at Dates 0, 1, and 2 are given by

$$P_{J+k,0} = 0, \quad P_{J+k,1} = \nu_{f_k}s_{J+k}, \quad P_{J+k,2} = \nu_{f_k}\gamma_{J+k}.$$

(3)

The early-informed’s about the total variance of their signal s_j is denoted $\omega_{s_j} = \nu_{\theta_j} + \nu_{\mu_j} + \nu_{\epsilon_j}$. Similarly, late informed assume that $\text{var}(\gamma_j) = \omega_{\gamma_j} = \nu_{\theta_j} + \nu_{\mu_j}$. Their belief about the total variance of s_j is denoted $\kappa_{s_j} = \omega_{\gamma_j} + \kappa_{\epsilon_j}$. Define a function

$$H(x, y) \equiv \frac{y}{x(y-x)},$$

(4)

to which we will frequently refer in what follows. All the $H(.)$’s can be interpreted as certain conditional precisions based on early- or late-informed investors’ biased or rational beliefs.

For example, $H(\nu_{\gamma_j}, \omega_{s_j})$ is the precision of γ_j conditional on s_j based on early-informed investors’ belief of the variances of ν_{γ_j} and ω_{s_j}. Denote

$$n_{j\eta} = m \left[H(\nu_{\gamma_j}, \omega_{s_j}) + H(\nu_{\theta_j}, \nu_{\gamma_j}) \left(\frac{\nu_{\theta_j}}{\nu_{\gamma_j}} - \alpha_{j2} \right)^2 \right],$$

$$n_{j\ell} = (1 - m) \left[H(\omega_{\gamma_j}, \kappa_{s_j}) + H(\nu_{\theta_j}, \omega_{\gamma_j}) \left(\frac{\nu_{\theta_j}}{\omega_{\gamma_j}} - \alpha_{j2} \right)^2 \right],$$

and

$$N_j = n_{j\eta} + n_{j\ell}.$$

We also use the subscript-\(\eta\) (\(\ell\)) to refer to early- (late-) informed investors.

The proposition below verifies the conjectured price functions in Eqs. (2) and (3), and presents the parameters α_{1j} and α_{2j}.

Proposition 1 The parameters in the equilibrium prices of the j’th ($j = 1, \ldots, J$) firm-specific risk (θ_j) in Eq. (2), α_{1j} and α_{2j}, are specified by

$$\alpha_{j2} = \frac{mH(\nu_{\theta_j}, \nu_{\gamma_j})\nu_{\gamma_j}^{-1}\nu_{\theta_j} + (1-m)H(\nu_{\theta_j}, \omega_{\gamma_j})\omega_{\gamma_j}^{-1}\nu_{\theta_j}}{mH(\nu_{\theta_j}, \nu_{\gamma_j}) + (1-m)H(\nu_{\theta_j}, \omega_{\gamma_j})},$$

and

$$\alpha_{j1} = \frac{\alpha_{j2}}{N_j} \left[mH(\nu_{\gamma_j}, \omega_{s_j})\frac{\nu_{\gamma_j}}{\omega_{s_j}} + (1-m)H(\omega_{\gamma_j}, \kappa_{s_j})\frac{\omega_{\gamma_j}}{\kappa_{s_j}} \right].$$
As can be seen, the prices of the firm-specific risks are linear in the signals at each date, and the parameters α_{j1} and α_{j2} depend on both the extent to which investors overestimate (underestimate) the quality of their own (others’) information.

In contrast, the prices of the factor securities are linear in the signals at each date, but the linear parameters do not depend on biased beliefs because there are no biases regarding factor information. In particular, it is easy to show that

\[
\text{Cov}(P_{J+k,1} - P_{J+k,0}, P_{J+k,2} - P_{J+k,1}) = \text{Cov}(P_{J+k,2} - P_{J+k,1}, f_k - P_{J+k,2}) = \\
\text{Cov}(P_{J+k,1} - P_{J+k,0}, f_k - P_{J+k,2}) = 0.
\]

Now consider two short-run momentum investments using the J original stocks. First, at Date 1, buy $P_1(V_j) - P_0(V_j)$ shares of the j’th original stock if $P_1(V_j) > P_0(V_j)$ and sell $P_0(V_j) - P_1(V_j)$ shares if $P_1(V_j) \leq P_0(V_j)$, and hold this position until Date 2. Second, at Date 2, buy $P_2(V_j) - P_1(V_j)$ shares if $P_2(V_j) > P_1(V_j)$ and sell $P_1(V_j) - P_2(V_j)$ shares if $P_2(V_j) \leq P_1(V_j)$, and hold this position until Date 3. From Eq. (1), Lemma 1, and Proposition 1, the expected profits of the two short-run momentum investments can be expressed as

\[
E \left[\sum_{j=1}^{J} [(P_1(V_j) - P_0(V_j))(P_2(V_j) - P_1(V_j)) \right] = \sum_{j=1}^{J} \text{Cov}(P_{j1} - P_{j0}, P_{j2} - P_{j1}), \quad \text{and}
\]

\[
E \left[\sum_{j=1}^{J} [(P_2(V_j) - P_1(V_j))(V_j - P_2(V_j)) \right] = \sum_{j=1}^{J} \text{Cov}(P_{j2} - P_{j1}, \theta_j - P_{j2}).
\]

It also follows from Proposition 1 that (for convenience, we suppress the index for stock j here)

\[
\text{Cov}(P_1 - P_0, P_2 - P_1) = \alpha_1(\alpha_2 \nu_{\gamma} - \alpha_1 \nu_s),
\] (5)

and

\[
\text{Cov}(P_2 - P_1, \theta - P_2) = (\alpha_2 - \alpha_1)(\nu_\theta - \alpha_2 \nu_\gamma).
\] (6)

Now, if the following expression

\[
\overline{MOM} \equiv [\text{Cov}(P_1 - P_0, P_2 - P_1) + \text{Cov}(P_2 - P_1, \theta - P_2)] / 2
\] (7)
is positive (negative), then this stock will contribute a momentum profit (loss). Henceforth, we occasionally refer to MOM as the “momentum parameter.”

We follow Jegadeesh and Titman (2001) to measure the long-run performance of the short-run momentum investment using

$$E \left[\sum_{j=1}^{J} [(P_1(V_j) - P_0(V_j))(V_j - P_2(V_j))] \right] = \sum_{j=1}^{J} \text{Cov}(P_{j1} - P_{j0}, \theta_j - P_{j2}).$$

We can use a similar analysis as above to show that the j’th stock’s contribution to this performance is indicated by (for convenience, we suppress the index for stock j again here)

$$\text{Cov}(P_1 - P_0, \theta - P_2) = \alpha_1(\nu_\theta - \alpha_2 \nu_\gamma).$$

(8)

The above expression is the quantity that captures long-run reversals in our model. We now analyze conditions under which we obtain short-run momentum and long-term reversals.

The following proposition provides comparative statics associated with the parameter α_2 in the Date-2 price, which influences momentum and reversals.

Proposition 2 The sensitivity of the Date 2 price to the information signal γ, i.e., $\alpha_2 \in [\nu_\theta/\nu_\gamma, \nu_\theta/\omega_\gamma]$ (see Proposition 1), is higher if there is a bigger mass of late-informed investors (high $1 - m$), and if they overestimate the quality of their information γ to a greater extent (low ω_μ).

The intuition for this proposition is that if there is a big mass of late-informed investors, since they overestimate the precision of their signal γ, the Date-2 price P_2 overreacts to their information and increases the sensitivity of P_2 to γ (high α_2). This overreaction also leads to long-run reversals:

Corollary 1 Stock returns reverse in the long-run; i.e., $\text{Cov}(P_1 - P_0, \theta - P_2) < 0$.

Figure 1 plots the long-term reversal parameter $\text{Cov}(P_1 - P_0, \theta - P_2)$, conditional on late-informed investors’ skepticism about the quality of the early Date-1 information (i.e., $\kappa_\epsilon > \nu_\epsilon$), and overestimation of the quality of their late Date-2 information (i.e., $\omega_\mu < \nu_\mu$).

We assume the parameter values $m = 0.1$, $A = 1$, $\nu_\theta = 1$, $\nu_\mu = 1$, and $\kappa_\epsilon = 1$. We let $\omega_\epsilon = \nu_\epsilon$ so that early-informed investors have rational beliefs about their information’s
quality. There are three notable observations in Figure 1. First, if late-informed investors are rational about their own information quality (i.e., $\omega_\mu = \nu_\mu = 1$), there is no long-term reversal (or momentum). Second, if the late-informed overestimate the quality of their own information (i.e., $\omega_\mu < \nu_\mu = 1$), we do obtain long-run reversal. This result is consistent with Corollary 1. Third, if late-informed investors underestimate the quality of the early information to a greater extent (i.e., $\kappa_\epsilon \gg \nu_\epsilon = 1$), the long-run reversal is smaller in magnitude (less negative). The reason is that as we show below, late-informed investors' skepticism suppresses the Date-1 stock price reaction to information (i.e., α_1 in $P_1 = \alpha_1 s$; see Proposition 1). This tends to lower the dependence between $P_1 - P_0$ and the later price movement, $\theta - P_2$.

Next, the corollary below describes short-term return patterns.

Corollary 2 In equilibrium,

(i) $\text{Cov}(P_2 - P_1, \theta - P_2) < 0$, and

(ii) there exists a constant parameter $m^* \in (0, 1)$ such that if $m < m^*$, $\text{Cov}(P_1 - P_0, P_2 - P_1) > 0$.

Part (i) of this corollary is consistent with Corollary 1. The price overreacts to new information at Date 2 because late-informed investors overestimate the quality of the information. It reverts subsequently as the fundamental θ is revealed. The intuition for Part (ii) of this corollary is as follows. Late-informed investors are skeptical about the quality of the early Date-1 information. A substantial mass of such investors (high $1 - m$) allows for the provision of “too much” liquidity, that is, the absorption of early-informed trades at prices excessively favorable to these investors. This means that on a positive information signal, for example, the price does not rise sufficiently at Date 1. In turn, this leads to momentum.

From Corollary 2, since $\text{Cov}(P_2 - P_1, \theta - P_2)$ is negative and $\text{Cov}(P_1 - P_0, P_2 - P_1)$ is positive if m is small, a big mass of late-informed investors, $1 - m$, is a necessary condition for the momentum parameter, MOM, to be positive; however, it is not a sufficient condition. To see why, let m be very small (i.e., $m \to 0$). In this case, only a few investors are early-informed, but they still trade to reveal their early Date-1 information s. Most investors are late-informed; they effectively set the price. Suppose that late-informed investors overestimate
the quality of their Date-2 information \(\gamma \) to a significant extent (i.e., \(\omega_\mu < \nu_\mu \)). It follows from Proposition 1 that in the price functions \(P_1 = \alpha_1 s \) and \(P_2 = \alpha_2 \gamma \), \(\alpha_1 = \nu_\theta / \kappa_s \) and \(\alpha_2 = \nu_\theta / \omega_\gamma \); thus, from Eqs. (5) and (6):

\[
\text{MOM} = \frac{1}{2} \left[\alpha_1 (\alpha_2 \nu_\gamma - \alpha_1 \nu_s) + (\alpha_2 - \alpha_1) (\nu_\theta - \alpha_2 \nu_\gamma) \right] / 2
\]

An immediate observation is that if \(\kappa_\epsilon \to \infty \) (so that late-informed investors are very skeptical about the quality of the early Date-1 information \(s \)), then \(\kappa_s \to \infty \) and the first item in the bracket (which corresponds to \(\text{Cov}(P_1 - P_0, P_2 - P_1) \)) converges to zero. The intuition for this is that the late-informed ignore the Date-1 information completely. As the Date-1 price does not react to \(s \) (i.e., \(\alpha_1 = 0 \) in \(P_1 = \alpha_1 s \)), \(P_1 \) becomes non-stochastic. This causes \(\text{Cov}(P_1 - P_0, P_2 - P_1) \) to be vanishingly small. The second item in the bracket corresponding to \(\text{Cov}(P_2 - P_1, \theta - P_2) \) is still negative because late-informed investors continue to overestimate the quality of their Date-2 information \(\gamma \) (i.e., \(\omega_\mu < \nu_\mu \)), resulting in an overreaction and reversal.

A further set of conditions for \(\text{MOM} \) to be positive is:

\[
\frac{1}{\kappa_s} > \frac{1}{\omega_\gamma} - \frac{1}{\kappa_s}, \quad \text{and} \quad \frac{\nu_\gamma}{\omega_\gamma} - \frac{\nu_s}{\kappa_s} > \frac{\omega_\mu - \nu_\mu}{\omega_\gamma};
\]

or equivalently,

\[
\nu_\theta + \omega_\mu > \kappa_\epsilon > \nu_\epsilon + (\nu_\mu - \omega_\mu).
\]

This requires that late-informed investors be sufficiently skeptical (i.e., \(\kappa_\epsilon \) is sufficiently high) to cause an underreaction at Date 1, and thus price continuation from Date 1 to Date 2. But they cannot be very skeptical (i.e., \(\kappa_\epsilon \) cannot be very high) to avoid a situation where \(P_1 \) is virtually non-stochastic.

Figure 2 plots \(\text{MOM} \) as functions of the late-informed’s skepticism (\(\kappa_\epsilon \)) and the overestimation of their own signal quality (\(\omega_\mu \)). We assume the parameter values \(m = 0.1, A = 1, \nu_\theta = 1, \nu_\mu = 1 \), and \(\nu_\epsilon = 1 \). To simplify the presentation, we let \(\omega_\epsilon = \nu_\epsilon \) so early-informed investors have rational beliefs about the quality of their information. There are three notable observations in Figure 2. First, if late-informed investors are rational about their own and other investors’ information quality (i.e., \(\omega_\mu = \nu_\mu = 1 \) and \(\kappa_\epsilon = \nu_\epsilon = 1 \)), \(\text{MOM} \) equals zero. Second, if late-informed investors do not overestimate their own information quality by much
(i.e., $\omega_\mu \rightarrow \nu_\mu = 1$), we obtain momentum. The intuition is similar to that provided above; specifically, skeptical late-informed investors provide too much liquidity at Date 1, causing underreaction of prices to Date-1 information which is then followed by a price continuation when late-informed investors observe their Date-2 information. Third, if late-informed investors overestimate their own information quality to a greater extent (i.e., $\omega_\mu \ll \nu_\mu = 1$), MOM turns negative. Here, the Date-2 price overreacts to information and then reverts at Date 3.

2.2 A Simple Case: When All Biased Beliefs are about the Quality of Early Information

We next consider a scenario in which investors are biased only about the precision of the Date-1 signal. Specifically, early-informed investors overestimate the quality of their signal, s (i.e., $\omega_\epsilon < \nu_\epsilon$). Late-informed investors are rational about the quality of the late Date-2 information γ (i.e., $\omega_\mu = \nu_\mu$), but underestimate the quality of s (i.e., $\kappa_\epsilon > \nu_\epsilon$). These assumptions allow us to bring out clear intuition behind how the price reacts to the Date-1 information, and shows how underreaction due to skepticism leads to momentum. First, due to increased tractability, the following result can be proved analytically.

Proposition 3 *In the simplified case where biases prevail at Date 1 but not at Date 2 (i.e., $\omega_\nu = \nu_\mu$), the following results hold:

(i) The sensitivity of the Date 1 price to the information signal s, i.e., $\alpha_1 \in [\nu_\theta/\kappa_\epsilon, \nu_\theta/\omega_\epsilon]$ (see Proposition 1), is lower if there is a bigger mass of late-informed investors (high $1-m$), if they are more skeptical (high κ_ϵ), and if early-informed investors overestimate the quality of s to a lesser extent (high ω_ϵ).

(ii) The sensitivity of the Date 2 price to the information signal γ, i.e., α_2, equals ν_θ/ν_γ.

The intuition for Part (i) of this proposition is that if there is a big mass of late-informed investors and if they are skeptical about the quality of the Date-1 information s, they trade heavily against the early-informed and provide too much liquidity. This decreases the sensitivity of the price P_1 to the information s. If early-informed investors overestimate the quality of their information s to a lesser extent, they do not trade very heavily. This also
lowers the responsiveness of P_1 to s. Since there are no biased beliefs at Date 2, as indicated in Part (ii) of Proposition 3, the price P_2 reacts properly to the Date 2 information γ. An immediate consequence of this is that there is no further price buildup or reversal from Dates 2 to 3. Therefore, both $\text{Cov}(P_2 - P_1, \theta - P_2)$ (see Eq. (6)) and $\text{Cov}(P_1 - P_0, \theta - P_2)$ (see Eq. (8)) equal zero.

The corollary below derives results on momentum for the simplified case of this section.

Corollary 3 Under the conditions of Proposition 3, the following results hold:

(i) There exists a constant parameter $m^{**} \in (0, 1)$ such that iff. $m < m^{**}$, we obtain short-run momentum, i.e., $\overline{\text{MOM}} > 0$.

(ii) m^{**} is higher, and thus momentum arises under a larger parameter space, if the late-informed are more skeptical (high κ_{ϵ}).

Part (i) of this corollary indicates that a big mass of late-informed investors (high $1 - m$) is both a necessary and sufficient condition for momentum. The intuition is mostly consistent with that for Part (i) of Proposition 3. A large mass of skeptical late-informed investors provides excessive liquidity at Date 1. This causes P_1 to underreact to the early Date-1 information, which implies a price continuation, i.e., momentum, in the subsequent period. It follows naturally from this intuition that if the late-informed are more skeptical, then even a small mass of such investors can cause momentum. Therefore, momentum is more likely to arise.

Although late-informed investors’ skepticism leads to momentum in equilibrium, it does not necessarily increase its scale (i.e., lead to a bigger momentum profit). The corollary below presents this result formally.

Corollary 4 In the special case of Proposition 3,

(i) if the skepticism of late-informed investors is small (i.e., κ_{ϵ} is low such that $\alpha_1 > 0.5 \nu_\theta/\nu_s$), then an increase in skepticism enhances $\overline{\text{MOM}}$, and

(ii) if late-informed investors are very skeptical (i.e., $\alpha_1 < 0.5 \nu_\theta/\nu_s$), then an increase in skepticism reduces $\overline{\text{MOM}}$.

14
We show in the proof of Corollary 4 that the second covariance in Eq. (7) drops out when the Date-2 price is unbiased, and

$$\text{MOM} = \alpha_1 (\nu_\theta - \alpha_1 \nu_s)/2.$$ \hspace{1cm} (10)

Note from Proposition 3 that in the Date-1 price of the firm-specific risk \(P_1 = \alpha_1 s \), \(\alpha_1 \) decreases in the late-informed’s skepticism. Thus, an increase in skepticism has two effects on \(\text{MOM} \). First, by lowering \(\alpha_1 \), it increases the price continuation from Dates 1 to 2, \(P_2 - P_1 \). This tends to increase \(\text{MOM} \). Second, by lowering \(\alpha_1 \), it attenuates the price change from Dates 0 to 1, \(P_1 - P_0 \). This tends to lower \(\text{MOM} \). Corollary 4 provides parameter values under which the first effect dominates, or is dominated by, the second effect.

Figure 3 plots \(\text{MOM} \), as a function of late-informed investors’ skepticism about the quality of the early Date-1 information (\(\kappa_\epsilon \)). We set the other parameter values as follows: \(m = 0.05 \), \(A = 1 \), \(\nu_\theta = 1 \), \(\nu_\mu = 1 \), \(\nu_\epsilon = 1 \), \(\omega_\epsilon = 0.5 \), and \(\omega_\mu = 1 \). Consistent with Corollary 4, as \(\kappa_\epsilon \) increases, \(\text{MOM} \) initially increases and then declines. Taken together, our analysis here indicates that while momentum arises due to skepticism, its scale does not necessarily increase in skepticism.

3 Extensions

In this section, we pursue three extensions to the general setting of our model: First, we consider the impact of rational, risk averse market makers; second, we model public disclosures (or news releases) to which overconfident investors react rationally; and third, we introduce noise trading into our setting.

3.1 Rational Market Makers, Risk Aversion, and Momentum

Up to this point, we have assumed that all investors in the model have biased beliefs. We now introduce a mass \(\lambda \) of rational uninformed investors, who serve as the market making sector. This allows us to investigate the impact of uninformed but unbiased investors on the equilibrium. The \(i \)'th market maker’s utility function is the standard exponential:

$$U_N(W_{i3}) = -\exp(-A_N W_{i3}),$$
where W_{i3} is the final wealth, and A_N is a positive constant representing the absolute risk aversion coefficient. The market maker is endowed with W_{i0} units of the risk free asset.

The risk averse market makers play the role of arbitrageurs in our setting. If they have a small mass (low λ), and have a high risk aversion (high A_N), then they are not able to completely arbitrage momentum and reversals away, owing to limited risk bearing capacity. As λ becomes large, and/or A_N becomes small, however, arbitrage becomes perfect and the scale of momentum and reversals is mitigated. The proposition below presents this intuition formally. Here, we use λ/A_N to measure the risk bearing capacity of the market making sector.

Proposition 4 Short-run momentum and long-run reversals only obtain when the risk bearing capacity of the market making sector, λ/A_N, is not unboundedly large. More specifically, as $\lambda/A_N \to \infty$, \overline{MOM} and the long-run reversal parameter $\text{Cov}(P_1 - P_0, \theta - P_2)$ converge to zero.

Figure 4 plots \overline{MOM} as a function of the risk bearing capacity of the market making sector, λ/A_N. For clarity of intuition, we let $\omega_{\mu} = \nu_{\mu}$ so late-informed investors are rational about the quality of their late Date-2 information γ. Other parameter values are presented in the caption of the figure. As shown in the figure, as λ/A_N increases, \overline{MOM} initially increases and then declines. The reason is that in this simple case with $\omega_{\mu} = \nu_{\mu}$, \overline{MOM} is given by Eq. (10) (see the analysis in Section 2.2). With a higher risk bearing capacity, rational and risk-averse market makers bring the stock price reaction to information (i.e., α_1 in $P_1 = \alpha_1 s$) closer to the rational level (i.e., ν_θ/ν_s). If the price reaction to information and thus \overline{MOM} are very low to begin with, increasing the reaction of stock price to information causes an increase in \overline{MOM}. A further increase in the reaction, however, reduces the price continuation between Dates 1 and 2. This causes a decline in \overline{MOM}. As λ/A_N increases further, \overline{MOM} converges to zero. This link between market making capacity and momentum can be used to address the substantial reduction in momentum profits in recent years (see, e.g., Chordia, Subrahmanyam, and Tong (2014)). As quantitative investing has become more prevalent (Patterson (2010); Abis (2017)), the risk-bearing capacity of the market making sector has likely increased. In our model, this phenomenon leads to attenuated momentum.
3.2 Public Information Disclosure, Momentum, and Drift

We now consider the nature of the equilibrium in the model of Section 3.1 where firm-specific public information, such as a news release, becomes available. The public information signal is denoted as \(t = \theta + \xi \). This signal may be an analyst disclosure, an announcement by a firm’s manager, or another source of information flows. We consider the notion that an overconfident investor would tend to under-assess the quality of information sources other than one’s own signal. Accordingly, we allow early and late-informed investors to be skeptical about the quality of \(t \) about \(\theta \); they believe that the variance of \(\xi \) equals \(\kappa \nu \xi \) where \(\kappa \geq 1 \).

For simplicity, let \(\xi \) be independent of \(\theta, \mu, \) and \(\epsilon \). We continue to assume that there is a mass \(\lambda \) of uninformed investors (market makers) as in Section 3.1. They hold unbiased beliefs about the quality of \(t \) (i.e., the variance of \(\nu \xi \)).

The public information signal can reach investors at either of Dates 1, 2, or 3. If it arrives at Date 3 (or after trade at Date 2), then it no impact on the equilibrium; however, if the signal arrives at Dates 1 or 2, it does affect prices and trades. Now, if the public signal is not precise (i.e., high \(\nu \xi \)), then the investors will not put much weight on it and phenomena identical to those described in Section 3.1 (see Proposition 4) will obtain. If the public information is precise (i.e., low \(\nu \xi \)), then the investors rely on it heavily, which attenuates momentum and reversals. The proposition below presents the effect of disclosure on price patterns.

Proposition 5
(i) Suppose that the public signal arrives at Date 2. If the signal is very precise, then long-run reversals go to zero but short-run momentum still prevails.

(ii) If the public signal reaches investors at Date 1, then, as the precision of the signal increases, both long-run reversals and short-run momentum go to zero.

The intuition for Part (i) of this proposition is that if the public information that arrives at Date 2 is precise, the magnitude of mispricing at Date 2 reduces. In contrast, momentum can still prevail because late-informed investors, who are skeptical about the quality of the early Date-1 information, continue to underreact, which causes momentum between Dates 1 and 2. On the other hand, as Part (ii) indicates, a very precise disclosure at Date 1 tends to reduce mispricing at both Dates 1 and 2, and therefore any momentum or reversals.
If the information releases at each date can be interpreted as analysts’ disclosures, our analysis above indicates that such signals close to major news dates (interpreted as Date 3) reduce momentum.12 Further, in recent years, new technology such as internet has caused a speedier flow of information (Economides (2001)). The public signal can also be interpreted as an accelerated flow of information (at Dates 1 or 2, as opposed to Date 3). Thus, our analysis suggests that long-run reversals, or even short-run momentum, should weaken in recent years. Our analysis is thus consistent with disappearing long-run reversals (Jegadeesh and Titman (2001)), and the substantial reduction in momentum profits in recent years (see, e.g., Chordia, Subrahmanyam, and Tong (2014)).

The proposition below shows that the stock’s return is predictable from the public signal.

\textbf{Proposition 6} \textit{Provided that }\kappa > 1\textit{, there is post-public-announcement drift in equilibrium; that is }\text{Cov}(\theta - P_2, t) > 0.\textit{ }

The intuition for this proposition is that if investors are skeptical about the quality of the public information, then the stock price underreacts to the public information. The above result is consistent with drift following analysts’ revisions and earnings surprises (Bernard and Thomas (1989) and Womack (1996)).13 As with momentum and reversals we would expect drifts to also decline with higher quality disclosures in recent years; which accords with Chordia, Subrahmanyam, and Tong (2014).14 Also, it is straightforward to show that \text{Cov}(\theta - P_2, t) \to 0 as }\kappa\text{ approaches unity from above. This implies that less investor overconfidence implies smaller post-public announcement drift. Under the plausible assumption that retail investors are more likely to be overconfident (Barber, Lee, Liu, and Odean (2008)), we would expect greater drift when such investors are the predominant market participants.}

12Since speedier disclosures are more likely with greater analyst coverage, our model is consistent with Hong, Lim, and Stein (2000), which shows that momentum is weaker for stocks with greater analyst coverage.

13The model of Daniel, Hirshleifer, and Subrahmanyam (1998) does not deliver drift following public announcements per se, because investors overestimate the quality of only the private signal. Returns in that model, however, are predictable from managerial actions that condition on misvaluation (e.g., new issues during periods of overvaluation). See Frazzini (2006) and George, Hwang, and Li (2015) for explanations of earnings drift based on the disposition effect and the anchoring bias, respectively.

14Note here that as }\nu_\xi\text{ goes to zero (as in Proposition 5), so does }k\nu_\xi\text{, and hence post-announcement drift becomes vanishingly small.}
3.3 Noise Trading and Momentum

In the model up to now, we have assumed that prices are fully revealing, and trading occurs because overconfident investors agree to disagree about the distribution of information signals they possess. We now consider a more complicated version of Section 3.1 in which information is only partly revealed because of the presence of noise trading at Date 1.\footnote{To preserve analytical solutions, here and beyond, we abstract from Date 2 noise trading as well as public signals at either date. Adding these features leaves the central results qualitatively unaltered, however. Details appear in the Internet Appendix.} We will see that because of the risk premia required to absorb the noise trades, prices tend to exhibit increased reversals, which attenuates momentum.

Suppose that noise trading causes the supply of the risky stock at Date 1 to be a random quantity z. [Specifically, we assume that at Date 1, the supply of the j'th ($j = 1, ..., J$) original risky security is z_j, and the supply of the $J + k$'th ($k = 1, ..., K$) original risky security is $-\sum_{j=1}^{J} (\beta_{jk} z_j)$. This implies that the supply of the j'th basic security (θ_j) equals z_j, and the supply of the k'th basic security (f_k) equals zero. We continue to ignore the index j for notational convenience.] The supply is normally distributed with mean zero and the variance ν_z.

In this setting, if the scale of noise trade is small (i.e., low ν_z), then phenomena identical to those described in Section 3.1 (see Proposition 4) obtain. A high ν_z, however, can cause \overline{MOM} to become negative. The proposition below presents this intuition formally.

Proposition 7 If noise trades are sufficiently volatile (i.e., $\nu_z \to \infty$), then we obtain short-run reversals, i.e., $\overline{MOM} \to -\infty$.

We show in the proof of this proposition that as ν_z becomes large, $\text{Cov}(P_1 - P_0, P_2 - P_1) \to -\infty$, while $\text{Cov}(P_2 - P_1, \theta - P_2)$ is bounded. The intuition for the former effect is that risk averse informed investors are not able to fully absorb the noise trade without a substantial price discount. This means that noise trades cause inventory-induced reversals.\footnote{Hirshleifer, Subrahmanyam, and Titman (2006) consider a model where noise trades are autocorrelated. They have a risk-neutral market making sector, however, which prevents prices from exhibiting serial dependence. It is likely that an extension to risk averse market makers would produce short-run momentum due to autocorrelation in risk premia.}

Our analysis here suggests that excessive noise trading causes a reversal of momentum profits. Daniel and Moskowitz (2016) find that momentum strategies experience negative...
returns in adverse states (i.e., recessions or down markets). Assuming that panic-induced noise trades are more likely to arise during such periods (Næs, Skjeltorp, and Ødegaard (2011)), our model accords with their finding. Our analysis further indicates that assets subject to fire sales (a form of noise trading - viz. Coval and Stafford (2007)), should experience weaker momentum.

4 Other Stock Price Patterns

The principal focus of this section is to study the effect of skepticism on stock prices beyond momentum and reversals. Our analysis here is based on the setting in Section 3.3. We obtain the prices of the jth ($j = 1, \ldots, J$) original stock from Lemma 1, and Proposition 1, and the proof of Proposition 7:

\[P_0(V) = \bar{V}, \]

\[P_1(V) = \bar{V} + \sum_{k=1}^{K} \left(\beta_k \frac{\nu_{f_k}}{\nu_{s,j+k}} \nu_{s,j+k} \right) + \alpha_\tau \tau, \]

and

\[P_2(V) = \bar{V} + \sum_{k=1}^{K} \left(\beta_k \frac{\nu_{f_k}}{\nu_{s,j+k}} \nu_{s,j+k} \right) + \alpha_2 \gamma, \]

where $\tau = s - \delta z$. The parameters α_2, δ, and α_τ are given in Eqs. (32), (45), and (46) in the Appendix (within the proof of Proposition 7). It is notable that late-informed investors' skepticism (i.e., $\kappa_s > \nu_s$) affects the price $P_1(V)$ only through α_τ.

4.1 Private Information and Firm-Specific Price Variation

It follows from Eqs. (12) and (13) that the stock price reactions to private (firm-specific) information including the Date-1 s and the Date-2 γ are given by:

\[\frac{dP_1(V)}{ds} = \frac{dP_1(V)}{d\tau} = \alpha_\tau, \text{ and } \frac{dP_2(V)}{d\gamma} = \alpha_2. \]

The following proposition describes the effect of skepticism on the above quantities.

\[^{17} \text{The other side of overconfidence, overestimation of one's own information quality, has been extensively studied elsewhere in the literature. Interested readers are referred to Odean (1998), Daniel, Hirshleifer, and Subrahmanyam (1998), and Ko and Huang (2007).} \]
Proposition 8 Greater skepticism (high κ_ϵ) implies that

(i) the Date-1 stock price reaction to the Date-1 private information s is weaker (lower $dP_1(V)/ds$), and

(ii) the Date-2 stock price reaction to the Date-2 private information γ ($dP_2(V)/d\gamma$) is unaffected.

The intuition for Part (i) of this proposition is mostly consistent with that for Proposition 3. If uninformed investors (in our model, late-informed at Date 1) are skeptical about the quality of informed investors’ private information, they trade heavily against and provide excessive liquidity to the informed investors. This causes the stock price to underreact to private information. Part (ii) of this proposition is consistent with the above analysis, that is, the influence of late-informed investors’ skepticism is limited to the contemporary Date-1 stock price.

Empirical researchers (starting from Roll (1988); see Chen, Goldstein, and Jiang (2006) for a recent example) measure firm-specific price variation (FSPV) using the volatility of residuals from regressing stock return against macroeconomic, industry, and public firm-specific news. A high FSPV indicates that most of a firm’s stock return cannot be attributed to market and industry news, and that the firm’s stock price is more likely to be driven by firm-specific private information. In our model, FSPV is equivalent to the residual variance from regressing the stock return against factor returns and past idiosyncratic returns. We can compute (from Eqs. (1), and (11)-(13)) for Dates 1, 2, and 3:

$$FSPV_1 = \text{Var}\left[P_1(V) - P_0(V) \big| \{P_{J+k,1} - P_{J+k,0}\}_{k=1}^K \right], \quad (15)$$

$$FSPV_2 = \text{Var}\left[P_2(V) - P_1(V) \big| \{P_{J+k,2} - P_{J+k,1}\}_{k=1}^K, P_1 - P_0 \right], \quad (16)$$

and

$$FSPV_3 = \text{Var}\left[V - P_2(V) \big| \{f_k - P_{J+k,2}\}_{k=1}^K, P_1 - P_0, P_2 - P_1 \right]. \quad (17)$$

The proposition below describes the effect of skepticism on FSPV.

Proposition 9 When skepticism is high (large κ_ϵ), then,
(i) the Date-1 firm-specific price variation FSPV\(_1\) is lower, and

(ii) the Dates-2 and -3 firm-specific price variations, FSPV\(_2\) and FSPV\(_3\), are unaffected.

The intuition for Part (i) of this proposition follows from that for Proposition 8(i). Due to skepticism, the Date 1 stock price underreacts to private information. This mitigates price fluctuations arising from private signals. Part (ii) of this proposition is consistent with the notion that the influence of late-informed investors’ skepticism is limited to the contemporary Date-1 stock price. Therefore, the overall effect of skepticism is not only to cause momentum, but also to reduce firm-specific price variation.

4.2 Liquidity and the Late-Informed

In the setting of Section 3.3, one unit of a liquidity sale lowers the Date-1 stock price in Eq. (12) by

\[-\frac{dP_1(V)}{dz} = -\alpha_r \frac{d\tau}{dz} = \alpha_r \delta\]

units. Therefore, we can measure liquidity by \(\alpha_r \delta\) (a low level indicates high liquidity). The following proposition describes the effect of skepticism on liquidity.\(^{18}\)

Proposition 10 **Liquidity increases in the degree of skepticism (\(\kappa_\epsilon\)).**

The intuition for this proposition is that if the late-informed are more skeptical about the quality of early-informed investors’ private information, they are less concerned about trading against other investors with superior information. Therefore, they provide “too much” liquidity.

Figure 5 plots the liquidity measure, \(\alpha_r \delta\), as functions of the late-informed investors’ skepticism about the quality of the early Date-1 information \(s\) (i.e., \(\kappa_\epsilon > \nu_\epsilon\)), and the parameter that represents overestimation of the quality of their late Date-2 information \(\gamma\) (i.e., \(\omega_\mu < \nu_\mu\)). For clarity of intuition, we let \(\omega_\epsilon = \nu_\epsilon\) so early-informed investors have rational beliefs about the quality of their information. Other parameter values are presented in the

\(^{18}\)In the internet appendix, we use numerical analyses to confirm that similar results obtain when there is noise trading at both dates.
caption of the figure (the results are not particularly sensitive to the chosen values). Consistent with Proposition 10, if late-informed are more skeptical (higher κ_ϵ), liquidity is higher (i.e., $\alpha_\tau \delta$ is lower). Figure 5 also indicates that as late-informed investors overestimate the quality of their late information γ to a lesser extent (i.e., as ω_μ increases), liquidity increases (i.e., $\alpha_\tau \delta$ decreases). The reason is that in this case, the Date-2 price, which becomes less sensitive to the late information, is less risky. This implies that at Date 1, late-informed investors tend to be more aggressive in providing liquidity to early-informed investors. We use Figure 6 to verify that, consistent with our earlier analysis in Section 2.1, the momentum parameter, MOM, increases as late informed investors underestimate the quality of early information s to a greater extent (i.e., as κ_ϵ increases), and as they overestimate the quality of their late information γ to a lesser extent (i.e., as ω_μ increases).

Overall, in Figures 5 and 6, parameter configurations that favor liquidity also tend to promote momentum, simply because conditions that promote the aggressiveness of the late-informed at Date 1 increase both momentum and liquidity. This observation relates to Avramov, Cheng, and Hameed (2016), who find that momentum profits are markedly larger in liquid market states. They argue that this evidence is surprising because it is inconsistent with the basic intuition that arbitrage is easier when markets are most liquid. This evidence, however, is consistent with our analysis. There is one point worth noting here. Specifically, observe that as overconfidence increases we would expect κ_ϵ to increase, but ω_μ to decrease, which moves liquidity and momentum in opposite directions, as Figures 5 and 6 demonstrate. Thus, whether increasing the general overconfidence of the late-informed promotes liquidity and momentum depends on the sensitivity of these phenomena to κ_ϵ and ω_μ. If overconfidence primarily operates through skepticism, however, then increasing overconfidence enhances both momentum and liquidity. Thus, Figure 7 plots the momentum parameter, MOM, and the liquidity measure, $\alpha_\tau \delta$, as functions of a summary measure of late-informed investors' overconfidence, $OC \equiv (\kappa_\epsilon - \nu_\epsilon) + (\nu_\mu - \omega_\mu)$. We assume that $\nu_\mu - \omega_\mu = 0.2(\kappa_\epsilon - \nu_\epsilon)$ and vary κ_ϵ while simultaneously changing ω_μ. Other parameter values are presented in the caption of the figure. It can be seen that in this case increasing overconfidence promotes

\[\text{MOM} \text{ and } \alpha_\tau \delta \text{ as functions of a summary measure of late-informed investors' overconfidence, } OC \equiv (\kappa_\epsilon - \nu_\epsilon) + (\nu_\mu - \omega_\mu). \text{ We assume that } \nu_\mu - \omega_\mu = 0.2(\kappa_\epsilon - \nu_\epsilon) \text{ and vary } \kappa_\epsilon \text{ while simultaneously changing } \omega_\mu. \text{ Other parameter values are presented in the caption of the figure. It can be seen that in this case increasing overconfidence promotes} \]

\[\text{MOM} \text{ and } \alpha_\tau \delta \text{ as functions of a summary measure of late-informed investors' overconfidence, } OC \equiv (\kappa_\epsilon - \nu_\epsilon) + (\nu_\mu - \omega_\mu). \text{ We assume that } \nu_\mu - \omega_\mu = 0.2(\kappa_\epsilon - \nu_\epsilon) \text{ and vary } \kappa_\epsilon \text{ while simultaneously changing } \omega_\mu. \text{ Other parameter values are presented in the caption of the figure. It can be seen that in this case increasing overconfidence promotes} \]

\[\text{MOM} \text{ and } \alpha_\tau \delta \text{ as functions of a summary measure of late-informed investors' overconfidence, } OC \equiv (\kappa_\epsilon - \nu_\epsilon) + (\nu_\mu - \omega_\mu). \text{ We assume that } \nu_\mu - \omega_\mu = 0.2(\kappa_\epsilon - \nu_\epsilon) \text{ and vary } \kappa_\epsilon \text{ while simultaneously changing } \omega_\mu. \text{ Other parameter values are presented in the caption of the figure. It can be seen that in this case increasing overconfidence promotes} \]

\[\text{MOM} \text{ and } \alpha_\tau \delta \text{ as functions of a summary measure of late-informed investors' overconfidence, } OC \equiv (\kappa_\epsilon - \nu_\epsilon) + (\nu_\mu - \omega_\mu). \text{ We assume that } \nu_\mu - \omega_\mu = 0.2(\kappa_\epsilon - \nu_\epsilon) \text{ and vary } \kappa_\epsilon \text{ while simultaneously changing } \omega_\mu. \text{ Other parameter values are presented in the caption of the figure. It can be seen that in this case increasing overconfidence promotes} \]
both momentum and liquidity, consistent with Avramov, Cheng, and Hameed (2016). As we observed in the discussion following Proposition 6, it is plausible that overconfidence is greater when retail investors (who are more likely to be biased) are primary participants in markets. Our analysis then suggests that during periods/markets with greater retail participation, momentum and liquidity will both be higher.

4.3 Price Quality

As in Odean (1998) and Ko and Huang (2007), we measure price quality using the mean squared error between a stock’s payoff and its price (denoted it as MSE; a lower MSE indicates a better price quality). Note from Eqs. (1), (12), and (13) that the pricing errors at Dates 1 and 2 can be expressed as:

\[
V - P_1(V) = \sum_{k=1}^{K} \left[\beta_k \left(f_k - \frac{\nu f_k}{\nu s_{j+k}} \right) \right] + \theta - \alpha_\tau, \quad \text{and}
\]

\[
V - P_2(V) = \sum_{k=1}^{K} \left[\beta_k \left(f_k - \frac{\nu f_k}{\nu \gamma_{j+k}} \right) \right] + \theta - \alpha_2 \gamma.
\]

Thus, the MSE’s are given by

\[
\text{MSE}_1 = E \left[(V - P_1(V))^2 \right] = \sum_{k=1}^{K} \left[\beta_k^2 \text{Var} \left(f_k - \frac{\nu f_k}{\nu s_{j+k}} \right) \right] + E \left[(\theta - \alpha_\tau)^2 \right] \tag{18}
\]

and

\[
\text{MSE}_2 = E \left[(V - P_2(V))^2 \right] = \sum_{k=1}^{K} \left[\beta_k^2 \text{Var} \left(f_k - \frac{\nu f_k}{\nu \gamma_{j+k}} \right) \right] + E \left[(\theta - \alpha_2 \gamma)^2 \right]. \tag{19}
\]

The proposition below describes the effect of skepticism on the MSEs.

Proposition 11

(i) If late-informed investors are not too skeptical (i.e., if $\alpha_\tau > \nu_0/\nu_\tau$), then an increase in skepticism (κ_ϵ) lowers MSE_1, enhancing the quality of the Date-1 stock price P_1.

(ii) When skepticism is high (i.e., if $\alpha_\tau < \nu_0/\nu_\tau$), then an increase in skepticism increases MSE_1, worsening the quality of the Date-1 stock price P_1.

(iii) The quality of the Date-2 stock price P_2 (MSE_2) is not affected by late-informed investors’ skepticism.
The intuition for Parts (i) and (ii) of this proposition is as follows. At Date 1, early-informed investors overestimate the quality of their Date-1 information \(s \). They trade too aggressively based on this information, causing the stock price to overreact to \(s \). Late-informed investors learn \(\tau = s - \delta z \) from the Date-1 price \(P_1 \). They are skeptical about the quality of \(s \) and therefore \(\tau \), and provide liquidity to early-informed investors. A modest level of their skepticism tends to mitigate the overreaction, improving price quality. If their skepticism is excessive, however, then there will be too much liquidity provision. This can over-correct the overreaction, and worsen price quality. Part (iii) of this proposition is consistent with the above analysis, that is, the influence of late-informed investors’ skepticism is limited to the contemporary Date-1 stock price.

5 Skepticism about Fundamentals and Price Reversals

So far, our analysis has shown that skepticism causes underreaction and hence momentum. In this section, we show that skepticism (alone) can cause both long-run reversals and momentum. We extend the model of the previous section by allowing the \(\Delta \) parameter introduced in Section 2 to be positive (dropping the \(j \) subscript for convenience). As discussed in that section, this is equivalent to late-informed assuming that other investors have a less complete view of the fundamental than they actually do. To reiterate briefly, \(\theta \) is the sum of two random components \(\theta_1 \) and \(\theta_2 \), both early- and late-informed observe \(\theta_2 \) at Date 2, and late informed believe that the early informed’s signal is \(\theta_1 + \mu + \epsilon \) (and that their own Date-2 signal is \(\theta_1 + \mu \)).\(^{20}\) In this scenario, late informed fail to realize that part of their own Date-2 information is already in earlier prices due to trades by the early-informed. We show below that this phenomenon causes overreaction when the late-informed receive and trade on their signal at the later date.

The appendix shows that in the extended model, the equilibrium prices take the following form:

\[
P_1 = B\tau, \tag{20}
\]

\(^{20}\)For notational simplicity, we abstract from public signals and assume noise trades only occur at Date 1. The Internet Appendix presents a more general model with noise trading at both dates as well as public signals, and shows that the results of this section continue to obtain.
where $\tau \equiv s - \delta z$, and B, δ, C, a, and D are constants, with P_0 being normalized to zero (as in Section 2).

It follows from Eqs. (20)-(21) that the long-run reversal parameter is given by

$$\text{Cov}(P_1 - P_0, \theta - P_2) = B\nu_\theta - B(C\nu_\gamma + Ca\Delta\nu_\theta + D\nu_\tau).$$

As this setting precludes solving for B, δ, C, and D in closed form, we resort to numerical analysis. We assume the parameter values of $m = 0.1$, $\lambda = 0.1$, $A = 1$, $A_N = 1$, $\nu_\theta = 1$, $\nu_z = 0.01$, and $\Delta = 0.5$. To isolate the effect of the skepticism about the fundamental information structure, we assume in the numerical analysis that information quality is estimated correctly (i.e., $\omega_\epsilon = \nu_\epsilon$, $\omega_\mu = \nu_\mu$, and $\kappa_\epsilon = \nu_\epsilon$).\(^{21}\)

Figure 8 plots $\text{Cov}(P_1 - P_0, \theta - P_2)$ as functions of the quality of the early Date-1 information (ν_ϵ), and the quality of the late Date-2 information (ν_μ). The figure reveals three notable observations. First, the price reverses in long run. The reason for the reversals is that when late-informed investors receive their information at Date 2, they mistakenly believe that this information has not been revealed in past prices. This leads to a “double-counting” effect: they continue to react to this information, which causes the price to overreact and subsequently reverse. Second, if the Date-2 information is precise (i.e., ν_μ is low), reversals are more extreme. The reason is that in this case, late-informed investors are less conservative in reacting to the Date-2 information. This causes a stronger double-counting effect. Third, the reversals are stronger if the Date-1 information is precise (i.e., ν_ϵ is low). The reason is that in this case, investors are less conservative in reacting to the Date-1 information. This enhances the scale of long-run reversals.

The short-run momentum parameter is given by

$$\overline{\text{MOM}} = \frac{\text{Cov}(P_1 - P_0, P_2 - P_1) + \text{Cov}(P_2 - P_1, \theta - P_2)}{2},$$

\(^{21}\)Generally similar patterns obtain for other parameter values, with the exception that as suggested by our earlier analysis, the masses of the early-informed and market makers (m and λ, respectively) and the variance of noise trading have to be sufficiently small to generate momentum.
where

\[
\text{Cov}(P_1 - P_0, P_2 - P_1) = B(C\nu_\gamma + Ca\Delta\nu_\theta + D\nu_\tau) - B^2\nu_\tau, \quad \text{and}
\]

\[
\text{Cov}(P_2 - P_1, \theta - P_2) = C(1 + a\Delta)\nu_\theta + D\nu_\theta
\]

\[
-[(C + D)^2\nu_\gamma + D^2(\nu_\epsilon + \delta^2\nu_\zeta) + (Ca)^2\Delta\nu_\theta + 2Ca(C + D)\Delta\nu_\theta]
\]

\[
-[B\nu_\theta - B(C\nu_\gamma + Ca\Delta\nu_\theta + D\nu_\tau)].
\]

Figure 9 plots \(\overline{\text{MOM}}\) as a function of the quality of the early Date-1 information (\(\nu_\epsilon\)), and the quality of the late Date-2 information (\(\nu_\mu\)). First, the momentum effect (i.e., \(\overline{\text{MOM}} > 0\)) also arises here. The reason is that as late-informed investors believe that the early Date-1 signal contains only limited information, they provide too much liquidity to the early-informed investors. This causes an underreaction at Date 1, and thus a continuation across Dates 1 and 2. Second, the momentum effect tends to obtain when the Date-1 information is precise (i.e., \(\nu_\epsilon\) is low). The reason is that in this case, late-informed investors are less conservative in providing liquidity, which causes a stronger price underreaction at Date 1. Third, the momentum effect reverses when the Date-2 information is precise (i.e., \(\nu_\mu\) is low). The reason is that in this case, as Figure 8 indicates, there is a stronger reversal around Date 2. This offsets the momentum around Date 1.

Overall, the key insight of this section is that skepticism about fundamentals alone suffices to generate short-run momentum and long-term reversals. This runs contrary to the notion that skepticism should generally result in underreaction. While momentum does arise because late informed react insufficiently at the earlier date, their skepticism that early informed have observed fundamentals implies that the price overshoots fundamentals at the later date, causing overreaction and reversals.

6 Applications

6.1 Disappearing Long-Run Reversals and Short-Run Momentum

Jegadeesh and Titman (2001) find that the long-run reversals that accompanied shorter-run momentum were mostly significant in early years (specifically, 1965-1981; see their Table VI, p. 77), but disappeared in their later sample period. Chordia, Subrahmanyam, and Tong (2014) find a substantial reduction in momentum profits during recent years. These
patterns can be explained in the context of our model as follows. Before the 1990s, companies relied on slow traditional media, implying sequential receipt of private information, and, in consequence, momentum and reversals. In recent years, new technology such as internet has caused an ever speedier flow of information (Economides (2001)). Our analysis in Section 3.2 (see Proposition 5) indicates that over time, long-run reversals should first attenuate, followed by weakening of short-run momentum, which accords with Jegadeesh and Titman (2001) and Chordia, Subrahmanyam, and Tong (2014).

6.2 Empirical Implications

Based on the preceding analysis, our analysis suggests the following empirical implications. For these implications, we presume that the parameter governing skepticism (κ_ϵ) is in the range where marginal increases in the parameter enhance momentum (see Condition (9) and Proposition 3). The preceding material in parentheses within the itemized list below indicates specific results or model features that suggest each implication.

- [Corollary 3(i)] The work of Chui, Titman, and Wei (2010) and Markus and Kitayama (1991) suggests that collectivist cultures discourage skepticism about others and overestimation of one’s own ability by encouraging conformity, whereas individualistic cultures do the opposite. This implies that short-term momentum and long-term reversals should both arise in a relatively individualist culture. Our analysis further implies that as foreign ownership from individualist cultures increases in a market with a collectivist culture, momentum and reversals should strengthen in that market.

- [Proposition 4] Restrictions on market making capacity (such as leverage constraints imposed after the financial crisis - viz Acharya, Philippon, and Richardson (2009)) should enhance momentum.

22 Other regulations like RegFD (Gintschel and Markov (2004)), and tightened insider trading regulations (Bettis, Duncan, and Harmon (2011)) should also reduce the tendency for tradeable information to arrive sequentially (first to insiders, then to others), thus attenuating momentum. Further, in the U.S., “quant investing,” a form of de facto market making, has increased in recent years (Patterson (2010); Abis (2017)), enhancing the risk-bearing capacity of uninformed investors. Our analysis in Section 3.1 suggests that this also weakens momentum and reversals.

23 Essentially, in this range κ_ϵ must be non-zero but cannot be too high, and a modest level of bias is a reasonable parameter restriction.
• [Proposition 5] Momentum is mitigated around analyst disclosures close to major information releases (e.g., release of annual reports) by firms.

• [Proposition 6] Markets and periods in which retail investors are more active should exhibit stronger evidence of drift following earnings releases and analysts’ revisions.

• [Proposition 7] Assets experiencing high levels of noise trading such as fire sales (Coval and Stafford (2007)), should experience weaker momentum.

• [Proposition 9 and Corollary 3(ii)] Momentum is more likely to arise among stocks with low firm-specific price variation.

• [Proposition 10 and Figure 7] Time-periods with greater retail participation in equity markets imply stronger momentum and more liquidity.

• [Sequential receipt of information] Since, in our setting, momentum relies on investors receiving information sequentially, we propose that in economies where some investors are more likely to receive information before others, e.g., because of lax enforcement of insider trading (Bhattacharya and Daouk (2002)), there will be more momentum.

7 Conclusions

Coval and Shumway (2005, p. 1) express the concern that “behavioralists can ‘psycho-mine’ the experimental psychology literature to find support for the particular set of assumptions that allow their models to match otherwise anomalous data.” One defense against this tendency to “psycho-mine” is to require that theories of return predictability be very simple. Our setting is based on straightforward premise of overconfidence, a pervasively documented behavioral bias in the psychology literature. In an intuitive characterization of overconfidence, we assume that investors overestimate the quality (precision) of their own information and are skeptical about the quality of other investors’ information. This specification accords with basic stylized facts on equity markets, namely, short-run momentum, long-run reversals, and drift following releases of information by firms and analysts.

In our model, overconfident investors receive information at different times. Investors that receive information later in time are skeptical about early-informed investors’ signal
quality. This skepticism implies that late-informed provide excessive liquidity to the early-informed, which leads to underreaction, and hence, momentum. Skepticism about the quality of disclosures by other information producers, namely, firms and analysts, leads to drift following earnings surprises and analysts’ revisions. Finally, since all overconfident investors overestimate the quality of their own signals, we obtain overreaction, and hence, reversals, in the long run.

We further show that rational but risk averse uninformed investors attenuate, but do not eliminate, momentum. Public information releases reduce mispricing due to over- and underreaction to private information, weakening long-run reversals and short-run momentum. Skepticism about the quality of information released by analysts and firms leads to drift following such releases. Noise trades mitigate momentum, by creating a tendency for inventory-related reversals. Skepticism tends to suppress the sensitivity of stock price to private information, and thus lower firm-specific price variation. Skepticism also enhances liquidity. Via liquidity provision, a modest level of skepticism tends to mitigate overreaction arising from investors overestimating the quality of their own information; this improves price quality. Excessive skepticism, however, causes the stock price to excessively underreact to the information, which worsens price quality. While skepticism generally causes underreaction and, in turn, momentum, we show that it also can cause reversals. This because late-informed trade based on the assumption that their information is new and was not incorporated into prices at earlier dates by the early-informed, which causes equilibrium prices to overreact.

Our model is the first to address the patterns of disappearing long-run reversals and weakening short-run momentum over time. In our setting, momentum and reversals disappears as the flow of public information is speeded up due to technological innovations. The rise of quantitative investing, that de facto provides liquidity, should attenuate the cross-sectional dependence of equity returns on past returns. The setting also provides other implications. For example, the precision of public information is negatively related to momentum and reversals, because precise public signals tend to mitigate the impact of overconfidence. Since overconfident late-informed investors provide excessive liquidity to early-informed investors, which gives rise to momentum, high liquidity is associated with high momentum. Greater levels of overconfidence, more likely when retail participation is higher, lead to
greater drift following earnings releases and analyst revisions. Across economies, we predict that economies where news diffuses slowly (as measured by pre-event price runups), or where insider trading is prevalent, will exhibit more momentum.

Going beyond the previous discussion, rationales for momentum and reversals based on informed trading open new vistas for empirical research. First, given that analysts produce public information and thus reduce information asymmetry (Asquith, Mikhail, and Au (2005)), more informative analysts’ disclosures should be linked to less momentum and reversals. Second, our arguments imply a positive link between measures of price informativeness (such as the sensitivity of investment to market prices – viz. Chen, Goldstein, and Jiang (2006)) and return predictability. Third, as ETFs become more popular, the focus might shift to marketwide and sector-based information production (Ben-David, Franzoni, and Moussawi (2018)) implying stronger (weaker) momentum and reversals at the macro (individual stock) level. Investigation of these topics is left for future research.
Appendix

Proof of Lemma 1: We use two steps to prove this lemma.

Step 1: We focus on Date 2 in this step.

The $J + k$'th $(k = 1, ..., K)$ original stock has a Date-3 payoff $V_{J+k} = f_k$. Write its Date-2 price as $P_2(V_{J+k}) = P_{J+k,2}$. From Eq. (1), write the j'th $(j = 1, ..., J)$ original stock’s payoff and Date-2 price as

$$V_j = \bar{V}_j + \sum_{k=1}^{K} (\beta_{jk} f_k) + \theta_j,$$

and

$$P_2(V_j) = \bar{V}_j + \sum_{k=1}^{K} (\beta_{jk} P_{J+k,2}) + P_{j,2},$$

where $P_{J+k,2}$ and $P_{j,2}$ are to be determined.

Denote the Date-2 demands of the i'th early- or late-informed investor for the original stocks $Y_{ij2} (j = 1, ..., J)$ and $Y_{i,J+k,2} (k = 1, ..., K)$. The Date-3 wealth can be expressed as

$$W_{i3} = W_{i2} + \sum_{j=1}^{J} [Y_{ij2}(V_j - P_2(V_j))] + \sum_{k=1}^{K} [Y_{i,J+k,2}(f_k - P_2(V_{J+k}))]$$

$$= W_{i2} + \sum_{j=1}^{J} \left[Y_{ij2} \left(\sum_{k=1}^{K} (\beta_{jk} f_k - P_{J+k,2}) + \theta_j - P_{j,2} \right) \right] + \sum_{k=1}^{K} [Y_{i,J+k,2}(f_k - P_{J+k,2})]$$

$$= W_{i2} + \sum_{j=1}^{J} [Y_{ij2}(\theta_j - P_{j,2})] + \sum_{k=1}^{K} \left[Y_{i,J+k,2} + \sum_{j=1}^{J} (\beta_{jk} Y_{ij2}) \right] (f_k - P_{J+k,2})$$

$$= W_{i2} + \sum_{j=1}^{J} [X_{ij2}(\theta_j - P_{j,2})] + \sum_{k=1}^{K} [X_{i,J+k,2}(f_k - P_{J+k,2})],$$

where we use the notation that

$X_{ij2} \equiv Y_{ij2}$, and $X_{i,J+k,2} \equiv Y_{i,J+k,2} + \sum_{j=1}^{J} (\beta_{jk} Y_{ij2}).$

The expression in Eq. (22) indicates that the investor can choose the demands for the original stocks indicated by Y_{ij2} and $Y_{i,J+k,2}$, conditional on the prices of the original stocks $P_2(V_j)$ and $P_2(V_{J+k})$. The expression in Eq. (23) indicates that the investor can equivalently choose the demands for the basic securities indicated by X_{ij2} and $X_{i,J+k,2}$, conditional on the prices of the basic securities $P_{j,2}$ and $P_{J+k,2}$.

The market clearing condition for the original stocks,

$$\sum_i Y_{ij2} = 0, \text{ and } \sum_i Y_{i,J+k,2} = 0,$$
implies that for the basic securities, i.e.,
\[\sum_i X_{ij} \cdot X_{ij} = \sum_i Y_{ij} \cdot Y_{ij} = 0, \]
and
\[\sum_i X_{i,j,k}^2 + \sum_j (\beta_{jk} Y_{ij}) = 0. \]

Step 2: We can use a similar analysis as in the above Step 1 to show that the Date-1 and Date-0 prices of the original stocks take the linear form as specified in Lemma 1. □

Proof of Proposition 1: In the multi-asset setup with basic securities, the payoffs of these securities take the independent-normal structure. This implies that an investor’s expected (negative exponential) utility takes a multiplicative form, in which each multiplicative component represents the expected utility obtained from trading a specific basic security. The optimization problem regarding a specific basic security is independent of the optimization problem in the other basic securities. Therefore, in the following derivation and all the other derivations for the multi-asset setup, we restrict our attention to the optimization problem in only one basic security. This is for notational convenience. It is straightforward to extend the analysis to include the optimization for other basic securities. We solve for the equilibrium using backward induction.

Date 2: Let us focus on the \(j \)'th (\(j = 1, \ldots, J \)) firm-specific risk, \(\theta_j \), for the moment (in what follows, we suppress the index for the basic security \(j \) for convenience). The \(i \)'th early-informed investor learns \(\gamma \) from the price \(P_2 \), which is fully revealing. The investor believes that \(\gamma \) is a sufficient statistic and that
\[\theta|\gamma \sim N \left(\frac{\nu_\theta}{\nu_\gamma} \gamma, H(\nu_\theta, \nu_\gamma)^{-1} \right), \]
where the function \(H(\cdot) \) is defined in Eq. (4).

Write the investor’s wealth at Date 3 as \(W_{i3} = W_{i2} + X_{i2}(\theta - P_2) \). He needs to choose \(X_{i2} \) to maximize
\[
E_\eta[U_\eta(W_{i3})|\gamma] = E_\eta[-\exp[-AW_{i2} - AX_{i2}(\theta - P_2)]|\gamma]
= -\exp \left[-AW_{i2} - AX_{i2} \left(\frac{\nu_\theta}{\nu_\gamma} \gamma - P_2 \right) + 0.5A^2 X_{i2}^2 H(\nu_\theta, \nu_\gamma)^{-1} \right],
\]
where the second equality is based on the normality assumption. The first order condition (f.o.c.) with respect to (w.r.t.) \(X_{i2} \) implies that the demand can be expressed as:
\[
X_{i2}(\gamma, P_2) = A^{-1}H(\nu_\theta, \nu_\gamma) \left(\frac{\nu_\theta}{\nu_\gamma} \gamma - P_2 \right).
\]
The second order condition holds obviously in the above case, and all other cases below, so that we omit referencing it in the rest of the proofs. We can use a similar analysis to show that the demand of the \(i\)’th late-informed investor who observes \(\gamma\) can be expressed as:

\[
X_{i2}(\gamma, P_2) = A^{-1}H(\nu_\theta, \omega_\gamma) \left(\frac{\nu_\theta}{\omega_\gamma} \gamma - P_2 \right).
\] (26)

From Eqs. (25) and (26), the market clearing condition, \(0 = mX_{i2}(\gamma, P_2) + (1 - m)X_{i2}(\gamma, P_2)\), implies \(P_2 = \alpha_2 \gamma\), where \(\alpha_2\) is as specified in Proposition 1.

Consider the \(i\)’th early-informed investor’s expected utility in Eq. (24). Substituting for the optimal demand from Eq. (25) and the above derived \(P_2 = \alpha_2 \gamma\), we can write the expected utility at Date 2 as

\[
E_\eta[U_\eta(W_{i3})|\gamma] = -\exp \left[-AW_{i2} - 0.5H(\nu_\theta, \nu_\gamma)\left(\frac{\nu_\theta}{\nu_\gamma} - \alpha_2 \right)^2 \gamma^2 \right].
\] (27)

Date 1: At Date 1, the \(i\)’th early-informed investor observes \(s\). The investor believes that

\[
\gamma|s \sim N\left(\frac{\nu_\gamma}{\omega_s} s, H(\nu_\gamma, \omega_s)^{-1} \right).
\]

Consider the investor’s expected utility in Eq. (27). Write the wealth at Date 2 as \(W_{i2} = W_{i1} + X_{i1}(P_2 - P_1)\), where the price \(P_2 = \alpha_2 \gamma\) is as derived above. It follows that the expected utility at Date 1 can be expressed as

\[
E_\eta[U_\eta(W_{i3})|s] = E_\eta \left[-\exp \left[-AW_{i1} - AX_{i1}(\alpha_2 \gamma + P_1) - 0.5H(\nu_\theta, \nu_\gamma)\left(\frac{\nu_\theta}{\nu_\gamma} - \alpha_2 \right)^2 \gamma^2 \right] | s \right]
\]

\[
\propto -\exp \left[-AW_{i1} - AX_{i1}(-P_1) + 0.5 \frac{(AX_{i1}\alpha_2 - H(\nu_\gamma, \omega_s)\omega_s^{-1}\nu_\gamma s)^2}{H(\nu_\gamma, \omega_s) + H(\nu_\theta, \nu_\gamma)(\nu_\gamma^{-1}\nu_\theta - \alpha_2)^2}
\right]
\]

\[
-0.5H(\nu_\gamma, \omega_s)\left(\frac{\nu_\gamma}{\omega_s} s \right)^2.
\] (28)

Here, we used the fact in Footnote 24 below.\(^{24}\) The f.o.c. w.r.t. \(X_{i1}\) implies that the demand

\[\text{If a vector } x \sim N(\bar{x}, \nu), \text{ then} \]

\[
E[\exp(A^T x - 0.5x^T \Sigma x) = \frac{|\nu^{-1} + \Sigma|^{-1/2}}{|\nu|^{1/2}} \exp \left[0.5(\Lambda + \nu^{-1}\bar{x})^T(\nu^{-1} + \Sigma)^{-1}(\Lambda + \nu^{-1}\bar{x}) - 0.5\bar{x}^T \nu^{-1}\bar{x} \right].
\]

If a scalar \(x \sim N(\bar{x}, \nu) \), then

\[
E[\exp(\Lambda x - 0.5\Sigma x^2)] = \sqrt{\frac{1}{1 + \nu \Sigma}} \exp \left[0.5(\Lambda + \frac{\bar{x}}{\nu})^2\left(\frac{1}{\nu} + \Sigma \right)^{-1} - 0.5\frac{\bar{x}^2}{\nu} \right].
\]
can be expressed as

\[X_{\eta_1}(s, P_1) = \frac{-P_1}{A\alpha_2^2} \left[H(\nu_\gamma, \omega_s) + H(\nu_\theta, \nu_\gamma)(\frac{\nu_\theta}{\nu_\gamma} - \alpha_2)^2 \right] + \frac{1}{A\alpha_2} H(\nu_\gamma, \omega_s) \frac{\nu_\gamma}{\omega_s}. \quad (29) \]

We can use a similar analysis to show that the demand of the \(i\)th late-informed investor who learns \(s\) from the price \(P_1\) can be expressed as:

\[X_{\ell_1}(s, P_1) = \frac{-P_1}{A\alpha_2^2} \left[H(\omega_s, \kappa_s) + H(\nu_\theta, \omega_s)(\frac{\nu_\theta}{\omega_s} - \alpha_2)^2 \right] + \frac{1}{A\alpha_2} H(\omega_s, \kappa_s) \frac{\omega_s}{\kappa_s}. \quad (30) \]

From Eqs. (29) and (30), the market clearing condition, \(0 = mX_{\eta_1}(s, P_1) + (1 - m)X_{\ell_1}(s, P_1)\), implies \(P_1 = \alpha_1 s\), where \(\alpha_1\) is as specified in Proposition 1.

Date 0: Consider the \(i\)th early-informed investor’s expected utility in Eq. (28). Substitute for the optimal demand from Eq. (29) and the above derived \(P_1 = \alpha_1 s\), and write the wealth at Date 1 as \(W_{i1} = W_{i0} + X_{i0}(P_1 - P_0)\). Then, we have

\[E_\eta [U_\eta(W_{i3})|s] \propto -\exp \left[-AW_{i1} - 0.5\Sigma s^2 \right] \]
\[= -\exp \left[-AW_{i0} - AX_{i0}(\alpha_1 s - P_0) - 0.5\Sigma s^2 \right], \]

where \(\Sigma\) is a positive constant which is a function of exogenous parameters. The investor’s belief is \(s \sim N(0, \omega_s)\). The choice of the demand \(X_{i0}\) maximizes

\[E_\eta [U_\eta(W_{i3})] \propto E_\eta \left[-\exp \left[-AW_{i0} - AX_{i0}(\alpha_1 s - P_0) - 0.5\Sigma s^2 \right] \right] \]
\[\propto -\exp \left[-AW_{i0} - AX_{i0}(-P_0) + 0.5(AX_{i0}\alpha_1)^2(1/\omega_s + \Sigma)^{-1} \right]. \]

Here, we again used the fact in Footnote 24. The f.o.c. w.r.t. \(X_{i0}\) implies that the demand is proportional to \(-P_0\), i.e., \(X_{i0}(P_0) \propto -P_0\). We can use a similar derivation to show that the \(i\)th late-informed investor’s demand is also proportional to \(-P_0\), i.e., \(X_{\ell_0}(P_0) \propto -P_0\). The market clearing requirement, \(0 = mX_{\eta_0}(P_0) + (1 - m)X_{\ell_0}(P_0)\), implies \(P_0 = 0\).

Finally, we can use a similar analysis as above to show that the prices of the \(k\)th factor take the form given in Eq. (3). The presentation of these prices is much simpler because there are no biased beliefs for the factors. \(\square\)

Proof of Proposition 2: Consider the expression for \(\alpha_2\) in Proposition 1. It follows from \(\omega_\gamma < \nu_\gamma\) that \(\alpha_2 \in [\nu_\theta/\nu_\gamma, \nu_\theta/\omega_\gamma]\). It is straightforward to show after taking derivatives that \(\alpha_2\) decreases in \(m\) and \(\omega_\gamma\) (and thus in \(\omega_\mu\)). \(\square\)
Proof of Corollary 1: Using Eq. (8), we have that Cov\((P_1 - P_0, \theta - P_2)\) = \(\alpha_1(\nu_\theta - \alpha_2 \nu_\gamma)\) < 0, where the inequality obtains from \(\alpha_2 > \nu_\theta / \nu_\gamma\) (see Proposition 2). \(\square\)

Proof of Corollary 2: (i) Note from Propositions 1 and 2 that \(\alpha_1 < \alpha_2\) and \(\alpha_2 > \nu_\theta / \nu_\gamma\). It follows from Eq. (6) that Cov\((P_2 - P_1, \theta - P_2)\) = \((\alpha_2 - \alpha_1)(\nu_\theta - \alpha_2 \nu_\gamma)\) < 0. (ii) Eq. (5) yields that for Cov\((P_1 - P_0, P_2 - P_1)\) = \(\alpha_1(\alpha_2 \nu_\gamma - \alpha_1 \nu_s)\) > 0, it suffices that \(\alpha_1 / \alpha_2 < \nu_\gamma / \nu_s\). Note that if \(m = 1\), then \(\alpha_1 / \alpha_2 = \nu_\gamma / \nu_s\). In this case, Cov\((P_1 - P_0, P_2 - P_1)\) < 0.

Let \(m\) be small. Then, from Proposition 1,

\[
\alpha_1 / \alpha_2 \leq \frac{mH(\nu_\gamma, \omega_s)\omega_s^{-1} \omega_\gamma + (1 - m)H(\omega_\gamma, \kappa_s)\kappa_s^{-1} \omega_\gamma}{mH(\nu_\gamma, \omega_s) + (1 - m)H(\omega_\gamma, \kappa_s)}.
\]

If \(m \to 0\), then the right hand side of the above inequality converges to \(\omega_\gamma / \kappa_s\). It is straightforward to show that because \(\omega_\mu < \nu_\mu\) and \(\kappa_\epsilon > \nu_\epsilon\),

\[
\frac{\omega_\gamma}{\kappa_s} - \frac{\nu_\gamma}{\nu_s} = \frac{\nu_\theta + \omega_\mu}{\nu_\theta + \omega_\mu + \kappa_\epsilon} - \frac{\nu_\theta + \nu_\mu}{\nu_\theta + \nu_\mu + \nu_\epsilon} \propto \nu_s(\nu_\theta + \omega_\mu) - \kappa_\epsilon(\nu_\theta + \nu_\mu) < 0.
\]

Therefore, for sufficiently small \(m\), \(\alpha_1 / \alpha_2 < \nu_\gamma / \nu_s\) and thus Cov\((P_1 - P_0, P_2 - P_1)\) > 0. \(\square\)

Proof of Proposition 3: It follows from Proposition 1 that if \(\omega_\mu = \nu_\mu\), then \(\alpha_2 = \nu_\theta / \nu_\gamma\). It is straightforward to show after taking derivatives that \(\alpha_1\) increases in \(m\) and decreases in \(\kappa_s\) (and thus in \(\kappa_\epsilon\)), and \(\omega_s\) (and so in \(\omega_\epsilon\)). \(\square\)

Proof of Corollary 3: From Proposition 3, \(\alpha_2 = \nu_\theta / \nu_\gamma\) and that as \(m\) increases from 0 to 1, \(\alpha_1\) increases from \(\nu_\theta / \kappa_s\) to \(\nu_\theta / \omega_s\). Then, it follows from Eqs. (5) and (7) that there exists a unique \(m^* \in (0, 1)\) so that

\[
\overline{MOM} \propto \text{Cov}(P_1 - P_0, P_2 - P_1) \propto \nu_\theta - \alpha_1 \nu_s = 0.
\]

Part (i) of this corollary follows immediately from \(\alpha_1\) increasing in \(m\). (ii) Note from the above analysis that \(m^*\) is determined by \(\nu_\theta - \alpha_1 \nu_s = 0\), where \(\alpha_1\) increases in \(m\) and decreases in \(\kappa_\epsilon\) (see Proposition 3). It follows after taking implicit derivatives that \(m^*\) increases in \(\kappa_\epsilon\). \(\square\)

Proof of Corollary 4: From Proposition 3, \(\alpha_2 = \nu_\theta / \nu_\gamma\). It then follows from Eqs. (5) and (6) that

\[
\overline{MOM} = \text{Cov}(P_1 - P_0, P_2 - P_1) / 2 = \alpha_1(\nu_\theta - \alpha_1 \nu_s) / 2.
\]
Note that \(d\alpha_1 / d\kappa_\epsilon < 0 \) from Proposition 3. It follows that
\[
\frac{d\text{MOM}}{d\kappa_\epsilon} = (\nu_\theta - 2\alpha_1 \nu_\epsilon) \frac{d\alpha_1}{d\kappa_\epsilon} \propto -(\nu_\theta - 2\alpha_1 \nu_\epsilon).
\]

This corollary follows immediately. □.

Proof of Proposition 4: We use two steps to prove this proposition.

Step 1: We solve for the equilibrium prices using backward induction.

Date 2: We can use the same derivation as in the proof of Proposition 1 to show that at Date 2, the \(i \)’th early-informed investor’s demand, \(X_{\eta_2}(\gamma, P_2) \), is given in Eq. (25), and that the \(i \)’th late-informed investor’s demand, \(X_{\ell_2}(\gamma, P_2) \), is given by Eq. (26).

The \(i \)’th uninformed investor learns \(\gamma \) from the price \(P_2 \), which is fully revealing. Like \(X_{\eta_2}(\gamma, P_2) \) in Eq. (25), the demand (note that the belief is indicated by \(\nu_\gamma \), and risk aversion is \(A_N \)) can be expressed as:
\[
X_{N_2}(\gamma, P_2) = A_N^{-1}H(\nu_\theta, \nu_\gamma) \left(\frac{\nu_\theta}{\nu_\gamma} - P_2 \right).
\]

(31)

From Eqs. (25), (26), and (31), the market clearing condition
\[
0 = mX_{\eta_2}(\gamma, P_2) + (1 - m)X_{\ell_2}(\gamma, P_2) + \lambda X_{N_2}(\gamma, P_2)
\]
implies \(P_2 = \alpha_2 \gamma \), where
\[
\alpha_2 = \frac{mH(\nu_\theta, \nu_\gamma)\nu_\gamma^{-1}\nu_\theta + (1 - m)H(\nu_\theta, \omega_\gamma)\omega_\gamma^{-1}\nu_\theta + \lambda(A_N^{-1}A)H(\nu_\theta, \nu_\gamma)\nu_\gamma^{-1}\nu_\theta}{mH(\nu_\theta, \nu_\gamma) + (1 - m)H(\nu_\theta, \omega_\gamma) + \lambda(A_N^{-1}A)H(\nu_\theta, \nu_\gamma)}.
\]

(32)

Date 1: We can use the same derivation as in the proof of Proposition 1 to show that at Date 1, the \(i \)’th early-informed investor’s demand, \(X_{\eta_1}(s, P_1) \), is given in Eq. (29), and that the \(i \)’th late-informed investor’s demand, \(X_{\ell_1}(s, P_1) \), is given in Eq. (30).

The \(i \)’th uninformed investor learns \(s \) from the price \(P_1 \), which is fully revealing. Like \(X_{\eta_1}(s, P_1) \) in Eq. (29), the demand (the beliefs are indicated by \(\nu_s \) and \(\nu_\gamma \)) can be expressed as:
\[
X_{N_1}(s, P_1) = \frac{-P_1}{A_N\alpha_2^2} \left[H(\nu_\gamma, \nu_s) + H(\nu_\theta, \nu_\gamma)\left(\frac{\nu_\theta}{\nu_\gamma} - \alpha_2 \right)^2 \right] + \frac{1}{A_N\alpha_2} H(\nu_\gamma, \nu_s) \frac{\nu_s}{\nu_s}.
\]

(33)

From Eqs. (29), (30), and (33), the market clearing condition
\[
0 = mX_{\eta_1}(s, P_1) + (1 - m)X_{\ell_1}(s, P_1) + \lambda X_{N_1}(s, P_1)
\]

37
implies \(P_1 = \alpha_1 s \). The parameter is given by

\[
\alpha_1 = \frac{\alpha_2}{Q} \left[mH(\nu_\gamma, \omega_s)\frac{\nu_s}{\omega_s} + (1 - m)H(\omega_\gamma, \kappa_s)\frac{\omega_\gamma}{\kappa_s} + \lambda(A/A_N)H(\nu_\gamma, \nu_s)\frac{\nu_s}{\nu_s} \right],
\]

where \(\alpha_2 \) is given in Eq. (32), and

\[
q_{\eta} = m \left[H(\nu_\gamma, \omega_s) + H(\nu_\theta, \nu_\gamma) \left(\frac{\nu_\theta}{\nu_\gamma} - \alpha_2 \right)^2 \right],
\]

\[
q_{\ell} = (1 - m) \left[H(\omega_\gamma, \kappa_s) + H(\nu_\theta, \omega_\gamma) \left(\frac{\nu_\theta}{\omega_\gamma} - \alpha_2 \right)^2 \right],
\]

\[
q = \lambda(A/A_N) \left[H(\nu_\gamma, \nu_s) + H(\nu_\theta, \nu_\gamma) \left(\frac{\nu_\theta}{\nu_\gamma} - \alpha_2 \right)^2 \right],
\]

with

\[
Q = q_{\eta} + q_{\ell} + q.
\]

Date 0: We can use a similar derivation as for the proof of Proposition 1 to show that \(P_0 = 0 \).

Step 2: If \(\lambda/A_N \to 0 \), then it is straightforward to show that the equilibrium derived in Step 1 is identical to that described in Proposition 1. If \(\lambda/A_N \to \infty \), then it follows that \(\alpha_2 = \nu_\theta/\nu_\gamma \) and \(\alpha_1 = \nu_\theta/\nu_s \). From Eqs. (5) and (6), we have that

\[
\text{MOM} = \frac{\text{Cov}(P_1 - P_0, P_2 - P_1) + \text{Cov}(P_2 - P_1, \theta - P_2)}{2} \to 0.
\]

It follows from Eq. (8) that \(\text{Cov}(P_1 - P_0, \theta - P_2) \to 0 \). □

Proof of Proposition 5: (i) Suppose that the public information \(t \) reaches investors at Date 2. We first solve for the equilibrium prices using backward induction. Denote

\[
\Gamma_\eta = \frac{\gamma \nu^{-1} + \omega_{\mu} (\kappa \nu_\xi)^{-1}}{\nu^{-1} + \omega_\mu (\kappa \nu_\xi)^{-1}}, \quad \Gamma_\ell = \frac{\gamma \omega^{-1} + \nu_{\mu} (\kappa \nu_\xi)^{-1}}{\omega^{-1} + \nu_\mu (\kappa \nu_\xi)^{-1}}, \quad \text{and} \quad \Gamma = \frac{\gamma \nu^{-1} + \nu_\xi^{-1}}{\nu^{-1} + \nu_\xi^{-1}}.
\]

At Date 2, early-informed (late-informed) (rational uninformed) investors believe that \(\Gamma_\eta \) (\(\Gamma_\ell \)) (\(\Gamma \)) dominates the late Date-2 information \(\gamma \), and condition their Date-2 trades on their own \(\Gamma \). Based on the normality assumption, they believe that \(\Gamma_\eta \) (\(\Gamma_\ell \)) (\(\Gamma \)) has a variance \(\kappa_\Gamma = \nu_\theta + (1/\nu_\mu + 1/(\kappa \nu_\xi))^{-1} \), \(\omega_\Gamma = \nu_\theta + (1/\omega_\mu + 1/(\kappa \nu_\xi))^{-1} \), \(\nu_\Gamma = \nu_\theta + (1/\nu_\mu + 1/\nu_\xi)^{-1} \).

The \(i \)'th early-informed investor believes

\[
\theta|\Gamma_\eta \sim N \left(\frac{\nu_\theta}{\kappa_\Gamma} \Gamma_\eta, H(\nu_\theta, \kappa_\Gamma)^{-1} \right).
\]
Write the wealth at Date 3 as \(W_{i3} = W_{i2} + X_{i2}(\theta - P_2) \). He needs to choose \(X_{i2} \) to maximize

\[
E_\eta [U_\eta(W_{i3})|\Gamma_\eta] = E_\eta [-\exp[-AW_{i2} - AX_{i2}(\theta - P_2)] |\Gamma_\eta] \\
= -\exp \left[-AW_{i2} - AX_{i2} \left(\frac{\nu_\theta}{\kappa_{T}} \Gamma_\eta - P_2 \right) + 0.5A^2 X_{i2}^2 H(\nu_\theta, \kappa_T)^{-1} \right]. \tag{35}
\]

The f.o.c. w.r.t. \(X_{i2} \) implies that the demand can be expressed as:

\[
X_{i2}(\Gamma_\eta, P_2) = A^{-1}H(\nu_\theta, \kappa_T) \left(\frac{\nu_\theta}{\kappa_T} \Gamma_\eta - P_2 \right). \tag{36}
\]

We can use a similar analysis to show that the demand of the \(i' \)th late-informed investor (whose beliefs are indicated by \(\Gamma_\ell \) and \(\omega_\Gamma \)) can be expressed as:

\[
X_{\ell2}(\Gamma_\ell, P_2) = A^{-1}(\nu_\theta, \omega_\Gamma) \left(\frac{\nu_\theta}{\omega_\Gamma} \Gamma_\ell - P_2 \right). \tag{37}
\]

The demand of the \(i' \)th rational uninformed investor (whose belief is indicated by \(\Gamma \) and \(\nu_\Gamma \), and whose risk aversion is indicated by \(A_N \)) can be expressed as:

\[
X_{N2}(\Gamma, P_2) = A^{-1}_N (\nu_\theta, \nu_\Gamma) \left(\frac{\nu_\theta}{\nu_\Gamma} \Gamma - P_2 \right). \tag{38}
\]

From Eqs. (36), (37), and (38), the market clearing condition, \(0 = mX_{i2}(\Gamma_\eta, P_2) + (1 - m)X_{\ell2}(\Gamma_\ell, P_2) + \lambda X_{N2}(\Gamma, P_2) \), implies

\[
P_2 = \frac{mH(\nu_\theta, \kappa_T)\kappa_T^{-1}\nu_\theta \Gamma_\eta + (1 - m)H(\nu_\theta, \omega_\Gamma)\omega_\Gamma^{-1}\nu_\theta \Gamma_\ell + \lambda(A_N^{-1}A)H(\nu_\theta, \nu_\Gamma)\nu_\Gamma^{-1}\nu_\theta \Gamma}{mH(\nu_\theta, \kappa_T) + (1 - m)H(\nu_\theta, \omega_\Gamma) + \lambda(A_N^{-1}A)H(\nu_\theta, \nu_\Gamma)}. \tag{39}
\]

Date 1: Write an early-informed investor’s wealth at Date 2 as \(W_{i2} = W_{i1} + X_{i1}(P_2 - P_1) \). It follows from Eqs. (35) and (36) that the Date-2 expected utility can be expressed as:

\[
E_\eta [U_\eta(W_{i3})|\Gamma_\eta] = -\exp \left[-AW_{i1} - AX_{i1}(P_2 - P_1) - 0.5H(\nu_\theta, \kappa_T)\left(\frac{\nu_\theta}{\kappa_T} \Gamma_\eta - P_2 \right)^2 \right].
\]

Note that \(P_2 \) and \(\Gamma_\eta \) are linear in \(\gamma \) and \(t \). Further, the belief is

\[
\left(\begin{array}{c} \gamma \\ t \\ s \end{array} \right) \sim N(\rho_\eta s, V_\eta),
\]

where \(\rho_\eta \) and \(V_\eta \) are constant parameters based on the belief regarding the variance-covariance matrix of \(\gamma \), \(t \), and \(s \). We can use the fact in Footnote 24 to show that

\[
E_\eta [U_\eta(W_{i3})|s] = E_\eta [E_\eta [U_\eta(W_{i3})|\Gamma_\eta]|s] \\
\propto -\exp \left[-AW_{i1} - AX_{i1}(-P_1) + 0.5(AX_{i1}D_P - V_\eta^{-1}\rho_\eta s)^T \Sigma_\eta^{-1}(AX_{i1}D_P - V_\eta^{-1}\rho_\eta s) \right],
\]

39
where D_P and Σ_η are constant parameters. The f.o.c. w.r.t. $X_{\eta 1}$ implies that the optimal demand is given by

$$X_{\eta 1}(s, P_1) = \phi_\eta s - \phi_{\eta P} P_1,$$

where ϕ_η and $\phi_{\eta P}$ are constant parameters. We can use a similar analysis to show that a late-informed or rational uninformed investor’s optimal demand is given by

$$X_{\ell 1}(s, P_1) = \phi_\ell s - \phi_{\ell P} P_1,$$

$$X_{N 1}(s, P_1) = \phi_N s - \phi_{NP} P_1,$$

where ϕ_ℓ, $\phi_{\ell P}$, ϕ_N, and ϕ_{NP} are constant parameters. The market clearing condition, $0 = m X_{\eta 1}(s, P_1) + (1 - m) X_{\ell 1}(s, P_1) + \lambda X_{N 1}(s, P_1)$, implies

$$P_1 = \frac{m \phi_\eta + (1 - m) \phi_\ell + \lambda \phi_N}{m \phi_{\eta P} + (1 - m) \phi_{\ell P} + \lambda \phi_{NP}} s.$$

Date 0: We can use a similar derivation as for the proof of Proposition 1 to show $P_0 = 0$.

Now consider different levels of ν_ξ. If $\nu_\xi \to \infty$, then it is straightforward to show that $\Gamma_\eta, \Gamma_\ell, \Gamma \to \gamma$. The equilibrium is identical to that described in the proof of Proposition 4. Momentum and reversals arise under certain parameter values.

If $\nu_\xi \to 0$, then it is straightforward to show that $\Gamma_\eta, \Gamma_\ell, \Gamma \to t \to \theta$. It follows from the above analysis that $P_2 \to \theta$, and

$$P_1 \to \frac{m H(\nu_\theta, \omega_s) \omega_s^{-1} \nu_\theta + (1 - m) H(\nu_\theta, \kappa_s) \kappa_s^{-1} \nu_\theta + \lambda (A_N^{-1} A) H(\nu_\theta, \nu_s) \nu_s^{-1} \nu_\theta}{m H(\nu_\theta, \omega_s) + (1 - m) H(\nu_\theta, \kappa_s) + \lambda (A_N^{-1} A) H(\nu_\theta, \nu_s)} s.$$

It follows that $\text{Cov}(P_1 - P_0, \theta - P_2) \to 0$. Further, because $\text{Cov}(P_2 - P_1, \theta - P_2) \to 0$, $\overline{\text{MOM}} \to \text{Cov}(P_1 - P_0, P_2 - P_1) / 2$. We can use a similar analysis as in the proof of Corollary 3 to show that under certain parameter values, $\overline{\text{MOM}} > 0$.

(ii) Suppose that the public information t reaches investors at Date 1. The above analysis for Date 2 still applies. Thus, P_2 takes the form as in Eq. (39). Note that at Date 1, investors know s and t. We can use a similar analysis as above to show that the Date-1 price P_1 will, instead, take a linear form of s and t; the Date-0 price is still $P_0 = 0$.

Now consider different levels of ν_ξ. If $\nu_\xi \to \infty$, then it is straightforward to show that investors will ignore the public information t. The equilibrium is identical to that described in the proof of Proposition 4. Momentum and reversals arise under certain parameter values.
If \(\nu_\xi \to 0 \), then it is straightforward to show that investors will condition their trades only on \(t \to \theta \), and \(P_1 = P_2 = \theta \). In this case, all returns equal zero so that momentum and reversals do not obtain. □

Proof of Proposition 6: Eq. (39) in the proof of Proposition 5 indicates that \(P_2 \) is a weighted average of \(\kappa^{-1} \nu_\theta \Gamma_\eta \), \(\omega^{-1} \nu_\theta \Gamma_\ell \), and \(\nu^{-1} \nu_\theta \Gamma \). Thus, for \(\text{Cov}(\theta - P_2, t) > 0 \), it suffices to show that

\[
\text{Cov}(\theta - \kappa^{-1} \nu_\theta \Gamma_\eta, t) > 0, \quad \text{Cov}(\theta - \omega^{-1} \nu_\theta \Gamma_\ell, t) > 0, \quad \text{and Cov}(\theta - \nu^{-1} \nu_\theta \Gamma, t) = 0.
\]

It follows from the proof of Proposition 5 that

\[
\text{Cov}(\theta - \kappa^{-1} \nu_\theta \Gamma_\eta, t) = \text{Cov}(\theta - \nu_\theta \frac{\gamma \nu^{-1} + t (\kappa \nu \xi)^{-1}}{\nu_\theta + (\nu^{-1} + \kappa \nu \xi)^{-1}}, t) = \nu_\theta \frac{\nu_\theta \nu^{-1} + (\nu_\theta + \nu_\xi)(\kappa \nu \xi)^{-1}}{\nu^{-1} + (\kappa \nu \xi)^{-1}}
\]

where the inequality follows from \(\kappa > 1 \). We can use a similar analysis to show that \(\text{Cov}(\theta - \omega^{-1} \nu_\theta \Gamma_\ell, t) > 0 \), and \(\text{Cov}(\theta - \nu^{-1} \nu_\theta \Gamma, t) = 0 \). □

Proof of Proposition 7: We use two steps to prove this proposition.

Step 1: We solve for the equilibrium prices using backward induction.

Date 2: Note that at this date, \(\gamma \) is a sufficient statistic for \(\theta \). We can use the same derivation as for the proofs of Propositions 1 and 4 (Date 2) to show that the price at this date is given by \(P_2 = \alpha_2 \gamma \), where \(\alpha_2 \) is given in Eq. (32).

Like Eq. (27), we can show that the expected utilities of the \(i \)'th late-informed investor at Date 2 can be expressed as:

\[
E_i[U_i(W_{i3}) \mid \gamma] = -\exp \left[-AW_{i2} - 0.5H(\nu_\theta, \nu_\gamma)(\frac{\nu_\theta}{\omega_\gamma} - \alpha_2)^2 \gamma^2 \right]. \tag{40}
\]

Date 1: We can use the same derivation as for the proof of Proposition 1 (Date 1) to show that the \(i \)'th early-informed investor’s demand can be expressed as

\[
X_{\eta 1}(s, P_1) = -\frac{P_1}{A \alpha_2^2} \left[H(\nu_\gamma, \omega_s) + H(\nu_\theta, \nu_\gamma)(\frac{\nu_\theta}{\nu_\gamma} - \alpha_2)^2 \right] + \frac{1}{A \alpha_2} H(\nu_\gamma, \omega_s) \frac{\nu_\gamma}{\omega_s} s. \tag{41}
\]
Conjecture that the price at Date 1 takes a linear form given by

$$P_1 = \alpha_\tau \tau,$$ \hspace{1cm} (42)

where $\tau = s - \delta z$, and α_τ and δ are constant parameters to be determined. The i'th late-informed investor learns τ from the price P_1, and believes that

$$\gamma|\tau \sim N \left(\frac{\omega_\gamma}{\kappa_\tau}, H(\omega_\gamma, \kappa_\tau)^{-1} \right),$$

where $\kappa_\tau = \kappa_s + \delta^2 \nu_s$, and $H(\omega_\gamma, \kappa_\tau)^{-1} = \omega_\gamma (1 - \omega_\gamma / \kappa_\tau)$. Consider the investor’s expected utility in Eq. (40) and write the wealth at Date 2 as $W_{t2} = W_{t1} + X_{t1}(P_2 - P_1)$, where the price $P_2 = \alpha_2 \gamma$ is as derived above. It follows that the expected utility at Date 1 can be expressed as

$$E_t[U_t(W_{t3})|\tau] = E_t\left[-\exp \left[-AW_{t1} - AX_{t1}(\alpha_2 \gamma - P_1) - 0.5H(\nu_\theta, \omega_\gamma) \left(\frac{\nu_\theta}{\omega_\gamma} - \alpha_2 \right)^2 \right] |\tau \right]$$

$$\propto -\exp \left[-AW_{t1} - AX_{t1}(-P_1) + 0.5 \frac{(AX_{t1}\alpha_2 - H(\omega_\gamma, \kappa_\tau)\kappa_\tau^{-1}\omega_\gamma \tau)^2}{H(\omega_\gamma, \kappa_\tau) + H(\nu_\theta, \omega_\gamma)(\omega_\gamma^{-1}\nu_\theta - \alpha_2)^2} \right]$$

$$- 0.5H(\omega_\gamma, \kappa_\tau) \left(\frac{\omega_\gamma}{\kappa_\tau} \right)^2.$$

Here, we used the fact in Footnote 24. The f.o.c. w.r.t. X_{t1} implies that the demand can be expressed as

$$X_{t1}(\tau, P_1) = \frac{-P_1}{A\alpha_2^2} \left[H(\omega_\gamma, \kappa_\tau) + H(\nu_\theta, \omega_\gamma) \left(\frac{\nu_\theta}{\omega_\gamma} - \alpha_2 \right)^2 \right] + \frac{1}{A\alpha_2} H(\omega_\gamma, \kappa_\tau) \left(\frac{\omega_\gamma}{\kappa_\tau} \right).$$ \hspace{1cm} (43)

We can use a similar derivation to show that the i'th uninformed investor’s demand (his belief is indicated by ν_τ and γ) can be expressed as

$$X_{N1}(\tau, P_1) = \frac{-P_1}{A_N\alpha_2^2} \left[H(\nu_\gamma, \nu_\tau) + H(\nu_\theta, \nu_\gamma) \left(\frac{\nu_\theta}{\nu_\gamma} - \alpha_2 \right)^2 \right] + \frac{1}{A_N\alpha_2} H(\nu_\gamma, \nu_\tau) \left(\frac{\nu_\gamma}{\nu_\tau} \right).$$ \hspace{1cm} (44)

From Eqs. (41), (43), and (44), the market clearing condition

$$z = mX_{n1}(s, P_1) + (1 - m)X_{t1}(\tau, P_1) + \lambda X_{N1}(\tau, P_1)$$

implies that the parameters in the price P_1 in Eq. (42), δ and α_τ, are given by

$$\delta = \frac{A\alpha_2(\omega_s - \nu_\gamma)}{m},$$ \hspace{1cm} (45)

$$\alpha_\tau = \frac{\alpha_2}{\psi} \left[mH(\nu_\gamma, \omega_s) \left(\frac{\nu_\gamma}{\omega_s} \right) + (1 - m)H(\omega_\gamma, \kappa_\tau) \left(\frac{\omega_\gamma}{\kappa_\tau} \right) + \lambda (A/A_N) H(\nu_\gamma, \nu_\tau) \left(\frac{\nu_\gamma}{\nu_\tau} \right) \right].$$ \hspace{1cm} (46)
where \(\kappa = \kappa_s + \delta^2 \nu_z \), \(\nu = \nu_s + \delta^2 \nu_z \), and

\[
\psi_\eta = m \left[H(\nu, \omega) + H(\nu, \nu) \left(\frac{\nu}{\omega} - \alpha_2 \right)^2 \right],
\]

\[
\psi_\ell = (1 - m) \left[H(\omega, \kappa) + H(\nu, \omega) \left(\frac{\nu}{\omega} - \alpha_2 \right)^2 \right],
\]

\[
\psi_\lambda = \lambda(A/A_N) \left[H(\nu, \nu) + H(\nu, \nu) \left(\frac{\nu}{\omega} - \alpha_2 \right)^2 \right],
\]

with

\[
\Psi = \psi_\eta + \psi_\ell + \psi_\lambda.
\]

Date 0: We can use a similar derivation as for the proof of Proposition 1 to show that \(P_0 = 0 \).

Step 2: If \(\nu_z \to \infty \), then it follows from the above analysis that \(\kappa = \kappa_s + \delta^2 \nu_z \to \infty \), \(\nu = \nu_s + \delta^2 \nu_z \to \infty \). Further, \(\alpha_2, \alpha > 0 \) are bounded from above. It follows that

\[
\text{Cov}(P_1 - P_0, P_2 - P_1) = \text{Cov}(\alpha_2(s - \delta z), \alpha_2 \gamma - \alpha_2(s - \delta z)) = \text{Cov}(\alpha_2 s, \alpha_2 \gamma - \alpha_2 s) - \alpha_2^2 \delta^2 \nu_z \to -\infty,
\]

where the \(\to \) obtains because \(\nu_z \to \infty \) and other items are bounded;

\[
\text{Cov}(P_2 - P_1, \theta - P_2) = \text{Cov}(\alpha_2 \gamma - \alpha_2(s - \delta z), \theta - \alpha_2 \gamma) = \text{Cov}(\alpha_2 \gamma - \alpha_2 s, \theta - \alpha_2 \gamma) = (\alpha_2 - \alpha_2)(\nu - \alpha_2 \nu)
\]

is bounded. This proposition obtains immediately. \(\square \)

Proof of Proposition 8: Note that \(\alpha_2 \) and \(\delta \) given in Eqs. (32) and (45) do not depend on \(\kappa \) and thus \(\kappa_s \) and \(\kappa_e \). It is straightforward to show after taking derivatives that \(\alpha_2 \) given in Eq. (46) decreases in \(\kappa \) and therefore \(\kappa_s \) and \(\kappa_e \). This proposition obtains immediately from \(dP_1(V)/ds = \alpha_2 \) and \(dP_2(V)/d\gamma = \alpha_2 \) (see Eq. (14)). \(\square \)

Proof of Proposition 9: We can compute from Eqs. (15)-(17) that

\[
\text{FSPV}_1 = \alpha_2^2 \nu_,
\]

\[
\text{FSPV}_2 = \alpha_2^2 \text{Var}(\gamma|\tau) = \alpha_2^2 \nu \left(1 - \frac{\nu}{\nu} \right), \text{ and}
\]

\[
\text{FSPV}_3 = \text{Var}(\theta|\gamma) = \nu \left(1 - \frac{\nu}{\nu} \right).
\]
It follows from the proof of Proposition 8 that α_2, δ, and $\nu_\tau = \nu_s + \delta^2 \nu_\varepsilon$ do not depend on κ_τ and thus κ_s and κ_ε, and that α_{τ} decreases in κ_τ and therefore κ_s and κ_ε. This proposition obtains immediately. □

Proof of Proposition 10: It follows from the proof of Proposition 8 that δ does not depend on κ_τ and thus κ_s and κ_ε, and α_{τ} decreases in κ_τ and therefore κ_s and κ_ε. This proposition immediately obtains. □

Proof of Proposition 11: (i) and (ii) The difference between α_{τ} and ν_ϑ/ν_τ is a consequence of biased beliefs at Date 1. To see this, let $\omega_{\mu} \rightarrow \nu_\mu$ (so that there is no biased belief about the Date-2 information; thus, $\omega_\gamma \rightarrow \nu_\gamma$), and $\nu_z \rightarrow 0$ (so that the price P_1 fully reveals s; thus, $\nu_\tau = \nu_s$ and $\kappa_\tau = \kappa_s$). It follows from the proof of Proposition 8 that $\alpha_2 = \nu_\vartheta/\nu_\gamma$ and

$$
\alpha_{\tau} = \frac{\nu_\vartheta}{\nu_\gamma} \times \frac{mH(\nu_\gamma, \omega_s)\omega_s^{-1}\nu_\gamma + (1 - m)H(\nu_\gamma, \kappa_s)\kappa_s^{-1}\nu_\gamma + \lambda(A_N^{-1}A)H(\nu_\gamma, \nu_s)\nu_s^{-1}\nu_\gamma}{mH(\nu_\gamma, \omega_s) + (1 - m)H(\nu_\gamma, \kappa_s) + \lambda(A_N^{-1}A)H(\nu_\gamma, \nu_s)}.
$$

Note that $\omega_s < \nu_s < \kappa_s$. If late-informed investors are not very skeptical about the quality of the early Date-1 information s (i.e., $\kappa_\varepsilon \rightarrow \nu_\varepsilon$ and therefore $\kappa_s \rightarrow \nu_s$), then $\alpha_{\tau} > \nu_\vartheta/\nu_\tau = \nu_\vartheta/\nu_s$. If late-informed investors are very skeptical about the quality of the early Date-1 information s (i.e., $\kappa_\varepsilon \gg \nu_\varepsilon$ and therefore $\kappa_s \gg \nu_s$), then it can be that $\alpha_{\tau} < \nu_\vartheta/\nu_\tau = \nu_\vartheta/\nu_s$.

From the proof of Proposition 8, α_{τ} decreases in κ_τ and therefore κ_s. Write Eq. (18) as

$$
\text{MSE}_1 = \sum_{k=1}^{K} \left[\beta_k^2 \text{Var}(f_k - \frac{\nu_f}{\nu_{s,k}}s_{k+j+k}) \right] + \text{Var} \left(\theta - \frac{\nu_\vartheta}{\nu_\tau} \right) + \left(\alpha_{\tau} - \frac{\nu_\vartheta}{\nu_\tau} \right)^2 \nu_\tau.
$$

It follows that

$$
\frac{d\text{MSE}_1}{d\kappa_s} \propto \left(\alpha_{\tau} - \frac{\nu_\vartheta}{\nu_\tau} \right) \frac{d\alpha_{\tau}}{d\kappa_s} \propto - \left(\alpha_{\tau} - \frac{\nu_\vartheta}{\nu_\tau} \right).
$$

If $\alpha_{\tau} - \nu_\vartheta/\nu_\tau$ is positive (negative), then MSE$_1$ decreases (increases) in κ_s and thus κ_ε.

From the proof of Proposition 8, α_2 does not depend on κ_ε and thus κ_s. Part (iii) of this proposition obtains from the expression of MSE$_2$ in Eq. (19). □

Proof of Eqs. (20)-(21): Conjecture that the prices take the forms in Eqs. (20)-(21). In what follows, we verify these conjectures and solve for the pricing parameters. We use backward induction.

Date 2: First, we fix δ and solve for the Date-2 price. At Date 2, the i'th early-informed investor learns γ (from P_2) and θ_2, and trades conditional on the information set, $I_{\eta_2} =$
\{\gamma, \theta_2\}. The investor believes that \(\theta\) and \(I_{\eta 2}\) follow a multi-variate normal distribution with a mean vector of zero and variance-covariance matrix

\[
\begin{pmatrix}
\nu_\theta & \nu_\theta & \Delta \nu_\theta \\
\nu_\theta & \nu_\gamma & \Delta \nu_\theta \\
\Delta \nu_\theta & \Delta \nu_\theta & \Delta \nu_\theta
\end{pmatrix},
\]

Write the wealth at Date 3 as \(W_{i3} = W_{i2} + X_{i2}(\theta - P_2)\). The investor chooses \(X_{i2}\) to maximize

\[
E_\eta [U_\eta (W_{i3}) | I_{\eta 2}] = E_\eta [-\exp [-AW_{i2} - AX_{i2}(\theta - P_2)] | I_{\eta 2}] + 0.5A^2X_{i2}^2 \text{Var}_\eta (\theta | I_{\eta 2}) \right]. (47)
\]

The f.o.c. w.r.t. \(X_{i2}\) implies that the demand can be expressed as:

\[
X_{\eta 2} = \frac{E_\eta (\theta | I_{\eta 2}) - P_2}{A \text{Var}_\eta (\theta | I_{\eta 2})} = \frac{c_\eta \gamma + a_\eta \theta_2 - P_2}{A \nu_{\eta 2}}, (48)
\]

where \(c_\eta, a_\eta,\) and \(\nu_{\eta 2}\) are constant parameters determined by the above variance-covariance matrix based on early-informed investors’ beliefs.

At Date 2, a late-informed investor learns \(I_{\ell 2} \equiv \{\gamma, \theta_2\}\). From the investor’s standpoint, \(\theta\) and \(I_{\ell 2}\) follow a multi-variate normal distribution with zero mean and variance-covariance matrix (note that from the investor’s standpoint \(\gamma = \theta_1 + \mu\))

\[
\begin{pmatrix}
\nu_\theta & (1 - \Delta)\nu_\theta & \Delta \nu_\theta \\
(1 - \Delta)\nu_\theta & (1 - \Delta)\nu_\theta + \omega_\mu & 0 \\
\Delta \nu_\theta & 0 & \Delta \nu_\theta
\end{pmatrix}.
\]

From a similar analysis as above, the optimal demand can be expressed as:

\[
X_{\ell 2} = \frac{E_\ell (\theta | I_{\ell 2}) - P_2}{A \text{Var}_\ell (\theta | I_{\ell 2})} = \frac{c_\ell \gamma + a_\ell \theta_2 - P_2}{A \nu_{\ell 2}},
\]

where \(c_\ell, a_\ell,\) and \(\nu_{\ell 2}\) are constant parameters determined by the above variance-covariance matrix based on late-informed investors’ beliefs.

At Date 2, an uninformed rational investor learns \(\gamma + a\theta_2\) and \(\tau = s - \delta z\), and trades conditional on the information set, \(I_{N 2} \equiv \{\gamma + a\theta_2, \tau\}\). In this case, \(\theta\) and \(I_{N 2}\) follow a multi-variate normal distribution with a mean vector of zero and variance-covariance matrix

\[
\begin{pmatrix}
\nu_\theta & \nu_\theta + a \Delta \nu_\theta \\
\nu_\theta + a \Delta \nu_\theta & (1 - \Delta)\nu_\theta + (1 + a)^2 \Delta \nu_\theta + \nu_\mu \\
\nu_\gamma + a \Delta \nu_\theta & \nu_\gamma + a \Delta \nu_\theta
\end{pmatrix}.
\]
The optimal demand can be expressed as:

\[X_{N2} = \frac{E_N(\theta | I_{N2}) - P_2}{A_N \text{Var}_N(\theta | I_{N2})} = \frac{c_N(\gamma + a\theta_2) + d_N \tau - P_2}{A \nu_{N2}}, \]

where \(c_N, d_N, \) and \(\nu_{N2} \) are constants again determined by the late-informed investors’ beliefs about variances and covariances.

The market clearing condition, \(0 = mX_{\eta 2} + (1 - m)X_{\ell 2} + \lambda X_{N2} \), implies that \(P_2 \) takes the form in Eq. (21). Particularly, the parameters

\[
\begin{align*}
a &= \frac{m\nu_{\eta 2}^{-1} a_\eta + (1 - m)\nu_{\ell 2}^{-1} a_\ell}{m\nu_{\eta 2}^{-1} c_\eta + (1 - m)\nu_{\ell 2}^{-1} c_\ell}, \\
C &= \frac{m\nu_{\eta 2}^{-1} c_\eta + (1 - m)\nu_{\ell 2}^{-1} c_\ell + (\lambda A_N^{-1} A)\nu_{N2}^{-1} c_N}{m\nu_{\eta 2}^{-1} + (1 - m)\nu_{\ell 2}^{-1} + (\lambda A_N^{-1} A)\nu_{N2}^{-1}}, \text{ and} \\
D &= \frac{(\lambda A_N^{-1} A)\nu_{N2}^{-1} d_N}{m\nu_{\eta 2}^{-1} + (1 - m)\nu_{\ell 2}^{-1} + (\lambda A_N^{-1} A)\nu_{N2}^{-1}}.
\end{align*}
\]

Date 1: Write an early-informed investor’s wealth at Date 2 as \(W_{i2} = W_{i1} + X_{i1}(P_2 - P_1) \). It follows from Eqs. (47) and (48) that the Date-2 expected utility can be expressed as

\[
E_\eta[U_\eta(W_{i3}) | I_{\eta 2}] = -\exp \left[-AW_{i1} - AX_{i1}(P_2 - P_1) - 0.5\nu_{\eta 2}^{-1}(c_\eta \gamma + a_\eta \theta_2 - P_2)^2 \right] = -\exp[-AW_{i1} - AX_{i1}(D\tau + F^T Y - P_1) - 0.5\nu_{\eta 2}^{-1}(R_\eta^T Y - D\tau)^2],
\]

where

\[
Y = \begin{pmatrix} \gamma \\ \theta_2 \end{pmatrix}, \quad F = \begin{pmatrix} C \\ Ca \end{pmatrix}, \text{ and } R_\eta = \begin{pmatrix} c_\eta \\ a_\eta \end{pmatrix} - F.
\]

The investor learns \(s \) at Date 1, and believes that \(Y \) and \(s \) follow a multi-variate normal distribution with mean zero and variance-covariance matrix

\[
\begin{pmatrix} \nu_\gamma & \Delta \nu_\theta & \nu_\gamma \\ \Delta \nu_\theta & \Delta \nu_\theta & \Delta \nu_\theta \\ \nu_\gamma & \Delta \nu_\theta & \omega_s \end{pmatrix};
\]

and thus, \(Y | s \sim N(\nu_{\eta 1}, \nu_{\eta 1}) \), where \(\nu_\eta \) and \(\nu_{\eta 1} \) are constant parameters that depend on the above variance-covariance matrix. It follows that the investor needs to choose \(X_{i1} \) to maximize

\[
E_\eta[U_\eta(W_{i3}) | s] = E_\eta[E_\eta[U_\eta(W_{i3}) | I_{\eta 2}] | s] \propto -\exp\left[-AW_{i1} - AX_{i1}(D\tau - P_1) + 0.5(AX_{i1}F - \nu_{\eta 2}^{-1} R_\eta D\tau - \nu_{\eta 1}^{-1} \nu_{\eta s})^T \right. \\
\left. (\nu_{\eta 2}^{-1} R_\eta R_\eta^T + \nu_{\eta 1}^{-1})^{-1}(AX_{i1}F - \nu_{\eta 2}^{-1} R_\eta D\tau - \nu_{\eta 1}^{-1} \nu_{\eta s}) \right].
\]

46
The f.o.c. w.r.t. X_{t_1} implies that the optimal demand is given by

$$X_{t_1} = [AF^T(\nu_{\ell_2} R_\ell R_\ell^T + \nu_{\ell_1}^{-1})^{-1} F]^{-1}$$

$$\left[D\tau - P_1 + F^T(\nu_{\ell_2} R_\ell R_\ell^T + \nu_{\ell_1}^{-1})^{-1}(\nu_{\ell_2}^{-1} R_\ell D\tau + \nu_{\ell_1}^{-1} \iota_{\ell}\tau)\right]$$

$$= \pi_{t_\ell}\tau - \pi_{t_\ell P} P_1,$$

where π_{t_ℓ}, $\pi_{t_\ell P}$, and $\pi_{\ell P}$ are constants.

Consider a late-informed investor. We can use a similar analysis as above to show that the Date-2 expected utility can be expressed as:

$$E_{\ell_2} [U(W_{i3})|I_{\ell_2}] = -\exp\left[-AW_{i1} - AX_{i1}(D\tau - P_1) - 0.5\nu_{\ell_2}^{-1}(c_{\ell_}\gamma + a_{\ell}\theta_2 - P_2)^2\right]$$

$$= -\exp\left[-AW_{i1} - AX_{i1}(D\tau + F^T Y - P_1) - 0.5\nu_{\ell_2}^{-1}(R_{\ell_1}^T Y - D\tau)^2\right],$$

where

$$R_{\ell_2} = \begin{pmatrix} c_{\ell_2} \\ a_{\ell_2} \end{pmatrix} - F.$$
with $\pi_{\ell \tau}$ and $\pi_{\ell P}$ being constants that depend on exogenous parameters.

Consider a rational uninformed investor. We can use a similar analysis as above to show that the Date-2 expected utility can be expressed as:

$$E_N [U_N(W_{i3})|I_{N2}]$$

$$= -\exp \left[-A_N W_{i1} - A_N X_{i1} (P_2 - P_1) - 0.5 \nu_{N2}^{-1}(c_N(\gamma + a\theta_2) + d_N \tau - P_2)^2 \right]$$

$$= -\exp \left[-A_N W_{i1} - A_N X_{i1} (D\tau + F^T Y - P_1) - 0.5 \nu_{N2}^{-1}(R_N^T Y - (D - d_N)\tau)^2 \right],$$

where

$$R_N = \left(\begin{array}{cc} c_N & \nu_N \\ c_N a & \nu_N \end{array} \right) - F.$$

The investor learns $\tau = s - \delta z$ from P_1 at Date 1, and believes that Y and τ follow a multi-variate normal distribution with mean zeros and variance-covariance matrix

$$\begin{pmatrix} \nu_\gamma & \Delta \nu_\theta & \nu_\gamma \\ \Delta \nu_\theta & \Delta \nu_\theta & \Delta \nu_\theta \\ \nu_\gamma & \Delta \nu_\theta & \nu_\tau \end{pmatrix},$$

and thus, $Y|\tau \sim N(\nu_{N1}|\tau, \nu_{N1})$, where ν_{N1} and ν_{N1} are constant parameters which depend on the above variance-covariance matrix. It follows that the investor needs to choose X_{i1} to maximize

$$E_N [U_N(W_{i3})|\tau] = E_N [E_N [U_N(W_{i3})|I_{N2}]|\tau]$$

$$\propto -\exp \left[-A_N W_{i1} - A_N X_{i1} (D\tau - P_1) + 0.5 (A_N X_{i1} F - \nu_{N2}^{-1} R_N (D - d_N) \tau - \nu_{N1}^{-1} \nu_{N1} \nu_{N1})^T \right.$$

$$\left. (\nu_{N2}^{-1} R_N^T + \nu_{N1}^{-1})^{-1} (A_N X_{i1} F - \nu_{N2}^{-1} R_N (D - d_N) \tau - \nu_{N1}^{-1} \nu_{N1} \nu_{N1}) \right].$$

The f.o.c. w.r.t. X_{i1} implies that the optimal demand is given by

$$X_{N1} = \left[A_N F^T (\nu_{N2}^{-1} R_N R_N^T + \nu_{N1}^{-1})^{-1} \right]^{-1}$$

$$\left[D\tau - P_1 + F^T (\nu_{N2}^{-1} R_N R_N^T + \nu_{N1}^{-1})^{-1} (\nu_{N2}^{-1} R_N (D - d_N) \tau + \nu_{N1}^{-1} \nu_{N1} \nu_{N1}) \right]$$

$$= \pi_{N\tau} \tau - \pi_{NP} P_1,$$

where $\pi_{N\tau}$ and π_{NP} are again constants.

The market clearing condition, $z = mX_{i1} + (1-m)X_{i1} + \lambda X_{N1}$, implies that P_1 takes the form in Eq. (20). Particularly, the parameters

$$B = \frac{m(\pi_{\eta s} + \pi_{\eta \tau}) + (1-m)\pi_{\ell \tau} + \lambda \pi_{N\tau}}{m \pi_{\eta P} + (1-m)\pi_{\ell P} + \lambda \pi_{NP}}.$$
and

\[\delta = \frac{1}{m \pi_{qs}} \] \hspace{1cm} (49)

The right hand side of Eq. (49) is also a function of \(\delta \); therefore, we can use Eq. (49) to solve for \(\delta \) numerically. Using \(\delta \) and the above derivation, we can solve for the other parameters in Eqs. (20) and (21).

Date 0: We can use a similar derivation as for the proof of Proposition 1 to show that \(P_0 = 0 \).

\[\square \]
References

George, T., C. Hwang, and Y. Li (2015), “Anchoring, the 52-week high and post earnings announcement drift,” *working paper, University of Houston*.

Figure 1: Long-Term Reversals
This graph plots the long-run reversal parameter $\text{Cov}(P_1 - P_0, \theta - P_2)$ as functions of the parameters representing late-informed investors’ skepticism about the quality of the early Date-1 information (κ_e), and overestimation of the quality of their own information (ω_μ). We assume the parameter values $m = 0.1$, $A = 1$, $\nu_\theta = 1$, $\nu_\mu = 1$, and $\nu_e = 1$. We let $\omega_e = \nu_e$ so that early-informed investors have rational beliefs about the quality of their information.
Figure 2: Short-Run Momentum and Reversals
This graph plots the momentum parameter \overline{MOM} as functions of the parameters representing late-informed investors’ skepticism about the quality of the early Date-1 information (κ_e), and overestimation of the quality of their own information (ω_μ). We assume the parameter values $m = 0.1$, $A = 1$, $\nu_\theta = 1$, $\nu_\mu = 1$, and $\nu_e = 1$. We let $\omega_e = \nu_e$ so that early-informed investors have rational beliefs about the quality of their information.
Figure 3: Skepticism and Momentum

This graph plots the momentum parameter MOM as a function of late-informed investors’ skepticism (κ_ϵ). We assume the other parameter values $m = 0.05$, $A = 1$, $\nu_\theta = 1$, $\nu_\mu = 1$, $\nu_\epsilon = 1$, $\omega_\epsilon = 0.5$, and $\omega_\mu = 1$.
Figure 4: Rational Risk-Averse Market Makers and Momentum
This graph plots the momentum parameter \overline{MOM} as a function of the risk-bearing capacity of rational and risk-averse market makers (λ/A_N). We assume the parameter values $m = 0.05$, $A = 1$, $\nu = 1$, $\nu_\mu = 1$, $\nu_\epsilon = 1$, $\omega_\epsilon = 0.9$, $\omega_\mu = 1$, and $\kappa_\epsilon = 11$.
Figure 5: Liquidity and Overconfidence
This graph plots the Date-1 illiquidity measure $\alpha_\tau \delta$ as functions of the parameters representing late-informed investors' skepticism about the quality of the early Date-1 information (κ_ϵ), and overestimation of the quality of their own information (ω_μ). We assume the parameter values $m = 0.1, A = 1, \nu_\theta = 1, \nu_\mu = 1, \nu_\epsilon = 1, \lambda = 0.1, A_N = 1$, and $\nu_z = 0.01$. We let $\omega_\epsilon = \nu_\epsilon$ so that early-informed investors have rational beliefs about the quality of their information.
Figure 6: Short-Run Momentum and Overconfidence

This graph plots the momentum parameter \overline{MOM} as functions of the parameters representing late-informed investors’ skepticism about the quality of the early Date-1 information (κ_e), and overestimation of the quality of their own information (ω_{μ}). We assume the parameter values $m = 0.1$, $A = 1$, $\nu_\theta = 1$, $\nu_\mu = 1$, $\nu_\epsilon = 1$, $\lambda = 0.1$, $A_N = 1$, and $\nu_z = 0.01$. We let $\omega_\epsilon = \nu_\epsilon$ so early-informed investors have rational beliefs about the quality of their information.
Figure 7: Liquidity, Short-Run Momentum, and Overconfidence

This graph plots the momentum parameter MOM and the Date-1 illiquidity measure, $\alpha_\tau \delta$ (denoted as $ILLIQ$), as functions of the summary measure of late-informed investors’ overconfidence, $OC \equiv (\kappa_\epsilon - \nu_\epsilon) + (\nu_\mu - \omega_\mu)$. We assume that $\nu_\mu - \omega_\mu = 0.2(\kappa_\epsilon - \nu_\epsilon)$. To generate the values of OC on the horizontal axis, we increase κ_ϵ starting from unity, while simultaneously changing ω_μ. The other parameter values are $m = 0.1$, $A = 1$, $\nu_\theta = 1$, $\nu_\mu = 1$, $\nu_\epsilon = 1$, $\lambda = 0.1$, $A_N = 1$, and $\nu_\delta = 0.01$. We let $\omega_\epsilon = \nu_\epsilon$ so early-informed investors have rational beliefs about the quality of their information.
Figure 8: Skepticism About Fundamentals and Long-Term Reversals
This graph plots the long-run reversal parameter \(\text{Cov}(P_1 - P_0, \theta - P_2) \) as functions of the quality of the early Date-1 information \((\nu_\epsilon)\), and the quality of the late Date-2 information \((\nu_\mu)\). We assume the parameter values of \(m = 0.1, \lambda = 0.1, A = 1, A_N = 1, \nu_\theta = 1, \nu_z = 0.01, \Delta = 0.5, \omega_\epsilon = \nu_\epsilon, \omega_\mu = \nu_\mu, \) and \(\kappa_\epsilon = \nu_\epsilon \). Late-informed investors are skeptical in that they believe the early Date-1 signal contains only limited fundamental information (i.e., \(s = \theta_1 + \mu + \epsilon \) and \(\gamma = \theta_1 + \mu \)).
Figure 9: Skepticism About Fundamentals and Short-Term Momentum
This graph plots the short-term momentum parameter MOM as functions of the quality of the early Date-1 information (ν_ϵ), and the quality of the late Date-2 information (ν_μ). We assume the parameter values of $m = 0.1$, $\lambda = 0.1$, $A = 1$, $A_N = 1$, $\nu_\theta = 1$, $\nu_\mu = 0.01$, $\Delta = 0.5$, $\omega_\epsilon = \nu_\epsilon$, $\omega_\mu = \nu_\mu$, and $\kappa_\epsilon = \nu_\epsilon$. Late-informed investors are skeptical in that they believe the early Date-1 signal contains only limited fundamental information (i.e., $s = \theta_1 + \mu + \epsilon$ and $\gamma = \theta_1 + \mu$).
Internet Appendix for
Stock Price Dynamics With Overconfident Investors
In this internet appendix, we extend the setting of the main paper as follows. Like in Section 5 of the main paper, both early- and late-informed investors overestimate the quality of their own information (indicated by the parameters ω_ϵ and ω_μ), but are skeptical about the quality of others’ information (indicated by κ_ϵ). Late-informed investors are also skeptical about the fundamental information structure; that is, from their stand point, $\gamma = \theta_1 + \mu$, and $s = \theta_1 + \mu + \epsilon$. The scale of this skepticism is indicated by the parameter Δ. A public information signal, $t = \theta + \xi$, arrives either at Date 1 or Date 2. Early- and late-informed investors are skeptical about the quality of t about θ in that they believe that the variance of ξ equals $\kappa \nu_\xi$ where $\kappa \geq 1$. There is still a mass λ of rational uninformed investors who serve as market makers. We further assume that both the Date-1 and Date-2 supplies of the risky security are random and are indicated by the normal random variables, z_1 and z_2, which are independent and have the same variance ν_z. We show in Section A.3 of this appendix that if the public information signal arrives at Date 2, the equilibrium prices take the following forms:

$$P_1 = B \tau_1$$

and

$$P_2 = C (\tau_2 + a \theta_2 + b s) + D \tau_1 + G t,$$

where $\tau_1 \equiv s - \delta_1 z_1$ and $\tau_2 \equiv \gamma - \delta_2 z_2$, and B, δ_1, C, δ_2, a, b, D, and G are constants to be determined, with $P_0 = 0$. If the public information signal arrives at Date 1, we can use a similar analysis to show that equilibrium prices take similar forms except that P_1 also depends linearly on the public signal t.

A.1 Momentum, Reversals, and Public Information

Note that θ, τ_2, θ_2, t, s, and τ_1 follow a multi-variate normal distribution with mean zero and variance-covariance matrix

$$
\begin{pmatrix}
\nu_\theta & \nu_\theta & \Delta \nu_\theta & \nu_\theta & \nu_\theta \\
\nu_\theta & \nu_\gamma + \delta_1^2 \nu_z & \Delta \nu_\theta & \nu_\theta & \nu_\gamma \\
\Delta \nu_\theta & \Delta \nu_\theta & \Delta \nu_\theta & \Delta \nu_\theta & \nu_\theta \\
\nu_\theta & \nu_\theta & \nu_\theta & \nu_\theta & \nu_\theta \\
\nu_\theta & \nu_\gamma & \nu_\gamma & \nu_\gamma & \nu_s \\
\nu_\theta & \nu_\gamma & \nu_\gamma & \nu_\gamma & \nu_s + \delta_1^2 \nu_z
\end{pmatrix}
$$

1
We can use Eqs. (A.1) and (A.2) to compute the long-run reversal parameter,

$$\text{Cov}(P_1 - P_0, \theta - P_2),$$

and the short-run momentum parameter,

$$\overline{\text{MOM}} = \frac{[\text{Cov}(P_1 - P_0, P_2 - P_1) + \text{Cov}(P_2 - P_1, \theta - P_2)]}{2}.$$

Intuitively, if the public signal is not very precise, then stock price patterns we demonstrated in Section 5 still prevail. We verify this intuition using the following example. Suppose that the public signal arrives at Date 2. Figures A.1 and A.2 plot the long-run reversal parameter, \(\text{Cov}(P_1 - P_0, \theta - P_2)\), and the short-term momentum parameter, \(\overline{\text{MOM}}\). The other parameter values are in the captions of the figures. Particularly, we assume that the public signal is sufficiently noisy (i.e., \(\nu = 10\)), and late- and early-informed investors are sufficiently skeptical about the quality of the public signal (i.e., \(\kappa = 2\)). This implies that investors put little weight on the public signal when choosing their portfolio. Consequently, the stock price patterns here are almost identical to Figures 8 and 9 when there is no public signal.

If the public signal is very precise, the proposition below replicates Proposition 5 of the main paper.

Proposition A.1

(i) Suppose that the public signal arrives at Date 2. If the signal is very precise, then long-run reversals go to zero but short-run momentum still prevails.

(ii) If the public signal arrives at Date 1, then, as the precision of the signal increases, both long-run reversals and short-run momentum go to zero.

We can also use Eqs. (A.1) and (A.2) to compute the post-public-announcement drift parameter

$$\text{Cov}(\theta - P_2, t).$$

Because we no longer have the closed-form solution for \(P_2\) and this drift parameter, we use numerical analysis. Continue to suppose that the public signal arrives at Date 2 (the analysis for the case when the public signal arrives at Date 1 is analogous). Figure A.3 plots \(\text{Cov}(\theta - P_2, t)\) as functions of the skepticism about public information quality (\(\kappa\)), and the
late informed’s skepticism about fundamentals (\(\Delta\)). Other parameters are presented in the caption of the figure. There are three notable observations. First, \(\text{Cov}(\theta - P_2, t)\) is positive if \(\Delta\) is sufficiently small. This is consistent with Proposition 6 in the main paper in which \(\Delta = 0\). Second, \(\text{Cov}(\theta - P_2, t)\) increases in \(\kappa\). Intuitively, as the informed traders are more skeptical about the quality of the public information (high \(\kappa\)), the price \(P_2\) underreacts more to the public information, which is then followed by a greater drift. Third, as \(\Delta\) increases, \(\text{Cov}(\theta - P_2, t)\) decreases and can become negative. The reason is that as the late informed becomes more skeptical about the fundamental of the information \(s\) and \(\gamma\) (high \(\Delta\)), at Date 2 they underreact more to the information \(\gamma\). This implies that they tend to overweight and overreact to the public information \(t\). Therefore, the drift, \(\text{Cov}(\theta - P_2, t)\), is mitigated and eventually becomes negative.

A.2 Liquidity and the Late-Informed

In this internet appendix, the supplies of the risky security at both Dates 1 and 2, \(z_1\) and \(z_2\), are random. From Eqs. (A.1) and (A.2), \(z_1\) affects the prices at both dates, \(P_1\) and \(P_2\), and \(z_2\) affects only \(P_2\). Thus, we compute illiquidity as the total price impact due to \(z_1\) and \(z_2\):

\[
\text{ILLIQ} \equiv - \left[d(P_1 + P_2) + dP_2 \right] = (B + D)\delta_1 + C\delta_2.
\]

Figure A.4 plots \(\text{ILLIQ}\) as functions of the parameters representing late-informed investors’ skepticism about the quality of the early Date-1 information (\(\kappa_s\)), and overestimation of the quality of their own information (\(\omega_\mu\)). Other parameters are presented in the caption of the figure. Consistent with Figure 5 of the main paper, as late-informed become more skeptical (i.e., as \(\kappa_s\) increases), liquidity is higher (i.e., \(\text{ILLIQ}\) decreases). But unlike in Figure 5, as late-informed investors overestimate the quality of their late information \(\gamma\) to a greater extent (i.e., as \(\omega_\mu\) decreases), liquidity is also higher. The reason is that here as late informed investors trade more aggressively at Date 2, this increases the Date-2 liquidity.

Figure A.5 verifies the main result of Figure 6 of the main paper: the momentum parameter, \(\overline{MOM}\), increases as late informed investors underestimate the quality of early information \(s\) to a greater extent (i.e., as \(\kappa_s\) increases). But unlike in Figure 6, \(\overline{MOM}\) can also increase as late informed investors overestimate the quality of their late information \(\gamma\).
to a greater extent (i.e., as ω_μ decreases). The reason is that here as late informed react more to the Date-2 information γ, this mitigates the “double-counting” effect (due to the skepticism about the fundamental) and the resulting reversals.

Figure A.6 plots the momentum parameter, \overline{MOM}, and the illiquidity measure, $ILLIQ$, as functions of a summary measure of late-informed investors’ overconfidence, $OC \equiv (\kappa_\epsilon - \nu_\epsilon) + (\nu_\mu - \omega_\mu)$. Like in Figure 7 of the main paper, we assume that $\nu_\mu - \omega_\mu = 0.2(\kappa_\epsilon - \nu_\epsilon)$ and vary κ_ϵ while simultaneously changing ω_μ. Other parameter values are presented in the caption of the figure. Consistent with Figure 7, increasing overconfidence promotes both momentum and liquidity.

Finally, we verify in the proposition below that like in Proposition 7 of the main paper, noise trades can reverse the short-run momentum effect.

Proposition A.2 If noise trades are sufficiently volatile (i.e., $\nu_z \to \infty$), then we obtain short-run reversals, i.e., $\overline{MOM} \to -\infty$.
A.3 Proofs

Proof of Eqs. (A.1) and (A.2): Conjecture that the equilibrium prices take the forms in Eqs. (A.1) and (A.2). In what follows, we verify these conjectures and solve for the parameters. We use backward induction.

Date 2: Fix δ_1, we solve for the Date-2 price. At Date 2, τ_1 (from P_1) and t are public knowledge. The i’th early-informed investor learns τ_2 from P_2, and conditions the trade on the information set, $I_{\eta_2} \equiv \{\tau_2, \theta_2, t, s\}$ (note that s dominates τ_1 as a signal of θ). The investor believes that θ and $I_{\eta_2} \equiv \{\tau_2, \theta_2, t, s\}$ follow a multi-variate normal distribution with mean zero and variance-covariance matrix

$$
\begin{pmatrix}
\nu_\theta & \nu_\theta & \Delta \nu_\theta & \nu_\theta & \nu_\theta \\
\nu_\theta & \nu_\theta + \delta^2_2 \nu_2 & \Delta \nu_\theta & \nu_\theta & \nu_\gamma \\
\Delta \nu_\theta & \Delta \nu_\theta & \Delta \nu_\theta & \Delta \nu_\theta & \Delta \nu_\theta \\
\nu_\theta & \nu_\theta & \nu_\theta + \kappa \nu_\xi & \nu_\theta & \nu_\theta \\
\nu_\theta & \nu_\gamma & \Delta \nu_\theta & \nu_\theta & \omega_s \\
\end{pmatrix}.
$$

Write the wealth at Date 3 as $W_3 = W_{i2} + X_{i2}(\theta - P_2)$. The investor needs to choose X_{i2} to maximize

$$
E_{\eta_2} [U_{\eta_2}(W_3) | I_{\eta_2}] = -\exp \left[-A W_{i2} - Ax_{i2}(\theta - P_2) \right] + 0.5A^2 X_{i2}^2 \text{Var}_{\eta_2}(\theta | I_{\eta_2}).
$$

The f.o.c. w.r.t. X_{i2} implies that the investor’s demand can be expressed as:

$$
E_{\eta} \left[-\exp \left[-A W_{i2} - Ax_{i2}(\theta - P_2) \right] | I_{\eta_2} \right] = \frac{E_{\eta_2} (\theta | I_{\eta_2}) - P_2}{A \text{Var}_{\eta}(\theta | I_{\eta_2})} = \frac{c_{\eta} \tau_2 + a_{\eta} \theta_2 + g_{\eta} t + b_{\eta} s - P_2}{A \nu_{\eta_2}},
$$

where $c_{\eta}, a_{\eta}, g_{\eta}, b_{\eta},$ and ν_{η_2} are constants.

At Date 2, a late-informed investor learns γ which dominates s as a signal of θ, and conditions the trade on the information set, $I_{\ell_2} \equiv \{\gamma, \theta_2, t\}$. The investor believes that θ and $I_{\ell_2} \equiv \{\gamma, \theta_2, t\}$ follow a multi-variate normal distribution with mean zero and variance-covariance matrix (note that from the investor’s standpoint $\gamma = \theta_1 + \mu$, and $s = \theta_1 + \mu + \epsilon$)

$$
\begin{pmatrix}
\nu_\theta & \Delta \nu_\theta & \nu_\theta & \nu_\theta \\
\Delta \nu_\theta & \Delta \nu_\theta + \omega_\mu & 0 & \Delta \nu_\theta \\
\Delta \nu_\theta & 0 & \Delta \nu_\theta & \Delta \nu_\theta \\
\nu_\theta & \Delta \nu_\theta & \Delta \nu_\theta & \nu_\theta + \kappa \nu_\xi \\
\end{pmatrix}.
$$
with $\Delta_1 \equiv 1 - \Delta$. From a similar analysis as above, the optimal demand can be expressed as:

$$X_{\ell 2} = \frac{E_\ell(\theta|I_{\ell 2}) - P_2}{A \text{Var}_\ell(\theta|I_{\ell 2})} = \frac{c_\ell \gamma + a_\ell \theta_2 + g_\ell t - P_2}{A \nu_{\ell 2}},$$

where c_ℓ, a_ℓ, g_ℓ, and $\nu_{\ell 2}$ are constants.

At Date 2, an uninformed rational investor learns τ_1 from P_1 and $\tau_2 + \theta_2 + bs$ from P_2, and conditions the trade on the information set, $I_{N2} \equiv \{\tau_2 + \theta_2 + bs, t, \tau_1\}$. The investor believes that θ and $I_{N2} \equiv \{\tau_2 + \theta_2 + bs, t, \tau_1\}$ follows a multi-variate normal distribution with mean zero and variance-covariance matrix

$$
\begin{pmatrix}
\nu_\theta & (1 + a \Delta + b) \nu_\theta & \nu_\theta \\
(1 + a \Delta + b) \nu_\theta & (1 + b \nu_\gamma + a^2 \Delta \nu_\theta + \nu_\gamma + a \Delta \nu_\theta + b \nu_s) \\
\nu_\theta & (1 + a \Delta + b) \nu_\theta & \nu_\theta \\
\nu_\theta & \nu_\gamma + a \Delta \nu_\theta + b \nu_s & \nu_\theta \\
\end{pmatrix}
$$

The investor’s optimal demand can be expressed as:

$$X_{N2} = \frac{E(\theta|I_{N2}) - P_2}{A \text{Var}(\theta|I_{N2})} = \frac{c_N(\tau_2 + \theta_2 + bs) + g_N t + d_N \tau_1 - P_2}{A \nu_{N2}},$$

where c_N, g_N, d_N, and ν_{N2} are constants.

The market clearing condition, $z_2 = mX_{\eta 2} + (1 - m)X_{\ell 2} + \lambda X_{N2}$, implies that P_2 takes the form in Eq. (A.2). Particularly, the parameters

$$
\delta_2 = \frac{A \nu_{\ell 2}}{(1 - m) c_\ell},
\delta_2 = \frac{A \nu_{\ell 2}}{(1 - m) c_\ell},
\delta_2 = \frac{A \nu_{\ell 2}}{(1 - m) c_\ell},
a = \frac{m \nu_{\nu_2}^{-1} a_\eta + (1 - m) \nu_{\nu_2}^{-1} a_\ell}{m \nu_{\nu_2}^{-1} c_\eta + (1 - m) \nu_{\nu_2}^{-1} c_\ell},
\delta_2 = \frac{A \nu_{\ell 2}}{(1 - m) c_\ell},
b = \frac{m \nu_{\nu_2}^{-1} b_\eta}{m \nu_{\nu_2}^{-1} c_\eta + (1 - m) \nu_{\nu_2}^{-1} c_\ell},
C = \frac{m \nu_{\nu_2}^{-1} c_\eta + (1 - m) \nu_{\nu_2}^{-1} c_\ell + (\lambda A_N^{-1} A) \nu_{\nu_2}^{-1} c_N}{m \nu_{\nu_2}^{-1} + (1 - m) \nu_{\nu_2}^{-1} + (\lambda A_N^{-1} A) \nu_{\nu_2}^{-1}},
\delta_2 = \frac{A \nu_{\ell 2}}{(1 - m) c_\ell},
D = \frac{(\lambda A_N^{-1} A) \nu_{N2}^{-1} d_N}{m \nu_{\nu_2}^{-1} + (1 - m) \nu_{\nu_2}^{-1} + (\lambda A_N^{-1} A) \nu_{\nu_2}^{-1}}, \
\delta_2 = \frac{A \nu_{\ell 2}}{(1 - m) c_\ell},
G = \frac{m \nu_{\nu_2}^{-1} g_\eta + (1 - m) \nu_{\nu_2}^{-1} g_\ell + (\lambda A_N^{-1} A) \nu_{\nu_2}^{-1} g_N}{m \nu_{\nu_2}^{-1} + (1 - m) \nu_{\nu_2}^{-1} + (\lambda A_N^{-1} A) \nu_{\nu_2}^{-1}}.
$$
Write an early-informed investor’s wealth at Date 2 as $W_{i2} = W_{i1} + X_{i1}(P_2 - P_1)$. It follows from Eqs. (A.3) and (A.4) that the Date-2 expected utility can be expressed as:

$$E_\eta [U_\eta(W_{i3})|I_{i2}]$$

$$= -\exp \left[-AW_{i1} - AX_{i1}(P_2 - P_1) - 0.5\nu_{\eta 2}^{-1}(c_\eta \tau_2 + a_\eta \theta_2 + g_\eta t + b_\eta s - P_2)^2 \right]$$

$$= -\exp \left[-AW_{i1} - AX_{i1}(Cbs + DT_1 + F_\eta^TY_\eta - P_1) - 0.5\nu_{\eta 2}^{-1}(R_\eta^TY_\eta - (Cbs + D\tau_1 - b_\eta s))^2 \right],$$

where

$$Y_\eta = \begin{pmatrix} \tau_2 \\ \theta_2 \\ t \end{pmatrix}, \quad F_\eta = \begin{pmatrix} C \\ Ca \\ G \end{pmatrix}, \quad R_\eta = \begin{pmatrix} c_\eta \\ a_\eta \\ y_\eta \end{pmatrix} - F_\eta.$$

At Date 1, the investor learns s, and believes that Y_η and s follow a multi-variate normal distribution with mean zero and variance-covariance matrix

$$
\begin{pmatrix}
\nu_\eta + \delta_2^2 \nu_\xi & \Delta \nu_\theta & \nu_\theta \\
\Delta \nu_\theta & \Delta \nu_\theta & \nu_\eta \\
\nu_\theta & \nu_\theta + \kappa \nu_\xi & \nu_\eta \\
\nu_\eta & \Delta \nu_\eta & \omega_s
\end{pmatrix},
$$

and thus, $Y_\eta|s \sim N(\nu_\eta s, \nu_{\eta 1})$, where ν_η and $\nu_{\eta 1}$ are constants. It follows that at Date 1, the investor needs to choose X_{i1} to maximize (here and in what follows, we use the fact in Footnote 24 in the main paper to take the expectation)

$$E_\eta [U_\eta(W_{i3})|s] = E_\eta [E_\eta [U_\eta(W_{i3})|I_{i2}] | s]$$

$$= -\exp \left[-AW_{i1} - AX_{i1}(Cbs + D\tau_1 - P_1) + 0.5 \left(AX_{i1}F_\eta - \nu_{\eta 2}^{-1}R_\eta(Cbs + D\tau_1 - b_\eta s) - \nu_{\eta 1}^{-1}t_\eta s \right)^T \right.$$

$$(\nu_{\eta 2}^{-1}R_\eta R_\eta^T + \nu_{\eta 1}^{-1})^{-1} \left(AX_{i1}F_\eta - \nu_{\eta 2}^{-1}R_\eta(Cbs + D\tau_1 - b_\eta s) - \nu_{\eta 1}^{-1}t_\eta s \right) \right].$$

The f.o.c. w.r.t. X_{i1} implies that the investor’s optimal demand is given by

$$X_{\eta 1} = \left[AF_\eta^T(\nu_{\eta 2}^{-1}R_\eta R_\eta^T + \nu_{\eta 1}^{-1})^{-1}F_\eta \right]^{-1} \left[Cbs + D\tau_1 - P_1 \\
+ F_\eta^T(\nu_{\eta 2}^{-1}R_\eta R_\eta^T + \nu_{\eta 1}^{-1})^{-1} \left(\nu_{\eta 2}^{-1}R_\eta(Cbs + D\tau_1 - b_\eta s) + \nu_{\eta 1}^{-1}t_\eta s \right) \right]$$

$$= \pi_{\eta s}s + \pi_{\eta T}\tau_1 - \pi_{\eta P}P_1,$$

where $\pi_{\eta s}$, $\pi_{\eta T}$ and $\pi_{\eta P}$ are constant parameters defined accordingly.
We can use a similar analysis as above to show that a late informed trader’s Date-2 expected utility can be expressed as:

\[
E_\ell [U_\ell(W_{i3})|I_{\ell 2}] = - \exp \left[-AW_{i1} - AX_{i1}(P_2 - P_1) - 0.5\nu_{\ell 2}^{-1}(c_\ell \gamma + a_\ell \theta_2 + g_\ell \ell - P_2)^2 \right] \\
= - \exp \left[-AW_{i1} - AX_{i1}(F_\ell^T Y_\ell + D\tau_1 - P_1) - 0.5\nu_{\ell 2}^{-1}(R_\ell^T Y_\ell - D\tau_1)^2 \right],
\]

where

\[
Y_\ell = \begin{pmatrix} \gamma \\ \theta_2 \\ \ell \\ \tau_2 \\ s \end{pmatrix}, \quad F_\ell = \begin{pmatrix} 0 \\ Ca \\ G \\ C \\ Cb \end{pmatrix}, \quad R_\ell = \begin{pmatrix} c_\ell \\ a_\ell \\ g_\ell \end{pmatrix} - F_\ell.
\]

At Date 1, the investor learns \(\tau_1\) from \(P_1\), and believes that \(Y_\ell\) and \(\tau_1\) follow a multi-variate normal distribution with mean zeros and variance-covariance matrix (note that from the investor’s standpoint \(\gamma = \theta_1 + \mu\), and \(s = \theta_1 + \mu + \epsilon\))

\[
\begin{pmatrix} \Delta_1\nu_\theta + \omega_\mu & 0 & \Delta_1\nu_\theta & \Delta_1\nu_\theta + \omega_\mu & \Delta_1\nu_\theta + \omega_\mu & \Delta_1\nu_\theta + \omega_\mu \\ 0 & \Delta_1\nu_\theta & \Delta_1\nu_\theta & 0 & 0 & 0 \\ \Delta_1\nu_\theta & \Delta_1\nu_\theta & \nu_\theta + \kappa_\nu_\ell & \Delta_1\nu_\theta & \Delta_1\nu_\theta & \Delta_1\nu_\theta \end{pmatrix},
\]

and thus, \(Y_\ell|\tau_1 \sim N(\ell_\ell \tau_1, \nu_{\ell 1})\), where \(\ell_\ell\) and \(\nu_{\ell 1}\) are constants. It follows that at Date 1, the investor needs to choose \(X_{i1}\) to maximize

\[
E_\ell [U_\ell(W_{i3})|\tau_1] = E_\ell [E_\ell [U_\ell(W_{i3})|I_{\ell 2}] |\tau_1] \\
\propto - \exp \left[-AW_{i1} - AX_{i1}(D\tau_1 - P_1) + 0.5(AX_{i1}F_\ell - \nu_{\ell 2}^{-1}R_\ell D\tau_1 - \nu_{\ell 1}^{-1}\ell_\ell \tau_1)^T \\
(\nu_{\ell 2}^{-1}R_\ell R_\ell^T + \nu_{\ell 1}^{-1})^{-1} (AX_{i1}F_\ell - \nu_{\ell 2}^{-1}R_\ell D\tau_1 - \nu_{\ell 1}^{-1}\ell_\ell \tau_1) \right].
\]

The f.o.c. w.r.t. \(X_{i1}\) implies that the investor’s optimal demand is given by

\[
X_{i1} = \left[A F_\ell^T (\nu_{\ell 2}^{-1}R_\ell R_\ell^T + \nu_{\ell 1}^{-1})^{-1} F_\ell \right]^{-1} \\
\left[D\tau_1 - P_1 + F_\ell^T (\nu_{\ell 1}^{-1}R_\ell D\tau_1 + \nu_{\ell 1}^{-1}\ell_\ell \tau_1)^{-1} (\nu_{\ell 2}^{-1}R_\ell D\tau_1 + \nu_{\ell 1}^{-1}\ell_\ell \tau_1) \right],
\]

where \(\pi_\ell \tau_1 = \pi_\ell P_1\),

where \(\pi_\ell\tau_1\) and \(\pi_\ell P_1\) are constants.
We can use a similar analysis as above to show that a rational uninformed investor’s Date-2 expected utility can be expressed as:

\[
E [U_N(W_{i3})|I_{N2}] = -\exp \left[-A_NW_{i1} - A_NX_{i1}(P_2 - P_1) - 0.5\nu_{N2}^{-1}(c_N(\tau_2 + a\theta_2 + bs) + g_Nt + d_N\tau_1 - P_2)^2 \right]
\]

where

\[
Y_N = \left(\tau_2 + a\theta_2 + bs \right), \quad F_N = \begin{pmatrix} C \\ G \end{pmatrix}, \quad R_N = \begin{pmatrix} c_N \\ g_N \end{pmatrix} - \hat{F}_N.
\]

At Date 1, the investor learns \(\tau_1\) from \(P_1\), and believes that \(Y_N\) and \(\tau_1\) follow a multi-variate normal distribution with mean zero and variance-covariance matrix

\[
\begin{pmatrix}
(1 + b)^2\nu_\gamma + a^2\Delta \nu_\theta & (1 + a\Delta + b)\nu_\theta \\
+2(1 + b)a\Delta \nu_\theta + \delta_2^2\nu_z + b^2\nu_\epsilon & (1 + a\Delta + b)\nu_\theta + \nu_\xi \\
\nu_\gamma + a\Delta \nu_\theta + bv_s & \nu_\theta + \nu_\xi \\
\end{pmatrix}
\]

and thus, \(Y_N|\tau_1 \sim N(\nu_{N1}, \nu_{N1})\), where \(\nu_N\) and \(\nu_{N1}\) are constants. It follows that at Date 1, the investor needs to choose \(X_{i1}\) to maximize

\[
E [U_N(W_{i3})|\tau_1] = E [E [U_N(W_{i3})|I_{N2}] | \tau_1]
\]

\[
\propto -\exp\left[-A_NW_{i1} - A_NX_{i1}(D\tau_1 - P_1) + 0.5\left(A_NX_{i1}F_N - \nu_{N2}^{-1}R_N(D - d_N)\tau_1 - \nu_{N1}^{-1}\nu_{N1}\right)^T \\
\left(\nu_{N2}^{-1}R_NR_N^T + \nu_{N1}^{-1}\right)^{-1}\left(A_NX_{i1}F_N - \nu_{N2}^{-1}R_N(D - d_N)\tau_1 - \nu_{N1}^{-1}\nu_{N1}\right) \right].
\]

The f.o.c. w.r.t. \(X_{i1}\) implies that the investor’s optimal demand is given by

\[
X_{N1} = \left[A_NF_N^T(\nu_{N2}^{-1}R_NR_N^T + \nu_{N1}^{-1})^{-1} \hat{F}_N \right]^{-1}
\]

\[
\left[D\tau_1 - P_1 + F_N^T(\nu_{N2}^{-1}R_NR_N^T + \nu_{N1}^{-1})^{-1} \left(\nu_{N2}^{-1}R_N(D - d_N)\tau_1 + \nu_{N1}^{-1}\nu_{N1}\right) \right]
\]

\[
= \pi_{N\tau}\tau_1 - \pi_{NP}P_1,
\]

where \(\pi_{N\tau}\) and \(\pi_{NP}\) are constants.

The market clearing condition, \(z_1 = mx_{i1} + (1 - m)x_{i1} + \lambda X_{N1}\), implies that \(P_1\) takes the form in Eq. (A.1). Particularly, the parameters

\[
\delta_1 = \frac{1}{(m\pi_{qs})}, \quad B = \frac{m(\pi_{qs} + \pi_{\ell\tau}) + (1 - m)\pi_{\ell\tau} + \lambda\pi_{NP}}{m\pi_{\eta P} + (1 - m)\pi_{\ell P} + \lambda\pi_{NP}}.
\]
The right hand side of Eq. (A.5) is also a function of δ_1; therefore, we can use Eq. (A.5) to solve for δ_1 numerically. Based on δ_1 and the above derivation, we can solve the other parameters in Eqs. (A.1) and (A.2).

Date 0: We can use a similar derivation as for the proof of Proposition 1 in the main paper to show that $P_0 = 0$. □

Proof of Proposition A.1: (i) Suppose that the public signal, t, arrives at Date 2. If $\nu_\xi \to 0$ and thus $t \to \theta$, then we can follow the analysis in the proof of Eqs. (A.1) and (A.2) to show that $P_2 \to \theta$. It follows that the long-run reversal parameter, $\text{Cov}(P_1 - P_0, \theta - P_2) \to 0$. Further, $\text{Cov}(P_2 - P_1, \theta - P_2) \to 0$, and thus, $\overline{MOM} \to \text{Cov}(P_1 - P_0, P_2 - P_1)/2$. It can be shown that under certain parameter values (e.g., the parameter values specified in Corollary 3 of the main paper) that the short-run momentum parameter, $\overline{MOM} > 0$.

(ii) Suppose that the public signal, t, reaches investors at Date 1. We can use a similar analysis as in the proof of Eqs. (A.1) and (A.2) to show that if $\nu_\xi \to 0$ and thus $t \to \theta$, then $P_1 = P_2 = \theta$. In this case, all returns equal zero so that momentum and reversals do not obtain. □

Proof of Proposition A.2: Suppose that the public signal arrives at Date 2. We can follow the proof of Proposition A.1 to show that in the equilibrium prices (see Eqs. (A.1) and (A.2)), $D \to 0$, and the other parameters, particularly B and C, are non-zero in general and bounded. It follows immediately that $\text{Cov}(P_1 - P_0, P_2 - P_1), \text{Cov}(P_2 - P_1, \theta - P_2) \to -\infty$; therefore, $\overline{MOM} \to -\infty$.

If the public signal arrives at Date 1, then we can use a similar analysis to prove this proposition. □
Figure A.1: Long-Term Reversals
This graph plots the long-run reversal parameter $\text{Cov}(P_1 - P_0, \theta - P_2)$ as functions of the quality of the early Date-1 information (ν_ϵ), and the quality of the late Date-2 information (ν_μ). Late-informed investors are skeptical in that they believe the early Date-1 signal contains only limited fundamental information (i.e., $s = \theta_1 + \mu + \epsilon$ and $\gamma = \theta_1 + \mu$). The public signal, $t = \theta + \xi$, arrives at Date 2. Date-1 and Date-2 supplies of the risky security, z_1 and z_2, are normal random variables. We assume the parameter values of $m = 0.1$, $\lambda = 0.1$, $A = 1$, $A_N = 1$, $\nu_\theta = 1$, $\nu_z = 0.01$, $\nu_\xi = 10$, $\kappa = 2$, $\Delta = 0.1$, $\omega_\epsilon = \kappa_\epsilon = \nu_\epsilon$, and $\omega_\mu = \nu_\mu$.

![Graph showing long-term reversals](image-url)
Figure A.2: Short-Term Momentum and Reversals
This graph plots the short-term momentum parameter \overline{MOM} as functions of the quality of the early Date-1 information (ν_ϵ), and the quality of the late Date-2 information (ν_μ). Late-informed investors are skeptical in that they believe the early Date-1 signal contains only limited fundamental information (i.e., $s = \theta_1 + \mu + \epsilon$ and $\gamma = \theta_1 + \mu$). The public signal, $t = \theta + \xi$, arrives at Date 2. Date-1 and Date-2 supplies of the risky security, z_1 and z_2, are normal random variables. We assume the parameter values of $m = 0.1$, $\lambda = 0.1$, $A = 1$, $A_N = 1$, $\nu_\theta = 1$, $\nu_\gamma = 0.01$, $\nu_\xi = 10$, $\kappa = 2$, $\Delta = 0.1$, $\omega_\epsilon = \kappa_\epsilon = \nu_\epsilon$, and $\omega_\mu = \nu_\mu$.
Figure A.3: Post-Public-Announcement Drift
This graph plots the post-public-announcement drift parameter $\text{Cov}(\theta - P_2, t)$ as functions of the skepticism about public information quality (κ), and the late informed’s skepticism about fundamentals (Δ). Late-informed investors are skeptical in that they believe the early Date-1 signal contains only limited fundamental information (i.e., $s = \theta_1 + \mu + \epsilon$ and $\gamma = \theta_1 + \mu$). The public signal, $t = \theta + \xi$, arrives at Date 2. Date-1 and Date-2 supplies of the risky security, z_1 and z_2, are normal random variables. We assume the parameter values of $m = 0.1$, $\lambda = 0.1$, $A = 1$, $A_N = 1$, $\nu_\theta = 1$, $\nu_\xi = 0.01$, $\nu_\gamma = 10$, $\omega_\epsilon = \kappa_\epsilon = \nu_\epsilon = 0.1$, and $\omega_\mu = \nu_\mu = 0.5$.
Figure A.4: Liquidity and Overconfidence

This graph plots the illiquidity measure, $ILLIQ$, as functions of the parameters representing late-informed investors’ skepticism about the quality of the early Date-1 information (κ_ϵ), and over-estimation of the quality of their own information (ω_μ). Late-informed investors are skeptical in that they believe the early Date-1 signal contains only limited fundamental information (i.e., $s = \theta_1 + \mu + \epsilon$ and $\gamma = \theta_1 + \mu$). The public signal, $t = \theta + \xi$, arrives at Date 2. Date-1 and Date-2 supplies of the risky security, z_1 and z_2, are normal random variables. We assume the parameter values of $m = 0.1$, $\lambda = 0.1$, $A = 1$, $A_N = 1$, $\nu_\theta = 1$, $\nu_\xi = 0.01$, $\nu_\epsilon = 10$, $\kappa = 2$, $\Delta = 0.1$, $\omega_\epsilon = \nu_\epsilon = 0.1$, and $\nu_\mu = 1$.
Figure A.5: Short-Run Momentum and Overconfidence
This graph plots the momentum parameter MOM as functions of the parameters representing late-informed investors’ skepticism about the quality of the early Date-1 information (κ_ϵ), and overestimation of the quality of their own information (ω_μ). Late-informed investors are skeptical in that they believe the early Date-1 signal contains only limited fundamental information (i.e., $s = \theta_1 + \mu + \epsilon$ and $\gamma = \theta_1 + \mu$). The public signal, $t = \theta + \xi$, arrives at Date 2. Date-1 and Date-2 supplies of the risky security, z_1 and z_2, are normal random variables. We assume the parameter values of $m = 0.1$, $\lambda = 0.1$, $A = 1$, $A_N = 1$, $\nu_\theta = 1$, $\nu_z = 0.01$, $\nu_\xi = 10$, $\kappa = 2$, $\Delta = 0.1$, $\omega_\epsilon = \nu_\epsilon = 0.1$, and $\nu_\mu = 1$.

\begin{table}
\centering
\begin{tabular}{|c|c|c|c|}
\hline
Parameter & Value & Parameter & Value \\
\hline
m & 0.1 & λ & 0.1 \\
A & 1 & A_N & 1 \\
ν_θ & 1 & ν_z & 0.01 \\
ν_ξ & 10 & κ & 2 \\
Δ & 0.1 & ω_ϵ & 0.1 \\
ν_ϵ & 0.1 & ν_μ & 1 \\
\hline
\end{tabular}
\end{table}
Figure A.6: Liquidity, Short-Run Momentum, and Overconfidence

This graph plots the momentum parameter, MOM, and the illiquidity measure, $ILLIQ$, as functions of the summary measure of late-informed investors’ overconfidence, $OC \equiv (\kappa_\epsilon - \nu_\epsilon) + (\nu_\mu - \omega_\mu)$. We assume that $\nu_\mu - \omega_\mu = 0.2(\kappa_\epsilon - \nu_\epsilon)$. To generate the values of OC on the horizontal axis, we increase κ_ϵ starting from ν_ϵ, while simultaneously changing ω_μ. Late-informed investors are skeptical in that they believe the early Date-1 signal contains only limited fundamental information (i.e., $s = \theta_1 + \mu + \epsilon$ and $\gamma = \theta_1 + \mu$). The public signal, $t = \theta + \xi$, arrives at Date 2. Date-1 and Date-2 supplies of the risky security, z_1 and z_2, are normal random variables. We assume the parameter values of $m = 0.1$, $\lambda = 0.1$, $A = 1$, $A_N = 1$, $\nu_\theta = 1$, $\nu_\epsilon = 0.01$, $\nu_\xi = 10$, $\kappa = 2$, $\Delta = 0.1$, $\omega_\epsilon = \nu_\epsilon = 0.1$, and $\nu_\mu = 0.5$.

![Graph showing the relationship between liquidity, short-run momentum, and overconfidence](image-url)