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Abstract

We study a dynamic timing game between multiple firms, who decide when to sell

the firm (IPO) or a project. A firm’s IPO pricing is a function of its privately observed

idiosyncratic type and the period’s realization of a factor common to all the firms.

The common factor follows a stochastic mean-reverting process, and the market learns

about its realization in a given period if there is at least one IPO in that period. Firms

consider the trade-off between the direct costs of delaying the IPO and the value of the

real option from potentially learning the common factor. We characterize the unique

symmetric threshold equilibrium and find that: higher-type firms go public earlier;

following successful IPO(s) in the first period we should expect more (clustering of)

IPOs in the second period; in more concentrated industries fewer firms go public early,

but these are met with more intense clustering (IPO waves). The results also relate

delay and clustering of IPOs to changes in the initial market uncertainty.

∗We are grateful to seminar and conference participants at Baruch College, Carnegie Mellon, Columbia,
NYU, Purdue Accounting Theory conference, Warwick and Washington University Accounting Research
Conference. We thank Pingyang Gao (discussant) for his valuable comments.
†E-mail: caghamolla18@gsb.columbia.edu.
‡E-mail: iguttman@stern.nyu.edu.

1



1 Introduction

In 2014, U.S. public equity markets saw more initial public offerings (IPOs) than in any year

since the 2000 dot-com boom. The recent wave of IPOs has been especially interesting given

the initial diffi culty the market had in evaluating firms in new industries, particularly social

media and cloud computing. As one commentator noted during the 100% price increase on

the initial day of trading for LinkedIn: "New internet companies based on new and innovative

technologies are more diffi cult to value."1 In new industries with uncertain fundamentals,

firms that had received higher than expected valuations led to further, more immediate public

offerings by other firms within the same industry, whereas firms who received less favorable

valuations led to delay in the IPO plans of other similar firms. For example, consider the

pioneer firm to go public in the new social media industry, Facebook. The price fall that

ensued Facebook’s IPO allegedly pushed back the offering of Twitter for several months.

Twitter went public only when the market was better able to assess Facebook’s value, in a

very favorable way, which resulted in a tremendous price increase around the IPO. Indeed,

the ability to observe the market sentiment before going public provide firms an advantage

in choosing the timing of their IPO.2 The strategic timing of IPOs has also been well-

documented in the news (e.g., the case of Virtu who delayed its IPO due to dissatisfaction

over flash-trading3) and in the empirical literature (e.g. Lowry and Schwert (2002), Brau

and Fawcett (2006)).

We seek to study this phenomenon in a strategic game of disclosure/IPO by multiple

firms, in which each firm chooses when to disclose its private information and go public (or

sell a project). Unlike existing models of IPO timing, which largely feature either a single

firm, multiple firms whose actions are independent or irrelevant to one another, or multiple

firms who act in an exogenously determined order, we consider many firms whose endogenous

IPO timing decisions are interdependent. We are thus able to show the endogenous emergence

of pioneer firms in the face of free-riding, as we all as capture interesting properties of the

1"Wall Street ‘mispriced’LinkedIn’s IPO." Financial Times, March 30, 2011.
2Several other firms, such as Kayak, have been reported to delay their IPO dates specifically because of

the market reaction to the Facebook IPO. See "Did IPO damage Facebook brand?", CBS Money Watch,
June 6, 2012.

3"For Virtu IPO, Book Prompts a Delay." The Wall Street Journal, April 3, 2014. The timing is a
serious concern for firms: "Analysts said Virtu had little choice but to postpone the offering. ‘The timing
couldn’t be worse,’said Pat Healy, CEO of Issuer Advisory Group LLC, which advises companies on going
public."
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timing and clustering of IPOs which have hitherto not been characterized in the literature.4

We study the following three-period multi-firm/entrepreneur setting. The value of each

firm/project is determined by two components: an idiosyncratic component, which we re-

fer to as the firm’s type, and a common component which affects all firms in the indus-

try/economy who consider an IPO. The first ingredient of our model is that, given all else

equal, each firm’s manager/entrepreneur prefers to sell the firm/project as early as possi-

ble. This assumption could reflect that delaying the IPO leads to, for example: forgoing

profitable investment and expansion opportunities, potential loss of market power relative

to competitors and hence reduced payoff, the costs of debt that is used to finance projects

or operations, or even the tendency of a firm’s idiosyncratic component to mean-revert. To

capture this time preference, we assume that firms/managers discount the future payoff from

selling the firm/project. The second ingredient of our model pertains to the common factor

(or "state of nature"), which can capture an industry-specific valuation discovered during

an IPO process, the state of the economy/industry, or market sentiment.5 The state of na-

ture is assumed to follow a mean-reverting stochastic process.6 Bessembinder et al. (1995)

found that all the markets they examined are characterized by mean-reversion, where there

is substantial variation across industries in terms of the reversal rates. The state variable

can also be thought of as reversal of macroeconomic shocks, as evidenced by Bloom (2009)

and Bloom et al. (2014).

As part of an IPO process, the market learns and forms an opinion about the new

technology or the market conditions (captured by the state of nature/common factor) and

reveals this information through the pricing of the IPO. The fewer firms go public in a given

period the less the market learns about the state of nature. Had Facebook not gone public in

May 2012, there would have been a much greater uncertainty about the market’s perception

of the value and the potential of the social media industry. To capture this key aspect of

IPOs in the simplest, most tractable, way we assume in the base model that a period’s state

4Several studies, such as Hoffman-Burchardi (2002) and Benveniste et al. (2003), have noted the puzzling
emergence of pioneer firms. Particularly, Benveniste et al. (2003) comment, "What then prevents the market
from collapsing around the incentive for potential issuers to free-ride one another?" (p. 577).

5There is evidence that firms in different industries have different market sentiments, and that IPOs
within an industry share similar one-day returns and similar average returns. For example, technology IPOs
performed very well in 2014, whereas bank IPOs often failed to meet their price range. See "Bank IPO Falls
Short of Target Price Range," The Wall Street Journal, September 24, 2014. For empirical evidence, see
Maur and Senbet (1992).

6The key trade-off that we identify does not rely on mean reversion, but rather exists for any serial
correlation structure in the state of nature.
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of nature is observed as long as at least one of the firms goes public in this period. We

later relax this assumption and show that the results hold in the more realistic setting, in

which the precision of the beliefs about the period’s state of nature increases in the number

of firms that go public (see Section 5.2). It is easy to see that the main results of the base

model hold under the exogenous assumption that the precision of the information about the

common factor increases in the number of IPOs. We then endogenize the link between the

precision of the information about the state of nature and the number of IPOs by assuming

that following an IPO, the market observes the pricing of the IPO but cannot perfectly

disentangle the firm’s idiosyncratic component from the common factor. In such a setting,

the precision of the inference about the common factor is increasing in the number of IPOs.

The higher the precision of the beliefs about the common factor following the IPOs, the

higher the expected value of the real option from delaying the IPO, and hence the higher

the incentive to delay the IPO.

The notion of a common factor in an IPO setting has been suggested previously in empir-

ical studies, notably Lowry and Schwert (2002) and Benveniste et al. (2003). Indeed, Lowry

and Schwert (2002) note that "initial returns [of recent IPOs] contain valuable information

for private companies considering an IPO" (p. 1183).7

The mean reverting nature of the common factor gives rise to a real option from delaying

the IPO in the first period. In case a firm delays its IPO and another firm goes public,

the state of nature in the first period is revealed. If the realization of the state of nature

in the first period is suffi ciently low, the firm is better off delaying its IPO until the third

period. After a poor IPO, the state is expected to be low in the second and third periods

as well, however, the mean-reverting property implies an expected improvement in market

conditions from the second to the third period. Likewise, if the realization of the state of

nature in the first period is suffi ciently high, a firm that did not IPO in the first period finds

it more profitable to go public in the second period than delaying its IPO. When deciding

whether to IPO in the first period, the firm considers the trade-off between the direct costs

of delaying the IPO and the benefit from the expected value of the real option from delaying

the IPO. The firm considers the probability that the other firms will disclose and IPO in the

7Lowry and Schwert (2002) also note that "We find that more companies file IPOs following periods of
high initial returns because the high returns are related to positive information learned during the registration
periods of those offerings, suggesting that companies can raise more money in an IPO than they previously
though" (p. 1173).
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first period, as if no other firm goes public in the first period, the state of nature will not

be revealed and the option value will not be realized. This introduces strategic interaction

between firms, as the IPO strategy of one firm affects the payoff and the optimal strategy of

the other firms.

We analyze the above setting and show that there exists a unique symmetric equilibrium

in which firms follow a threshold strategy in each period. In particular, each firm goes public

in the first period if and only if the realization of its idiosyncratic component is suffi ciently

high. If there was no IPO by any firm in the first period, then the first-period state of

nature is not revealed, and hence, all firms go public in the second period (as the game ends

in the third period). If at least one firm went public in the first period, then a firm that

did not IPO in the first period goes public in the second period only if the realization of the

first-period state was suffi ciently high. The threshold realization of the first-period state of

nature following which a firm will delay its IPO is decreasing in the firm’s type, i.e. a lower

realization of the state is needed for high type firms to take advantage of the real option.

Low-type firms are thus comparatively more inclined to delay their IPO not only in the first

period, but in the second period as well. The reason is two-fold: (i) the cost of delay due to

the discount is comparatively lower for low-type firms, and (ii) the value of the real option

from delaying the IPO in the first period is decreasing in a firm’s type.

The results of the model are in line with several empirical regularities. Our model predicts

the clustering of IPOs following successful IPOs, which has been documented by Ibbotson

and Jaffe (1975), Ritter (1984), Ibbotson, Sindelar, and Ritter (1988, 1994), and Hoffman-

Burchardi (2001), among others. Moreover, the results are in line with the findings of

Lougran, Ritter, and Rydqvist (1994), Lerner (1994), Pagano, Panetta, and Zingales (1998),

Lowry and Schwert (2002) and Benveniste et al. (2003), which document the strategic timing

of IPOs. We formally capture the hypothesis of Lowry and Schwert (2002), who interpret

their findings of increased IPO volume following high initial returns of recent IPOs as due

to observational learning by private firms, as well as Benveniste et al. (2003) who interpret

similar findings as due to the presence of a common valuation factor. The results of our

model also imply that clustering should be composed primarily of firms within a specific

industry and that high returns of recent IPOs should induce more clustering, as documented

by Ritter (1984) and Lowry and Schwert (2002).

Furthermore, several interesting insights and empirical predictions emerge from this
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analysis. We see that there is always a positive amount of delay of going public in equi-

librium, where suffi ciently high type firms do not delay. In general, the model predicts that

the higher a firm’s value (idiosyncratic component), the earlier it will go public, as higher

type firms exhibit a lower value of the real option from delaying the IPO and a greater

discounting costs. Hence, IPO timing is determined by firm value, and pioneer IPOs are

issued by the higher value firms. The results also predict that the extent of clustering and

delay depends on the concentration of firms in the industry. Specifically, industries composed

of comparatively numerous private firms will experience greater delay. Moreover, because a

higher industry concentration induces some high-type firms to delay, the likelihood of cluster-

ing following an IPO is greater with a higher concentration, thus giving rise to more intense

IPO “waves.”The results of the model also imply that there is greater delay when there

is more initial uncertainty about the state of nature. This is especially applicable for new

industries without a close counterpart, who thus potentially face a great deal of uncertainty.

The effect of the level of serial correlation in the state of nature on the incentive to delay the

IPO is non-monotone. In particular, the disclosure threshold, as a function of the degree of

mean-reversion (in both the first and second period), exhibits an inverse U-shape.

1.1 Related Literature

The extant theoretical literature on IPO timing largely consists of models which include

either a single firm (or multiple firms embedded in a single-firm setting), or multiple firms

that move in an exogenously determined order. We first discuss the latter models and how

they differ from our model.

Benveniste, Busaba, and Wilhelm (2002) examine a two-firm model that, similar to our

model, includes both an idiosyncratic component and an unknown common factor. The

timing and IPO order, however, is assumed to be fixed, such that one firm is designated to

move first and the other firm follows. Benveniste, Busaba, and Wilhelm argue that potential

free-riding can be solved by the investment bank "bundling" IPOs together so that the costs

of information discovery are shared across firms. However, this bundling crucially depends

on the investment bank’s monopoly power over issuing firms. For example, the results

are less applicable in a setting where issuing firms may choose one of several underwriting

banks. Moreover, as evidenced by Lowry and Schwert (2002), there is a significant positive

relation between initial returns of recent IPOs and subsequent IPO filings. Hence, their
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model does not account for firms who do not even begin the preliminary filing for an issue

until after observing the market reaction of recent IPOs, which substantially contribute to

IPO clustering/waves. In contrast, we allow the firms’timing of the IPO to be endogenously

determined, and show that pioneer firms endogenously emerge and bear the (implicit) cost

of information production (in terms of giving up their real option).

Persons and Warther (1997) develop a model of financial innovation among several firms

who may move sequentially. Each firm observes the noisy cash flow returns of firms who have

already adopted the innovation and based on this information decides whether to adopt the

innovation. They generate "booms" in the adoption of the new technology, as each additional

firm that adopts the innovation may lead to another firm’s subsequent adoption. However, a

fundamental assumption in their model is that it is common knowledge which firms benefit

the most from the adoption of the technological innovation, and, correspondingly, the firms

adopt the technology in a predetermined order, beginning with the firm that benefits the

most. This would be equivalent to the model here where each firms’idiosyncratic component

was commonly known, the state of nature does not follow a mean-reversion process, and

adoption of the innovation increases the precision of the beliefs about the profitability of the

innovation.

Likewise, Alti (2005) develops a model of information spillover in an IPO setting, where

information asymmetry decreases following an IPO, which consequently lowers the cost of

going public for the other firms. The cost of going public is due to adverse pricing by the

market in a second price auction in the presence of an informed trader. The common com-

ponent among firms is the cash flow generated in the period of IPO, which is assumed to

be identical to all firms (and not mean-reverting). The support of per-period cash flow,

however, is assumed to be binary and unchanging. Maksimovic and Pichler (2001) consider

a timing game where firms may delay their IPO plans, however, firms designated as "pio-

neering" move first while those designated as "potential entrants" move second. The present

setting does not make such designations.

Pastor and Veronesi (2003) model the strategic timing of an IPO as an inventor who

faces a problem analogous to an American call option. The inventor can exercise the option

to capitalize on abnormal profits, but sacrifices the possibility that market conditions may

worsen to cover the initial investment. Our model varies in that we incorporate strategic

interaction between firms that affects the timing of IPOs. A number of other papers look
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at the strategic timing of IPOs in a single-firm setting. He (2007) considers a game between

investment banks and investors to generate high first day returns during periods of high IPO

volume. Chemmanur and Fulghieri (1999) models IPO timing as a trade-off between selling

the firm to a risk-averse venture capitalist at a discount or through the loss in informational

advantage from going public. Benninga, Helmantel, and Sarig (2005) model the decision to

go public as a trade-off between diversification and the private benefits of control. They

generate IPO waves during periods when expected cash flows are high. Our model differs

from these three as they are all single-firm models, whereas we are principally interested in

the strategic interaction between firms and the resulting clustering effects.

Our model varies from the literature on dynamic voluntary disclosure (e.g., Dye and

Sridhar (1995), Acharya DeMarzo, and Kremer (2011), Guttman, Kremer, and Skrzypacz

(2014), Aghamolla and An (2015)) in three ways. In our setting (i) the manager receives

information with probability one and disclosure is costless, (ii) the entrepreneur is only

concerned with the firm’s value in the period of disclosure and IPO, and (iii) there are

multiple firms/entrepreneurs whose decisions are interrelated.8

The following section presents the setting of the model and section three analyzes the

equilibrium. Section four examines comparative statics and offers empirical predictions.

Section five studies extensions of the model in which the state is imperfectly observed, firms

can IPO without disclosure, and where the support of the firms’type is bounded. The final

section concludes. Proofs are relegated to the Appendix, unless otherwise stated.

2 Model Setup

We study a setting with three periods, t ∈ {1, 2, 3}, and N ≥ 2 firms. A firm’s value

is a function of its idiosyncratic component and the value of a common factor. Prior to

t = 1, each firm’s manager/entrepreneur privately observes the idiosyncratic component

of her firm’s value or project, θi, which is the realization of a random variable θ̃ with a

cumulative density G (θ) and probability density function g (θ). We will often refer to θi as

the type of firm i. The support of θ is [0,∞) and g (θ) is positive over the entire support

of θ.9 For all i 6= j the idiosyncratic components, θi and θj, are independent. We constrain

8The latter feature is present in Dye and Sridhar (1995).
9We later study the case in which the support of θ is bounded from above, i.e., θ ∈ [0, θ̄] and show that

the symmetric equilibrium that we characterize in the current section still holds.
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θ to be non—negative since this simplifies the analysis, however, the results would not be

qualitatively affected with negative firm values.10 Firms’managers/owners are assumed to

be risk-neutral.

Every firm manager must IPO the firm (or sell the project) in one of the periods, while

as part of the IPO the manager discloses the private type, θi. Disclosure of the type is

credible and costless. The managers are assumed to maximize the firm’s market price at

the time of IPO. For example, the manager/owner may want to IPO the firm and needs

to make a disclosure at the time of the IPO. In section 5.2, we examine the model without

disclosure, where firms only observe the prices of other firms that went public. Our results

are qualitatively insensitive to this alternative specification.

The firm’s price at the time of the IPO depends on investors’beliefs about both the

idiosyncratic component, θi, as well as on the state of nature at the time of the IPO, which

is denoted by st. The market price at time τ of firm i that discloses θi at t = τ equals

investors’expectation of θi+sτ given all the available information at t = τ , which we denote

by Ωτ . Every firm’s manager has a time preference (discount) which is denote by r, such

that the expected utility of the owner/manager of firm i from going public and disclosing θi

at t = τ is given by:

ui,τ =
E (θi + sτ |Ωτ )

(1 + r)τ−1
.

Discounting is meant to capture the costs associated with delaying the sale of a project

or shares. Such cost could be due, for example: costs of debt, the cost from forgoing

investmenting, operating and acquisition opportunities due to lack of financing, and the

decrease in profitability due to increase in competition.

The state of nature in each period, st, is ex-ante unobserved, however, upon IPO by at

least one of the firms, all firms learn st at the end of the period in which an IPO took place.11

We assume that the state of nature follows a mean-reverting AR(1) process of the form:

st = γst−1 + εt,

10With negative values, firms would be compelled to delay disclosure since discounting works to improve
the firm’s payoff. We eliminate this case so as not to confound the results.

11In Section 5.2 we analyze the more realistic setting in which precision of the beliefs about the period’s
state of nature increases in the number of firms that go public. All the qualitative results of the base model
are robust to the extended setting.
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where γ ∈ (0, 1) and εt ∼ N (0, σ2) with a cumulative distribution function F (·) and density
function f (·).12 The initial state is given by s0 = 0, and so the first period’s state is given

by s1 = ε̃1. Hence, the state of the economy in the first period is simply a mean-zero error

term.13

The mean-reversion property of the state of nature, which is one of the central assump-

tions in our model, is taken exogenously. However, both the empirical and theoretical litera-

ture provide ample support for mean reversion of both specific stock returns (e.g., Fama and

French (1988) and Poterba and Summers (1988)) and of macroeconomic measures, such as

stock market indices (e.g., Richards (1997)). Mean reversion can be motivated by fully ratio-

nal settings (e.g., Cecchetti, Lam, and Nelson 1990) and high-order beliefs in an overlapping

generation (as in Allen, Morris, and Shin (2006))14, or by behavioral explanations such as

investors sentiment and limits to arbitrage (e.g., Baker and Wurgler (2006)). Mean reversion

of the state of nature in our setting can also be motivated by dynamic competition in the

market that affects the common factor. For example, when the state of nature, which may

represent the perceived profitability of the relevant technology, is high in the first period,

firms have an incentive to increase their activity in this market/technology, which in return

will decrease the profitability in this market. A symmetric argument applies to a low state

of nature.

The sequence of events in the game is as follows: Prior to t = 1 all managers/firms pri-

vately observe the idiosyncratic component of their firm value, θi. In t = 1, each firm decides

weather to IPO in this period. In each period, firms make their decisions simultaneously. If

at t = 1 at least one firm made an IPO the state of nature at t = 1, s1, is publicly observed

and firms that disclosed and IPO receive their market valuation. Those firm managers re-

ceive their corresponding payoff and the remainder of the game is irrelevant for them. At

period t = 2, all firms that did not IPO at t = 1 decide whether to IPO or delay the IPO to

12Alternatively, we could have the variance of the error decreasing in each period to reflect the market’s
ability to better evaluate the firm in later periods. This would not affect the results since firms are assumed
to be risk neutral and only the variance level in the first period, which affects the value of the real option
from delaying disclosure, is consequential.

13We assume normality of εt primarily for consistency with the literature and for tractibility of some of
the comparative statics. However, as we later show, the main results hold for any distribution of εt as long
as mean-reversion of st is preserved.

14Mean reversion due to high-order beliefs in an Allen, Morris and Shin setting is as follows. Since in the
first period the private signals are underweighted in the price formation it gives rise to a biased investors
beliefs about the intrinsic value. As time goes by, on expectation, this bias decreases and the price converges
to the unbiased mean.
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t = 3. If at least one firm IPO at t = 2 the realization of the state of nature, s2 is publicly

revealed. The market valuation of firms that IPO at t = 2 is determined and managers of

those firms receive their payoff. Finally, at t = 3, which is the last period of the game, all

firms that have not yet gone through IPO must do so and those firm’s managers obtain their

payoff. The timeline of a generic period is given in Figure 1.

Managers observe
private information
(in period 1 only)

Managers make
an IPO decision

If at least one manager
went public, all managers

learn the state

Any manager who has not
gone public by period 3

must IPO.

Managers who went
public in current

period receive payoff

Figure 1 —Sequence of the stage game.

We assume that all firms are ex-ante homogeneous, that is, all firms have the same

distribution of idiosyncratic component of value, θi, the same discount rate, r, and that the

common factor, st, affects every firm’s market value in the same way. The following section

analyzes the equilibrium of the above reporting game.

3 Equilibrium

Before we derive the equilibrium of our setting, note that in a two-period (rather than three-

period) version of our model, all firms IPO at the beginning of the game. The reason is

that in the first period, none of the managers have any information about s1, and hence, the

expected value of s2 (which in this case is the last period) is zero. As such, the expected

payoff from delaying the IPO is θi
1+r
, which is lower than the expected payoff from IPO at

t = 1 (which is θi).

We conjecture a symmetric threshold equilibrium, in which each firm IPO in the first

period if and only if its type, θi, is greater than a threshold θ
∗
1, which is a function of all the

parameters of the model (the number of firms, the distributions of the types, the distribution

of the state of nature, the degree of mean-reversion and the discount factors). At t = 2, if

at least one firm j 6= i went public at t = 1 and the state of nature s1 was revealed, firm i

IPO if and only if θi > θ∗2 (s1). Note that if there were no IPOs at t = 1, then this reduces

to the two-period setting mentioned above, and hence, all firms IPO in t = 2. Given that

there is positive probability of IPO by at least one other firm in the first period, firm i has
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a real option from delaying the IPO at t = 1, hoping to observe s1 at the end of period

1. Upon observing the state of nature, s1, for suffi ciently negative realizations of the state

of the economy, the firm rather delay the IPO until t = 3, as the state of nature follows a

mean-reverting process, such that the state of nature is expected to increase towards zero at

t = 3.

In light of the above behavior in period 2, firms at t = 1 have to take into consideration

the trade-off between the benefit from the above real option and the cost of delaying the

IPO. The cost of delaying, due to the discount factor r, increases in the firm’s type, θi.

Moreover, as we show below, the value of the real option from delaying the IPO at t = 1

is decreasing in the firm’s type, θi. As such, both of the above effects work in the same

direction. That is, any firm follows a threshold strategy at t = 1 such that, for realizations

of θi that are suffi ciently high, the manager prefers to IPO at t = 1, whereas for lower

realizations the manager is better off delaying the IPO at t = 1. We solve for the unique

symmetric threshold equilibrium. We start by deriving the IPO policy in the second period

and then analyze the first period’s decision.

3.1 Period 2

As indicated above, if no firm went public at t = 1, all firms IPO at t = 2.

Given an IPO by at least one firm at t = 1 and the realization of s1, firm i of type θi is

indifferent between going public and delaying the IPO at t = 2 if and only if the following

indifference condition holds:

θi + E (s2|s1)
1 + r

=
θi + E (s3|s1)

(1 + r)2
.

The above has a unique solution. The unique optimal strategy in t = 2, which we denote by

θ∗2 (s1), is as follows.

Lemma 1 In any equilibrium, the strategy of firm i that did not IPO at t = 1 is as follows.

If no firm went public at t = 1, firm i goes public at t = 2. If at least one firm went public

at t = 1 (and hence s1 is observed) firm i follows a threshold strategy at t = 2 such that it
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goes public if and only if 15

θi ≥ θ∗2 (s1) ≡ −s1 ((1 + r)− γ)
(γ
r

)
. (1)

Having observed the market condition in the first period, s1, firms will delay the IPO

only for suffi ciently negative values of s1. Note that for all s1 ≥ 0, all managers that did not

IPO at t = 1 will IPO at t = 2, as both effects (discounting and the reversal of the state of

nature) work in the same direction - not to delay IPO. When the realization of s1 is negative

(or in general lower than the mean of s) the mean-reversion property of s implies that s3 is

expected to be higher than both s1 and s2, which provides an incentive to delay the IPO to

t = 3. However, delaying the IPO is costly due to discounting, and hence, the manager’s

IPO threshold at t = 2 resolves the trade-off between these two effects.

To further the intuition for the threshold at t = 2, it is useful to consider extreme

parameter values. For γ = 1, such that the state of nature follows a random walk, the

manager goes public at t = 2 if and only if θ + s1 > 0. On the contrary, when γ = 0, such

that s1 and s2 are independent, the manager goes public immediately. For extreme values

of the discount rate it is easy to see that for r = 0 firms IPO at t = 2 if and only if γs1 > 0,

or equivalently s1 > 0, as the only effect in place is the reversal of the state of nature. As

the discount rate goes to infinity, all firms would have gone public at t = 1 (and if did not

IPO at t = 1 IPO at t = 2 if and only if θ+ s1 > 0). We investigate the comparative statics

in section 4.

Next, we analyze the equilibrium behavior at t = 1.

3.2 Period 1 and the option value from delayed disclosure

We conjecture a threshold strategy at t = 1 such that firm i goes public in the first period

if and only if θi ≥ θ∗1. Recall that if the manager of firm i goes public in t = 1, her expected

payoff is θi + E [s1] = θi. If manager i does not IPO at t = 1, then her payoff depends on

whether at least one other firm goes public at t = 1. If there were no IPOs at t = 1, firm i (as

well as all other firms) will IPO at t = 2 and will obtain an expected payoff of E(θi+s2)
1+r

= θi
1+r
.

15An alternative way to think about the disclosure strategy is to take θi as given and to specify the
realizations of s1 for which the firm will and will not disclose at t = 2. This approach yields that for a given
θi firm i discloses at t = 2 if and only if s1 < s∗1 (θi) ≡ − θi

((1+r)−γ)( γr )
.
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If at least one firm went through IPO at t = 1, then firm i will IPO at t = 2 if and only if

θi > θ∗2 (s1), or equivalently, if and only if s1 > s∗1 (θi) ≡ − θi
((1+r)−γ)( γr )

, where s∗1 (θi) is the

realization of s1 for which a firm θi is indifferent between IPO at t = 2 or delaying the IPO

to t = 3. So, conditional on the realization of s1 being suffi ciently high to induce an IPO of

firm i at t = 1, the expected payoff of the firm is
E(θi+s2|s1>s∗1(θi))

1+r
. If the realization of s1 is

suffi ciently low, i.e., s1 < s∗1 (θi) firm i will delay the IPO to t = 3, in which case its expected

payoff is
E(θi+s3|s1<s∗1(θi))

(1+r)2
. In summary, the expected payoff of manager i from delaying the

IPO at t = 1 is:

Pr
(
ND1

j 6=i
)( θi

1 + r

)
(2)

+
(
1− Pr

(
ND1

j 6=i
)) Pr (D2

i )E [payoff at t = 2|θi, D2
i ]

+ Pr (ND2
i )E [payoff at t = 3|θi, ND2

i ]

 ,

where Pr
(
ND1

j 6=i
)
is the probability that no IPO is made by any other firm at t = 1, D2

i

(ND2
i ) indicates that firm i goes public (does not IPO) at t = 2, and Pr (D2

i ) (Pr (ND2
i )) is

the probability that firm i, which did not IPO at t = 1, will IPO (not IPO) at t = 2.

We analyze a symmetric equilibrium of N ≥ 2 firms whose types θj are independent, so

the ex-ante probability of IPO is identical to all firms. Consequently, the probability that no

IPO is made at t = 1 by any other firm is Pr
(
ND1

j 6=i
)

= [G (θ∗1)]
N−1. The probability that

firm i with type θi that did not IPO at t = 1 will IPO at t = 2, given that s1 was revealed, is

the probability that the realization of s1 will be suffi ciently high, such that (1) holds. That

is, for any given θi the firm will IPO at t = 2 if and only if s1 > s∗1 (θi) ≡ − θi
((1+r)−γ)( γr )

. The

probability of such an event is F
(

θi
((1+r)−γ)( γr )

)
. Substituting the above into the expected

payoff of the manager of firm i from not going public at t = 1, given in (2), yields:

[G (θ∗1)]
N−1

(
θ∗1

1 + r

)
(3)

+
(

1− [G (θ∗1)]
N−1
) F

(
θi

((1+r)−γ)( γr )

)
E [payoff at t = 2|θi, D2

i ]

+

(
1− F

(
θi

((1+r)−γ)( γr )

))
E [payoff at t = 3|θi, ND2

i ]

 .

Note that unlike the threshold in t = 2, which depends on the manager’s type and the

realization of s1, the IPO threshold of the first period, θ
∗
1, depends only on the firm’s type,
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θi (and all the other parameters of the model).

In order to derive and analyze the equilibrium, it is useful to define and characterize

the properties of the manager’s real option from delaying IPO at t = 1. The option value

arises from the manager’s opportunity to determine his IPO decision at t = 2 based on the

observed value of s1 (whenever at least one other manager IPO at t = 1). As Lemma 1

prescribes, the manger prefers to take advantage of the real option and to delay IPO at t = 2

only for suffi ciently low values of θ and s1. To capture the option value that stems from

not going public at t = 1 we first express the expected payoff of a type θi manager who is

not strategic and always IPO at t = 2. We denote the expected payoff of such non-strategic

manager by NS (θi), which is given by:

NS (θi) ≡ E [Payoff if IPO at t = 2] = E

[
θi + s2
1 + r

]
=

θi
1 + r

.

The expected payoff of a type θi manager that never goes public at t = 1 but is strategic at

t = 2, which we denote by S (θi) (where S stands for strategic), is given by:

S (θi) ≡ E [Payoff if follows IPO strategy θ∗2 at t = 2] .

Finally, we define the option value as the increase in the expected payoff of a manager who

does not IPO in t = 1 from being strategic in t = 2, relative to always IPO in t = 2. The

option value, which we denote by V2 (θi) is given by:

V2 (θi) ≡ S (θi)−NS (θi)

= Pr (s1 < s∗1 (θi))E

[
θi + s3

(1 + r)2
− θi + s2

1 + r
|s1 < s∗1 (θi)

]
.

The following Lemma describes a fairly intuitive property of the option value, which is very

useful in showing existence and uniqueness of the symmetric threshold equilibrium.

Lemma 2 The option value is decreasing in θi, i.e.,

∂V2 (θi)

∂θi
< 0.

Intuitively, the option value is decreasing in θi due to two effects. The first is that

the discounting is comparatively more punitive for higher type firms, and hence, delaying
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disclosure is relatively more costly for high type firms. The second, and more salient effect,

is that the likelihood of taking advantage of the real option in period 2 is decreasing in θi.

The reason for this can be seen from Lemma 1; the manager at time t = 2 only delays

the IPO for suffi ciently negative realizations of s1. Moreover, higher θ firms require even

lower realizations of s1 in order to find it profitable to delay the IPO until t = 3. As such,

the likelihood of obtaining a suffi ciently low realization of s1 such that the manager take

advantage of the real option and delay the IPO at t = 2 is decreasing in his type, θ. So both

of the above effects point at a decreasing real option as a function of the firm’s type, θ. The

proof of the Lemma provides a full and formal analysis.

Having established that the option value from delaying the IPO is decreasing in θ, and

given that the cost of delaying the IPO (due to discounting) is increasing in θ for any given

strategy of the other firms, we can conclude that the optimal strategy in any equilibrium

can be characterized by a disclosure/IPO threshold.

Corollary 1 In any equilibrium, any firm’s optimal strategy is characterized by an IPO

threshold in both t = 1 and t = 2.

We next solve for and analyze the symmetric equilibrium, in which all firms follow the

same strategy. We show that there is a unique symmetric equilibrium. While our main focus

is the symmetric equilibrium in the setting with an unbounded support, we study in section

5 an extension of the model in which the support of firm’s type is bounded from above,

i.e., θ ∈
[
0, θ̄
]
. For this setting, the symmetric equilibrium still always exists, however, for

suffi ciently low discount factors (and suffi ciently low θ̄) we show the existence of another

equilibrium, in which one firm always goes public at t = 1 and all the other firms never IPO

at t = 1. Such an equilibrium does not exist in our main setting in which the support of the

firm’s type is unbounded above.

In a symmetric equilibrium, each manager’s best response to all other managers’strate-

gies, who play a threshold strategy θ∗1, is consequently given by θ
∗
1. The t = 1 threshold level

of all firms is such that each manager of the threshold type, θ∗1, is indifferent between going

public and not going public at t = 1. Therefore, the threshold level is the type for which θ∗1

equals the expected payoff from not going public at t = 1, given in equation (3).
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Lemma 3 The threshold at t = 1 is given by the solution to the following indifference

condition of the manager at t = 1:

θ∗1 = [G (θ∗1)]
N−1

(
θ∗1

1 + r

)
(4)

+
(

1− [G (θ∗1)]
N−1
) F

(
θ∗1

((1+r)−γ)( γr )

)
θ∗1
1+r

+ 1
1+r

γσ2f

(
− θ∗1
((1+r)−γ)( γr )

)
+

(
1− F

(
θ∗1

((1+r)−γ)( γr )

))
θ∗1

(1+r)2
− 1

(1+r)2
γ2σ2f

(
− θ∗1
((1+r)−γ)( γr )

)
 .

3.3 Unique Symmetric Equilibrium

In this part we establish that there exists a unique equilibrium in which all firms follow the

same threshold strategy. We refer to this equilibrium as the symmetric equilibrium. Using

Lemmas 1 − 3, we show existence and uniqueness of a symmetric threshold equilibrium.

Lemmas 1 and 3 tie down the IPO thresholds in a symmetric equilibrium. We use Lemma

2 to show that this equilibrium exists —any firm whose value is above the threshold indeed

finds it optimal to go public at t = 1, given the discounting costs and since the option value

is decreasing in θ. Moreover, we show that the threshold characterized by Lemma 1 and

Lemma 3 is the unique threshold level in the symmetric equilibrium.

Theorem 1 There exists a unique symmetric equilibrium in which firm i, i ∈ {1, 2, ..N},
uses the following IPO threshold strategy:

(i) Firm i goes public at t = 1 if and only if θi ≥ θ∗1, where θ
∗
1 is given by the solution to (4);

(ii) If there was at least one IPO at t = 1, firm i goes public at t = 2 if and only if

θi ≥ θ∗2 (s1) ≡ −s1 ((1 + r)− γ)
(
γ
r

)
, when firm i did not IPO at t = 1;

(iii) If no IPO was made by any firm at t = 1, firm i goes public at t = 2 for all θi.

Proof. Given that the IPO strategy of firm i at t = 2 does not depend on beliefs about θj,

the IPO strategy at t = 2 is given by (ii) and (iii) (note that if no other firm went public at

t = 1 we are back to a two-period setting, in which all firms IPO immediately as they can).

Under the assumption of existence of a threshold equilibrium, any IPO threshold at t = 1

should satisfy the first period’s indifference condition in (4).

At t = 2 the firm will IPO if an only if the expected payoff from IPO is higher than if it

delays the IPO, i.e., it will IPO if θi+E(s2|s1)
1+r

≥ θi+E(s3|s1)
(1+r)2

, which holds for all θi > θ∗2 (s1) =

−s1 ((1 + r)− γ)
(
γ
r

)
. Therefore, no type has an incentive to deviate at t = 2.
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Next, we show that no type has an incentive to deviate at t = 1. Assume that type θi = θ∗1 is

indifferent between going public and delaying the IPO at t = 1. To show that all types higher

(lower) than θ∗1 strictly prefer to IPO (not to IPO) note that the marginal loss in delaying

the IPO for higher (lower) θi is greater (smaller) due to discounting, i.e. discounting is

more pronounced for higher θi’s. In addition, the marginal benefit from delaying the IPO

(captured by the option value) is lower (higher) for higher θi, as shown in Lemma 2. Hence,

no type has an incentive to deviate at t = 1.

Next, we show uniqueness of a symmetric IPO threshold. Assume by contradiction that

there are two values of θ∗1 : θL and θH , where θH > θL, that are consistent with a symmetric

equilibrium. If all firms move from θL to θH , the probability that the other managers will

IPO decreases, which in turn increases any manager’s incentive to IPO. That is, it decreases

the best response IPO threshold. However, this contradicts the assumption of the existence

of a higher threshold θH . A similar argument follows for a lower IPO threshold. More

formally, the manager’s indifference condition at t = 1 is given by:

θi = Pr
(
ND1

j 6=i
)( θi

1 + r

)

+
(
1− Pr

(
ND1

j 6=i
)) Pr (D2

i )E [payoff at t = 2|θi, and IPO at t = 2]

+ Pr (ND2
i )E [payoff at t = 3|θi, and delay IPO at t = 2]


= Pr

(
ND1

j 6=i
)( θi

1 + r

)
+
(
1− Pr

(
ND1

j 6=i
))(

Pr
(
D2
i

) θi
1 + r

+ Pr
(
ND2

i

)( θi
1 + r

+ V2 (θi)

))
=

θi
1 + r

+
(
1− Pr

(
ND1

j 6=i
))

Pr
(
ND2

i

)
V2 (θi) .

If the IPO threshold of firm j 6= i increases to θH , it has no effect on the option value

(conditional on getting to t = 2 when firm j went public at t = 1 and firm i’s type is

θi > θ∗2), however the probability of this event decreases as the threshold of firm i increases.

As such, the right hand side of the above indifference condition decreases, which implies

that, in order for firm i to be indifferent at t = 1, the IPO threshold of firm i at t = 1 must

decrease as well —in contradiction to the assumption of the increased IPO threshold.

Note that in obtaining the above results we imposed no restriction regarding the distribu-

tions of θ, and for tractability we assumed that εt is normally distributed (one can show that

the above Theorem holds for other distributions of the noise term, including distributions

with bounded support such as a uniform distribution).
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As is typical in games with multiple players and a continuous type space, asymmetric

equilibria may also exist. Under certain conditions of the distribution of θ, G (θ), we are can

shed some light on the potential asymmetric equilibria as well. For the two-agent setting,

there exist at most three equilibria —the symmetric equilibrium and two asymmetric equi-

libria —when G (θ) has a nondecreasing hazard rate. This implies that the best response

function for firm i is convex and thus there can be at most three intersections of the two

agents’best response functions. We haven’t been able to confirm or preclude the existence

of these two asymmetric equilibria, however, we can preclude the existence of any other

equilibrium. The following Claim formalizes this result.16

Claim 1 When N = 2, g′ (θ) < 0, and G (θ) has a nondecreasing hazard rate, there are at

most three equilibria: the symmetric equilibrium and two analogous asymmetric equilibria.

The condition that the density function is strictly decreasing and that G (θ) has a non-

decreasing hazard rate hold for a wide variety of distributions, such as the exponential and

certain parameterizations of the Chi-squared and generalized Weibull distributions. Claim 1

implies that the two possible asymmetric equilibria are analogous in the sense that the equi-

librium first period threshold pairs mirror one another, i.e.
(
θ∗1,i, θ

∗
1,j

)
=
(
θ∗1,j, θ

∗
1,i

)
. Hence,

in any asymmetric equilibrium, one firm discloses more often with a low threshold while the

other keeps quiet more often with a high threshold. We explore asymmetric equilibria for

bounded distributions in section 5.

In the next section, we provide comparative statics and empirical predictions that arise

from the symmetric equilibrium.

4 Comparative Statics and Empirical Predictions

We now analyze how the equilibrium is affected by the various parameters. In particular,

we generate empirical predictions with respect to changes in the following parameters of the

model: the discount factor, the rate of mean reversion, and the variance of the error term.

We start by studying the effect of the parameters on the disclosure threshold in the second

period and then study the effect on the first period’s disclosure threshold.

16We can show similar result also for uniform distributions of θ̃, where the difference is that the best
response strategy is concave rather than convex.
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4.1 Comparative Statics for θ∗2

We begin the analysis with the second period’s equilibrium threshold, θ∗2 (s1). Note that the

threshold of the second period, which is the unique best response at t = 2, is independent

of the other firm’s characteristics. So the analysis of this part is independent of whether the

firms are homogeneous or not and the specific characteristics of all the other firms.

Recall that the IPO threshold at t = 2, given that there was at least one IPO at t = 1

(and hence s1 is observed) is given by:

θ∗2 (s1) = −s1 ((1 + r)− γ)
(γ
r

)
.

We will keep everything constant (including s1) and see how the threshold at t = 2 is affected

by changes in: (i) manager i’s discount factor, r; (ii) the extent of persistence in the state of

nature, γ (where lower γ implies higher mean-reversion); and (iii) the variance of the shock

to the state of nature, σε.

Taking the derivative of the threshold with respect to the discount factor, r, yields:

∂

∂r
θ∗2 (s1) =

∂

∂r

(
−s1 ((1 + r)− γ)

(γ
r

))
= − 1

r2
γs1 (γ − 1) < 0.

Note that ∂
∂r
θ∗2 (s1) < 0 since γ ∈ (0, 1) and at the threshold we have s1 < 0. The fact that

the threshold level at t = 2 is decreasing in r is very intuitive. To see this, recall that at the

IPO threshold θ∗2 (s1), at which the manager is indifferent between going public and delaying

the IPO, it must be that θ + s1 > 0 (otherwise the manager would strictly prefer to delay

the IPO to t = 3). Since the expected payoff of the threshold type is positive, an increase in

the discount factor increases the cost from delaying the IPO, and hence, decreases the IPO

threshold (equivalently, for a given θ, the threshold level of s1 is lower).

Next we analyze the effect of the extent of mean-reversion of the state of nature, γ, on

the IPO threshold at t = 2. While the mathematical derivation of this effect is straight

forward, the intuition for the result is a little more complex.
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Taking the derivative of the second period’s threshold with respect to γ, yields:

∂

∂γ
θ∗2 (s1) =

∂

∂γ

(
−s1 ((1 + r)− γ)

(γ
r

))

= −1

r
s1 (r − 2γ + 1) =


> 0 for γ < r+1

2

0 for γ = r+1
2

< 0 otherwise

 .

The direction of the effect of changes in γ on the threshold θ∗2 (s1) varies with the level of

γ. To illustrate the effect of γ on θ∗2 (s1), the figure below plots ∂
∂γ
θ∗2 (s1) as a function of γ

using parameter values r = 0.1 and s = −1
2
.
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Figure 2: The effect of γ on θ∗2 (s1), for r = 0.1 and s = −1
2

To get better intuition for the above result, it might be useful to consider separately the

effect of the idiosyncratic component, θ, and the common factor, s1, on the incentive to

IPO or delay the IPO at t = 2. Since θi ≥ 0 and is constant over time, it always provides

an incentive not to delay the IPO due to discounting. This incentive increases in θ. The

incentive due to the state of nature, which is more complex, is determined by two effects:

(i) the mean-reverting feature of the state of nature (characterized by γ) which provides

incentive to delay the IPO for low realizations of s1; and (ii) the discount factor. For γ = 0

the realizations of the state of nature are iid and s2 and s3 are independent of s1. Hence,

since E (s2|s1) = 0 there is no benefit from delaying the IPO. As such, for γ = 0 all managers

IPO at t = 2 (if they did not IPO already at t = 1). As γ increases from γ = 0 and the mean-

reversion effect is no longer perfect, s1 becomes more informative about s2 and s3. Hence

for negative values of s1 the value from delaying the IPO increases in γ. However, there is a

second, mitigating, effect that stems from the fact that the mean-reversion of s3 decreases as
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γ increases - which decreases the benefit from delaying the IPO at t = 2 for a given {θi, s1}.
For suffi ciently low γ the former effect dominates and the option value increases in γ, and

hence, the IPO threshold increases in γ. As γ further increases, the second effect becomes

relatively more pronounce, such that from one point and on the option value decreases in γ.

As γ approaches one, the process of the state converges to a random-walk and there is no

mean-reversal. Hence, the part of the option value that stems from mean-reversion of low

realizations of s1 disappears, and the only reason the option is still valuable is that when the

expected firm value (θ + s) is negative, there is a benefit from delaying a negative payoff.

Finally, θ∗2 (s1) is independent of the variance in the noise of the state of nature, σ2, and

independent for the distribution of θ (recall that θ is assumed to have a positive support),

conditional on the state of nature s1 being revealed in t = 1. The threshold level in t = 2 is

consequently unaffected by changes in σ2.

4.2 Comparative Statics for θ∗1

The comparative statics for the first period threshold level, θ∗1, are slightly less intuitive,

however, the analysis of θ∗2 (s1) serves as a useful guide. We start with the effect of γ on θ
∗
1:

Proposition 1 The effect of the rate of mean-reversion, γ, on the IPO threshold at t = 1,

θ∗1, is similar to its effect on the second period’s threshold, θ
∗
2 (s1). Specifically,

∂θ∗1
∂γ

=


0 for γ = r+1

2

> 0 for γ < r+1
2

< 0 otherwise

 .

Recall that ∂θ∗2
∂γ

=


0 for γ = r+1

2

> 0 for γ < r+1
2

< 0 otherwise

 . Let’s assume by contradiction that ∂θ∗1
∂γ

< 0

for γ < r+1
2
. An increase in γ affects the expected option value from not going public at

t = 1 in several ways. First, conditional on another firm going public at t = 1, the threshold

at t = 2 increases in γ, which consequently increases the expected value of the option.

Moreover, under the contradictory assumption, the probability that the other firm IPO at

t = 1 increases in γ, and hence the probability of taking advantage of the option value at

t = 2 also increases in γ. Overall, the expected option value increases. The manager thus
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has a stronger incentive not to IPO at t = 1, which contradicts the assumption that θ∗1 is

decreasing in γ. A symmetric argument applies for the case of γ > r+1
2
. A more formal

proof is included in the Appendix. The intuition for the non-monotonicity of the disclosure

threshold in γ follows similar arguments to our discussion in the analysis of the comparative

statics for the second period’s IPO threshold.

Next we analyze the effect of the discount factor, r, on the first period’s threshold. Similar

to the second period’s threshold, the first period threshold is also decreasing in the discount

rate:
∂θ∗1
∂r

< 0.

From the comparative statics for θ∗2, we know that
∂θ∗2(s1)
∂r

< 0, i.e., for a given level of θi the

manager is more likely to IPO in the second period for higher values of r, and hence, is less

likely to take advantage of the real option. In addition, a higher r increases the manager’s

cost from delaying the IPO. Both effects lead to a stronger incentive to IPO at t = 1. This

results in a lower IPO threshold at t = 1 for higher values of r.

Next, we consider the effect of the variance of the periodic innovation in the state of

nature, σ, on the first period threshold.

Proposition 2 The first period IPO threshold is increasing in the variance of the state of

nature, σ2ε, i.e., a higher variance induces less IPO in the first period:

∂θ∗1
∂σ2ε

> 0.

The intuition for this result is that an increase in volatility increases the value of the

option, and hence, induces less IPO in the first period. This implies that the threshold of

the first period is increasing in the variance, σ2ε. While this is intuitive, the proof (which is

relegated to the appendix) requires a few steps. Finally, we examine the effect of an increase

in the number of firms on the t = 1 threshold.

Proposition 3 The first period threshold is increasing in the number of firms, i.e.

∂θ∗1
∂N

> 0.

We see that the threshold level in the first period rises as more private firms enter the

industry. This occurs since the likelihood of disclosure by at least one firm rises in N , thus
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leading to a greater incentive to delay the IPO. The following section discusses the empirical

implications of these results.

4.3 Empirical implications and predictions

The results help explain several documented results as well as offer numerous avenues for fu-

ture research in terms of empirical predictions. The model gives implications for the timing—

when firms decide to IPO—and the clustering of IPOs. By (information-based) clustering, we

mean that at least two firms disclose and go public within two consecutive periods, primarily

with respect to the first two periods. The results of the model imply that the clustering of

IPOs is driven by the realization of a common valuation factor, which is consistent with

the hypotheses of Lowry and Schwert (2002) and Benveniste et al. (2003). Moreover, the

results imply that IPO clustering should disproportionately feature firms within a specific

industry, and that clustering emerges following high initial returns of recent IPOs, which has

been documented by Ritter (1984) and Lowry and Schwert (2002). The model also implies

dispersion of IPOs under weak market conditions, which helps to explain bust patterns of

IPOs, as documented in Ibbotson and Ritter (1995).

The results are in contrast to the predictions of Benveniste, Busaba, and Wilhelm (2002),

who suggest that IPO clustering emerges due to bundling by investment banks. When the

timing decision is endogenized, we see that there is always a positive amount of delay in the

IPO times of some firms, but that other firms find it profitable to go public without delay

and forgo potential informational rents. Hence, the first immediate prediction of the model

is that firms with higher market valuations (e.g. in terms of historical earnings) go public

earlier than firms with comparatively lower pre-IPO valuations. Another implication is that

following a “successful”IPO in the first period, in which the state of nature is revealed to

be relatively high, we expect clustering of IPOs. Our particular and stylized setting assumes

that the distribution of the innovation in the state of nature is symmetric, which implies

that all firms will IPO following a state of nature that is above the mean. However, under a

more general distribution of the innovation in the state of nature, higher realizations of the

state of nature in the first period increase the expected number of firms that will go public

in the second period. The following corollary summarizes these immediate predictions of the

model:
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Corollary 2 In the unique symmetric equilibrium:

• The higher a firm’s type, the earlier it will disclose and go public.

• The expected number of IPOs in the second period, following an IPO in the first period,
is increasing in the realization of the state of nature in the first period.

The results also imply several other predictions which are less intuitive. With respect

to the timing, Proposition 2 implies that there are fewer "early" IPOs in nascent industries

who face greater uncertainty over their common valuation factor or market conditions. Thus,

we expect more delay in the IPOs, perhaps ineffi ciently so, with more uncertainty. This is

expected, however, the model also implies that the likelihood of clustering and the intensity

of IPOs waves is also lower following initial IPOs in industries with greater uncertainty in

their pricing prospects. As shown in Proposition 2, fewer firms go public in the first period

when there is greater uncertainty. Moreover, since the likelihood of drawing a low state, s1,

is higher with a greater variance, σ2ε, there is a higher probability that firms delay their IPOs

until the last period, after having observed an IPO in the first period. Hence, we expect

more delay and less clustering in the IPOs of firms in less mature industries or when there

is greater market or macroeconomic uncertainty. This prediction stated in the following

corollary:

Corollary 3 More firms delay their IPO issues as σ2ε increases, and the likelihood of clus-

tering is decreasing in σ2ε.

The results of the model also imply that there should be more delay and fewer early IPOs

in more heavily populated industries where firms are predominately private. However, the

likelihood and size of clustering, conditional on at least one firm going public in the first

period, should be higher in industries with a comparatively larger number of (private) firms.

The first prediction is implied from Proposition 3—the more concentrated the industry, the

fewer firms that go public in the first period. Furthermore, as more high-type firms delay

their IPO time, the likelihood of clustering increases as these high-type firms are also more

likely to disclose in the second period. This occurs since a lower state, s1, is necessary to

induce delay in the second period for high-type firms (as shown by Lemma 1). Hence, the

more populous an (nascent) industry is with private firms, the less timely the IPOs, but the

more likely clustering ensues and with a more intense IPO wave:

25



Corollary 4 With a greater number of firms, overall delay increases and there is a greater

likelihood of clustering. Clustering which emerges is more intense; more firms go public in

the second period following an IPO.

Lastly, Proposition 1 implies that there should be less delay with high persistence of

the common valuation or the market/macroeconomic conditions. Similarly, the likelihood of

clustering is also greater with high persistence.

5 Extensions and Robustness

This section offers several extensions of the base model. We start with the, almost trivial,

extension in which following an IPO the market’s information about the common factor is

not perfect (Section 5.1). This is then used in our main extension in which the precision of

market’s beliefs about the common factor increases in the number of firms that go public

(Section 5.2). We start with the simpler variation in which we exogenously assume that

the precision of the information about the common factor increases in the number of IPOs.

We then discuss the case in which the relation between the precision of beliefs about the

common factor and the number of IPOs evolves endogenously. In particular, at the end of

each period, the market gets to observe the prices of all the IPOs that took place, however,

the market cannot perfectly disentangle each firm’s idiosyncratic component (θi - which is

not perfectly disclosed in this setting) and the common factor. As such, the more IPOs take

place in a given period the more the market learns about the common factor. In all of the

above extensions, the main results of the basic setting still hold. Finally, we study a setting

in which the firms’type belong to a bounded support and show that while the symmetric

equilibrium always exists, there may be an additional type of equilibrium in which one firm

always IPO in the first period where all the other firms always delay their IPO in the first

period.

5.1 Noisy Signal of the Common Factor

In the baseline model, we assumed that all firms observe the realization of the common

factor at t = 1, s1, if there was at least one IPO in the first period. We now relax this

feature and instead assume that firms receive an imperfect signal of s1 upon an IPO by at
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least one firm at time t = 1. Denote this signal by q1 = s1 + δ, where δ ∼ N (0, σ2δ). The

second period threshold stated in Lemma 1 is qualitatively identical under this alternative

framework, where the quantitative difference is only due to the difference in the precision of

beliefs about the common factor. The unique optimal threshold in t = 2, which we denote

by θ∗2 (q1), is given by:

θ∗2 (q1) = −q1 ·
σ2ε

σ2ε + σ2δ
((1 + r)− γ)

(γ
r

)
.

For negative realizations of q1, the threshold is decreasing in the variance of the noise in

the signal about the common factor, σ2δ, and hence disclosure is more likely in the second

period with a less informative signal. The first period threshold is also analogously derived

from the baseline setting. Denote the posterior distribution of s1 byH (·) and the conditional
variance of s1 after observing q1 by σ2c . The equilibrium first period threshold is given as:

θ∗i = [G (θ∗1)]
N−1

(
θ∗i

1 + r

)

+
(

1− [G (θ∗1)]
N−1
) H

(
θ∗i (σ2ε+σ2δ)

σ2ε((1+r)−γ)( γr )

)
θ∗i
1+r

+ 1
1+r

γσ2c · h
(
− θ∗i (σ2ε+σ2δ)
σ2ε((1+r)−γ)( γr )

)
+

(
1−H

(
θ∗i (σ2ε+σ2δ)

σ2ε((1+r)−γ)( γr )

))
θ∗i

(1+r)2
− 1

(1+r)2
γσ2c · h

(
− θ∗i (σ2ε+σ2δ)
σ2ε((1+r)−γ)( γr )

)
 .

The qualitative properties of the first period threshold are unchanged. Moreover, Lemma 2

and Theorem 1 continue to hold in this setting as well. The effect of the precision of the

signal q1 is presented in the following corollary:

Corollary 5 Both θ∗2 and θ
∗
1 decrease in σ

2
δ.

The first part of the result follows immediately from the expression of θ∗2. Intuitively,

when the signal becomes less informative, the value of learning about the state of nature

decreases, and hence, firms have an incentive to go public for lower values of θi . Likewise,

the benefit of delaying the IPO in the first period decreases as σ2δ increases, as the value of

the real option declines. Hence, firms are induced to disclose more frequently, thus resulting

in a lower disclosure threshold in the first period.
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5.2 Increased Learning in the Number of IPOs

In this extension we relax the assumption that the precision of the market beliefs about the

common factor is independent of the number of IPO. In particular, we study a setting in

which the more IPOs that occur in a given period, the higher the precision the market has

about the common factor. The simplest way of introducing this feature is by extending the

setting in Section 5.1, in which firms observe a noisy signal of s1, by adding the assumption

that the precision of the signal increases with the number of IPOs at t = 1. That is, assuming

that q1 = s1+δ, where δ ∼ N (0, σ2δ) and σ
2
δ is decreasing in the number of first period IPOs.

As will be apparent by the end of this section, all the results of the previous sections are

robust to this specification of the model.

Another way to capture this feature, in an endogenous way, is by assuming that at the

end of each period the market observes the pricing of every IPO. The pricing, as before, is

determined by the firm’s idiosyncratic component and the common factor, however in this

setting the firm does not disclose its type θi, so the market cannot perfectly disentangle the

firm’s idiosyncratic component from the common factor. In such a setting, the precision of

the inference about the state of nature, s1, is increasing in the number of IPOs in the first

period.

The baseline model assumes for simplicity that the firm must make a truthful disclosure

of its idiosyncratic component, θi, prior to going public. This is meant to capture the

information that is shared in its prospectus and SEC disclosures. However, it may be the

case that remaining firms and the market are unable to perfectly learn the firm’s type, and

hence unable to perfectly disentangle the two components of the price for a first period

IPO, P i
1 = θi + s1, and rather just observe the vector of prices for the n firms who went

public at time 1, P1 = (P 11 , ..., P
n
1 ). We show that our model is largely insensitive to this

framework, though it poses additional algebraic intensity which may shift attention away

from the fundamental tension we study.

Similar to the imperfect observability case in section 5.1, the second period threshold is

given by:

θ∗2 (P1) = −E (s1|P1) [(1 + r)− γ]
γ

r
, (5)

which is an increasing function of E (s1|P1), given that E (s1|P1) is monotonically increasing
in P1. Since s1 is normally distributed, monotonicity of E (s1|P1) holds for a wide range of
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distributions for θi, such as normal, uniform, exponential, gamma, and Pareto distributions.

For simplicity, we assume that θi ∼ N (µθ, σ
2
θ). This assumption implies that the distribution

of s1 conditional on observing an IPO price, P i
1, is a truncated normal distribution. As such,

the qualitative results concerning the second period threshold are not affected.

Similarly, the first period threshold level is also qualitatively unchanged. The primary

results rely on the fact that the option value is decreasing in θi. When the agent indirectly

observes s1 after an IPO, the option value continues to decrease in θi. The decreasing

option value is a result of the more severe beliefs about the state s1 necessary for higher

types to exercise the option in the second period. This property continues to hold in the

modified second period threshold in equation (5). Specifically, higher θi values require a

lower E (s1|P1) in order to go public in the second period, thus lowering the probability of
going public in the second period. This implies, as in the baseline setting, that the option

value is decreasing in θi.

The IPO threshold in t = 1 is similar to the baseline case and the setting in Section 5.1,

with the difference that now each firm must take account for all the permutations of the

number of IPOs by other firms and the corresponding value of the real option from delaying

the IPO. Since the posterior distribution of s1, in particular the precision of the beliefs about

s1, varies with the number of IPOs, the number of IPOs by other firms affects the value of

a firm’s the real option from delaying its IPO.

We first rearrange equation (5) to be in terms of the minimum expected value of the

common factor for which a firm with type θi will go public in t = 2 . We denote it by x∗ (θi)

where

x∗ (θi) ≡ E∗ (s1|P1) = − θi
((1 + r)− γ) γ

r

.

That is, for any given θi, firm i will IPO at t = 2 if and only if E (s1|P1) > x∗. The

probability of such an event is Cn
(

θi
((1+r)−γ) γ

r

)
where Cn (·) is the joint CDF of s1+θ−i given

that n firms went public at time 1. Note that we have a shifting support, as any P i
1 < θ∗1

implies that s1 < 0. Moreover, because the distribution of IPO firms is bounded below by

the first period threshold, θ∗1, we can always determine an upper bound for the support of the

posterior distribution of s1 (e.g. when P
j
1 = 20 and θ∗1 = 10, then s1 is at most 10). Thus,

the conditional CDF Cn will be the convolution of a normal and a truncated distribution(s).

The setting here is a bit more involved than in the baseline case, as the precision of the
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beliefs about s1 depends on the number of firms who went public in period 1. Hence, the

manager’s strategy must account for the different potential number of IPOs by other firms.

This makes the derivation of the optimal threshold algebraically more cumbersome, however

the economic forces driving the result are maintained. For ease of exposition, we assume

N = 3. The symmetric t = 1 indifference condition is given by:

θ∗1 = G (θ∗1)
2

(
θ∗1

1 + r

)
(6)

+2 (1−G (θ∗1))G (θ∗1)

 C1

(
θ∗1

((1+r)−γ) γ
r

)
E

[
θ∗1+s2
1+r
|x∗ > − θ1

((1+r)−γ)( γr )

]
+
(

1− C1
(

θi
((1+r)−γ) γ

r

))
E

[
θ∗1+s3
(1+r)2

|x∗ ≤ − θ1
((1+r)−γ)( γr )

]


+ (1−G (θ∗1))
2

 C2

(
θi

((1+r)−γ) γ
r

)
E

[
θ∗1+s2
1+r
|x∗ > − θ1

((1+r)−γ)( γr )

]
+
(

1− C2
(

θ∗1
((1+r)−γ) γ

r

))
E

[
θ∗1+s3
(1+r)2

|x∗ ≤ − θ1
((1+r)−γ)( γr )

]


The first term on the RHS in equation (6) is manager i’s expected payoff following no IPOs in

the first period. The second term on the RHS is the expected payoff following an IPO by one

of the other two firms, where the probability of such an event is 2 (1−G (θ∗1))G (θ∗1). The

third term is the expected payoff if both of the other firms go public, where the distribution

of this even is (1−G (θ∗1))
2. We see that this is analogous to the baseline setting, except for

the fact that we now have a different distribution of εt. Note that the proof of Lemma 2 was

shown for general distributions of εt. Hence, the fact that the option value is decreasing in

θi holds under this setting. The existence argument of Theorem 1 continues to hold under

this setting as well.

One concern in this setting is if multiple symmetric equilibria can exist. Recall that

the symmetric threshold θ∗1 exactly offsets the cost of waiting with the benefit of waiting.

Correspondingly, multiple symmetric equilibria occur only if a different symmetric threshold

for θi results in a different posterior about s1 that lowers the option value of waiting. However,

the informativeness of P1 does not depend on the threshold level θ
∗
1, but only on the number

of firms going public. Hence, the monotone properties of the option as related to θ∗1 continue

to hold (the option value is lower when the threshold is higher, and the option value is higher

when the threshold is lower), thus preserving uniqueness.
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This alternative specification heavily complicates the algebra and the subsequent com-

parative statics analysis, without adding significant qualitative insights. As such, we do not

use it as our baseline model, but rather present it as an extension to reinforce the results of

our simpler baseline model.

5.3 Bounded Support - Symmetric and Non-Symmetric Equilibria

In this subsection we show that, when the support of θ is bounded from above, i.e. θ ∈
[
θ, θ̄
]
,

and the discount rate is suffi ciently low, there exists, in addition to the symmetric equilibrium

which we characterized in Theorem 1, equilibria in which only one firm always discloses at

t = 1 and the others always delay. We define this special asymmetric threshold equilibrium

as the "asymmetric" equilibrium:

Definition 1 Define the asymmetric equilibrium as one where the first period threshold for

player j 6= i is θ∗1,j = θ, and the first period threshold for all other players is θ∗1,−j = θ̄.

We further divide the support of the discount rate, r, into three regions.
(
0, rL

)
,
(
rL, rH

)
and

(
rH ,∞

)
, where:

Definition 2 rH is such that, given disclosure by at least one other firm at t = 1 with

probability 1 (so that s1 is revealed for sure), a firm with the lowest type, θ = 0, is indifferent

between disclosing and not disclosing at t = 1.

rL is such that, given disclosure by at least one other firm at t = 1 with probability 1 (so that

s1 is revealed for sure), a firm with the highest type, θ = θ̄, is indifferent between disclosing

and not disclosing at t = 1.

We know show the existence of the discount rate thresholds that define the set of equilibria

in the given regions of r:

Proposition 4 The set of equilibria for each of the above regions of the discount factor are

as follows:

1. For r ∈
(
rH ,∞

)
the unique equilibrium is the symmetric equilibrium in which all firms

disclose at t = 1, i.e., θ∗1 = θ.
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2. For r ∈
(
rL, rH

)
the unique equilibrium is the symmetric equilibrium defined in Theo-

rem 1, in which all firms disclose at t = 1 if and only if their type is greater than the

interior disclosure threshold, θ∗1.

3. For r ∈
(
0, rL

)
: there exist both the symmetric equilibrium with interior disclosure

threshold as well as N asymmetric equilibria.

The intuition for the proof is relatively straightforward. For r ∈
(
rH ,∞

)
any firm always

prefers to disclose at t = 1, as even if the lowest type, θ = 0, knows for certainty that s1 will

be revealed, the discounting is too severe to justify delay of disclosure. For r ∈
(
0, rL

)
any

firm that believes that at least one other firm will disclose is better off not disclosing over

disclosing at t = 1. To show the existence of the asymmetric equilibrium assume that one

firm, firm i, always discloses at t = 1. The best response of all other firms is not to disclose

at t = 1. Now, given that the probability that any other firm will disclose at t = 1 is zero,

it is optimal for firm i to disclose at t = 1. So for r ∈
(
0, rL

)
there exist N asymmetric

equilibria such that in each one of them a single firm always discloses at t = 1 and all the

other firms do not disclose at t = 1. Finally, for r ∈
(
rL, rH

)
there are suffi ciently high types

that will disclose at t = 1 even if they are certain that s1 will be observed. Hence, there is

always a positive probability that at least one firm will disclose at t = 1. Let’s assume by

contradiction that there exists an asymmetric equilibrium in which firm i always discloses.

Then, there exists a disclosure threshold, such that any other firm discloses if and only if its

type is lower than this threshold. This, however implies that there is a positive probability

that a firm other than firm i will disclose at t = 1. As such, if the realized type of firm i is

suffi ciently low, the discount effect can be arbitrarily low and the value of the real option is

strictly positive. Therefore, firm i will disclose for suffi ciently low types - in contradiction to

the assumption that firm i does not disclose.

6 Conclusion

In this study we have developed a model to help shed light on the strategic interaction

between firms who decide to disclose information and sell shares or a project. We have

shown that the unique equilibrium is in threshold strategies where all players follow identical

strategies. The primary implication of this result is that, in the presence of other firms and
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common uncertainty, there is always a positive amount of delay of IPOs in equilibrium.

Several extensions can be considered for future work. We have considered only cases

in which the disclosure of the firm’s value if verifiable and non-manipulable. A possibly

interesting study would be to relax this assumption, in which case firm managers can engage

in costly manipulation of the firm’s value. We have also assumed that the firm’s type

(idiosyncratic component) is constant over time. A potentially interesting research question

is to investigate a model where the firm’s value also follows a stochastic process. Lastly,

our model can be extended to a continuous time setting with finite number of firms. We

conjecture that in a continuous time setting there exists an equilibrium in which each firm’s

delay of the IPO is decreasing in the firm’s type and the more negative the revealed state of

nature is, the more firms delay their IPOs. As such, the continuous time setting seems to

share the main characteristics of our discrete time model.
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7 Appendix

Proof of Lemma 1. By the second period indifference condition, we have:

θi + E (s2|s1)
1 + r

=
θi + E (s3|s1)

(1 + r)2

θi + γs1
1 + r

=
θi + γ2s1

(1 + r)2

θi

(
r

1 + r

)
=

γ2s1
1 + r

− γs1 = s1

(
γ

1 + r
− 1

)
γ

θ∗2 (s1) = −s1 ((1 + r)− γ)
(γ
r

)
.

Proof of Lemma 2. The option value is equal to the likelihood that the firm which did

not disclose at t = 1 chooses not to disclose at t = 2 times the increase in expected payoff

due to the delay in the disclosure, which is

V2 (θi) = S (θi)−NS (θi) = Pr (S < s∗1 (θi))E

[
θi + s3

(1 + r)2
− θi + s2

1 + r
|s1 < s∗1 (θi)

]
, (7)

where s∗1 (θi) is the value of s1 such that the agent is indifferent between disclosing and not

disclosing at t = 2. From equation (1) ,we have:

s∗1 (θi) = − θi

((1 + r)− γ)
(
γ
r

)
Note that

∂s∗1 (θi)

∂θi
< 0,

which implies that also
∂ Pr (S < s∗1 (θi))

∂θi
< 0.

The derivative of the option value with respect to θi is:

∂

∂θi
V2 (θi) =

∂

∂θi

[
Pr (S < s∗1 (θi))E

[
θi + s3

(1 + r)2
− θi + s2

1 + r
|s1 < s∗1 (θi)

]]
=

∂

∂θi

[
F (s∗1 (θi)) ·

(
1

F (s∗1 (θi))

∫ s∗1(θi)

−∞

(
θi + E (s3|s1)

(1 + r)2
− θi + E (s2|s1)

1 + r

)
f (s1) ds1

)]
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Plugging in E (s2|s1) =
∫∞
−∞ (γs1 + ε2) f (ε2) dε2 and

E (s3|s1) =
∫∞
−∞

(
γ
∫∞
−∞ (γs1 + ε2) f (ε2) dε2 + ε3

)
f (ε3) dε3, yields:

∂

∂θi
V2 (θi) =

∂

∂θi

∫ s∗1(θi)

−∞

 θi+
∫∞
−∞(γ

∫∞
−∞(γs1+ε2)f(ε2)dε2+ε3)f(ε3)dε3

(1+r)2

− θi+
∫∞
−∞(γs1+ε2)f(ε2)dε2

1+r

 f (s1) ds1

=
∂

∂θi

∫ s∗1(θi)

−∞

[
θi + γ2s1

(1 + r)2
− θi + γs1

1 + r

]
f (s1) ds1

Recall that s∗1 (θi) is the value of s1 such that a firm of type θi is indifferent between disclosing

in t = 2 or t = 3 upon the realization of s1 in the beginning of t = 2. Hence, by definition,

we have that θi+γ
2s1

(1+r)2
− θi+γs1

1+r
> 0 for all s < s∗1 (θi) (i.e. it is more profitable to wait until

t = 3 for even worse/more negative realizations of s1. A marginal increase in θi thus has

two effects. First, we see immediately that ∂
∂θi

(
θi+γ

2s1
(1+r)2

− θi+γs1
1+r

)
= 1

1+r

(
1
1+r
− 1
)
< 0 since

r > 0. Moreover, s∗1 (θi) is decreasing in θi (i.e. the s1 required for a higher θi to be indifferent

must be even more negative), and thus the interval over which we integrate is truncated as

θi increases. Hence, the integral
∫ s∗1(θi)
−∞

[
θi+γ

2s1
(1+r)2

− θi+γs1
1+r

]
f (s1) ds1 is decreasing in θi.

This can also be explicitly shown. Using Leibniz’s rule, we have

∂

∂θi

∫ s∗1(θi)

−∞

[
θi + γ2s1

(1 + r)2
− θi + γs1

1 + r

]
f (s1) ds1

=

∫ s∗1(θi)

−∞

∂

∂θi

[
θi + γ2s1

(1 + r)2
− θi + γs1

1 + r

]
f (s1) ds1 +

∂s∗1 (θi)

∂θi

[
θi + γ2s∗2 (θ1)

(1 + r)2
− θi + γs∗1 (θi)

1 + r

]
f (s∗2)

=

∫ s∗1(θi)

−∞

[
1

(1 + r)2
− 1

1 + r

]
f (s1) ds1

+

∂
(
− θi
((1+r)−γ)( γr )

)
∂θi


θi + γ2

(
− θi
((1+r)−γ)( γr )

)
(1 + r)2

−
θi + γ

(
− θi
((1+r)−γ)( γr )

)
1 + r

 f (s∗2)

=

∫ s∗1(θi)

−∞

[
1

(1 + r)2
− 1

1 + r

]
f (s1) ds1 −

[
r

γ (r − γ + 1)

]
[0] f (s∗2)

=

∫ s∗1(θi)

−∞

−r
(1 + r)2

f (s1) ds1

< 0.

Note that s1 = ε1 and we define the integral in terms of s1 rather than ε1 for presentational
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ease. Also note that the proof does not rely on a specific distribution of ε, as such the result

that the option value decreases in θi holds for any distribution of ε.

Proof of Lemma 3. Starting from (2), given our disclosure threshold in t = 2, (2)

becomes:

[G (θ∗1)]
N−1

(
θi

1 + r

)
+
(

1− [G (θ∗1)]
N−1
)

·

 Pr
[
θi > −s1 ((1 + r)− γ)

(
γ
r

)]
E
[
θi+s2
1+r
|θi > −s1 ((1 + r)− γ)

(
γ
r

)]
+ Pr

[
θi ≤ −s1 ((1 + r)− γ)

(
γ
r

)]
E
[
θi+s3
(1+r)2

|θi ≤ −s1 ((1 + r)− γ)
(
γ
r

)]
 . (8)

Note that in any point in time, the agent knows the value of her θ. Next, we calculate each

of the terms above:

Pr
[
θi > −s1 ((1 + r)− γ)

(γ
r

)]
= Pr

[
s1 > −

θi

((1 + r)− γ)
(
γ
r

)] = F

(
θi

((1 + r)− γ)
(
γ
r

)) .
And:

E

[
θi + s2
1 + r

|θi > −s1 ((1 + r)− γ)
(γ
r

)]
= E

[
θi + s2
1 + r

|s1 > −
θi

((1 + r)− γ)
(
γ
r

)] .
Which becomes:

1

F

(
θi

((1+r)−γ)( γr )

) ∫ ∞
− θi
((1+r)−γ)( γr )

θi + E (s2|s1)
1 + r

f (s1) ds1

=
θi

1 + r
+

1

1 + r

1

F

(
θi

((1+r)−γ)( γr )

) ∫ ∞
− θi
((1+r)−γ)( γr )

[E (s2|s1)] f (s1) ds1

=
θi

1 + r
+

1

1 + r

1

F

(
θi

((1+r)−γ)( γr )

) ∫ ∞
− θi
((1+r)−γ)( γr )

[∫ ∞
−∞

(γs1 + ε2) f (ε2) dε2

]
f (s1) ds1

=
θi

1 + r
+

1

1 + r

1

F

(
θi

((1+r)−γ)( γr )

) ∫ ∞
− θi
((1+r)−γ)( γr )

γs1f (s1) ds1

=
θi

1 + r
+

1

1 + r
γE

[
s1|s1 > −

θi

((1 + r)− γ)
(
γ
r

)] .
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Recall that the formula for the expectation of the truncated normal distribution where

x ∼ N (µx, σ
2) is17:

E (x|x ∈ [a, b]) = µx − σ2
f(b)− f(a)

F (b)− F (a)
.

Using the above formula, we have:

E

[
θi + s2
1 + r

|θi > −s1 ((1 + r)− γ)
(γ
r

)]
=

θi
1 + r

+
1

1 + r
γ

0− σ2ε
−f(− θi

((1+r)−γ)( γr )
)

1− F (− θi
((1+r)−γ)( γr )

)


=

θi
1 + r

+
1

1 + r
γ

σ2ε f(− θi
((1+r)−γ)( γr )

)

F ( θi
((1+r)−γ)( γr )

)

 .

Finally:

E

[
θi + s3

(1 + r)2
|θi ≤ −s1 ((1 + r)− γ)

(γ
r

)]
=

θi

(1 + r)2
+

1

(1 + r)2
γ2E

[
s1|s1 < −

θi

((1 + r)− γ)
(
γ
r

)]

=
θi

(1 + r)2
+

1

(1 + r)2
γ2

−σ2ε f(− θi
((1+r)−γ)( γr )

)− 0

F (− θi
((1+r)−γ)( γr )

)− 0



=
θi

(1 + r)2
+

1

(1 + r)2
γ2

−σ2ε f(− θi
((1+r)−γ)( γr )

)(
1− F ( θi

((1+r)−γ)( γr )
)

)
 .

Plugging this back to (2):

[G (θ∗1)]
N−1

(
θi

1 + r

)
(9)

+
(

1− [G (θ∗1)]
N−1
)


F

(
θi

((1+r)−γ)( γr )

)(
θi
1+r

+ 1
1+r

γ

(
σ2ε

f(− θi
((1+r)−γ)( γr )

)

F (
θi

((1+r)−γ)( γr )
)

))

+

(
1− F

(
θi

((1+r)−γ)( γr )

))(
θi

(1+r)2
+ 1

(1+r)2
γ2

(
−σ2ε

f(− θi
((1+r)−γ)( γr )

)(
1−F ( θi

((1+r)−γ)( γr )
)

)
))


17For a = −∞ we have

E (x|x < b) = µx − σ2
f(b)

F (b)
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= [G (θ∗1)]
N−1

(
θi

1 + r

)
(10)

+
(

1− [G (θ∗1)]
N−1
) F

(
θi

((1+r)−γ)( γr )

)
θi
1+r

+ 1
1+r

γσ2εf

(
− θi
((1+r)−γ)( γr )

)
+

(
1− F

(
θi

((1+r)−γ)( γr )

))
θi

(1+r)2
− 1

(1+r)2
γσ2εf

(
− θi
((1+r)−γ)( γr )

)


The disclosure threshold for t = 1, θ∗1, is such that the agent is indifferent between disclosing

at t = 1 and obtaining θ∗1 +E [s1] = θ∗1 and the expected payoff from not disclosing at t = 1,

given in (10). So the candidate for a disclosure threshold is the solution to:

θ∗1 = [G (θ∗1)]
N−1

(
θ∗1

1 + r

)

+
(

1− [G (θ∗1)]
N−1
) F

(
θ∗1

((1+r)−γ)( γr )

)
θ∗1
1+r

+ 1
1+r

γσ2εf

(
− θ∗1
((1+r)−γ)( γr )

)
+

(
1− F

(
θ∗1

((1+r)−γ)( γr )

))
θ∗1

(1+r)2
− 1

(1+r)2
γ2σ2εf

(
− θ∗1
((1+r)−γ)( γr )

)


Proof of Proposition 1. Recall that θ ∼ G (θ). To simplify notation, we let the first

period threshold for player i, θ∗1,i, be denoted as θ
∗
i , e.g. firm 2’s first period threshold is

given by θ∗2. Firm 1’s best response function is defined by the indifference condition found

in Lemma 3:

θ∗1 = G (θ∗2)

(
θ∗1

1 + r

)
(11)

+ (1−G (θ∗2))

 Fε

(
θ∗1

((1+r)−γ)( γr )

)
θ∗1
1+r

+ 1
1+r

γσ2fε

(
− θ∗1
((1+r)−γ)( γr )

)
+

(
1− Fε

(
θ∗1

((1+r)−γ)( γr )

))
θ∗1

(1+r)2
− 1

(1+r)2
γ2σ2fε

(
− θ∗1
((1+r)−γ)( γr )

)


= G (θ∗2)

(
θ1

1 + r

)
+ (1−G (θ∗2)) [NS (θ∗1) + V2 (θ∗1)] (12)

Let K (θ1, θ2) be defined as:

K (θ1, θ2) = G (θ2)

(
θ1

1 + r

)
+ (1−G (θ2)) [NS (θ1) + V2 (θ1)]− θ1
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And hence,

dθ1
dθ2

= −
∂K
∂θ2
∂K
∂θ1

= −
g (θ2)

(
θ1
1+r

)
− g (θ2) [NS (θ1) + V2 (θ1)]

G (θ2)
(

1
1+r

)
+ (1−G (θ2))

∂[NS(θ1)+V2(θ1)]
∂θ1

− 1

= −
g (θ2)

(
θ1
1+r

)
− g (θ2) [NS (θ1) + V2 (θ1)]

G (θ2)
(

1
1+r

)
+ (1−G (θ2))

[
1
1+r

+
∫ s∗1(θi)
−∞

−r
(1+r)2

f (s1) ds1

]
− 1

= − −g (θ2)V2 (θ1)

G (θ2)
(

1
1+r

)
+ (1−G (θ2))

[
1
1+r

+ −r
(1+r)2

F (s∗1 (θi))
]
− 1

= − −g (θ2)V2 (θ1)(
1
1+r

)
+ (1−G (θ2))

[
−r

(1+r)2
F (s∗1 (θi))

]
− 1

< 0

Note that −r
(1+r)2

F (s∗1 (θi)) < 0 and hence the numerator is negative when f (·) > 0 for it’s

support. This is expected as an increase in θ2 results in a decrease in the probability that

agent 1 observes s1, which results in a lower threshold θ1 necessary to satisfy indifference.

Next, we take the second derivative:

d2θ1

(dθ∗2)
2 =

d2g (θ1, θ
∗
2)

(dθ∗2)
2 =

d

dθ∗2

 g (θ2)V2 (θ1)(
1
1+r

)
+ (1−G (θ2))

[
−r

(1+r)2
F (s∗1 (θi))

]
− 1


which is:

d2θ1

(dθ∗2)
2 = V2 (θ1)

g′ (θ2)
((

1
1+r

)
+ (1−G (θ2))

[
−r

(1+r)2
F (s∗1 (θi))

]
− 1
)

+ (g (θ2))
2
[
−r

(1+r)2
F (s∗1 (θi))

]
((

1
1+r

)
+ (1−G (θ2))

[
−r

(1+r)2
F (s∗1 (θi))

]
− 1
)2

(13)

Note that the denominator in equation (13) is always positive. Let a = r
(1+r)2

F (s∗1 (θi)).

Examining the numerator, we have:

g′ · V2 (θ1)

((
1

1 + r

)
+ (1−G) [−a]− 1

)
+ g2 [−a]V2 (θ1) > 0

g′
((

1

1 + r

)
+ (1−G) [−a]− 1

)
+ g2 (−a) > 0

g′
((

−r
1 + r

)
+ (1−G) [−a]

)
+ g2 (−a) > 0,
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which holds if

g′
((

−r
1 + r

)
+ (1−G) [−a]

)
− g′ · (1−G) (−a) > 0((

−r
1 + r

)
+ (1−G) [−a]

)
− (1−G) (−a) < 0

−
((

−r
1 + r

)
+ (1−G) [−a]

)
+ (1−G) (−a) > 0

r

1 + r
− (1−G) [−a] + (1−G) (−a) > 0

r

1 + r
> 0.

Which always holds since r > 0. Note this uses the fact that g2 ≥ −g′ · (1−G), which can

be seen by the nondecreasing hazard rate:

h′ (θ) =
g′ · (1−G) + g2

(1−G)2
≥ 0,

which implies

g′ · (1−G) + g2 ≥ 0

g′ · (1−G) ≥ −g2

−g′ · (1−G) ≤ g2

Therefore
d2θ∗1

(dθ∗2)
2 > 0

Which implies that the best response is a decreasing convex function. Since the two best

response functions are symmetric, there can only be 3 possible intersections.

Proof of Proposition 1. From Lemma 2 we know that

V2 (θi) =

∫ s∗1(θi)

−∞

[
θi + γ2s1

(1 + r)2
− θi + γs1

1 + r

]
f (s1) ds1.

Since the discount rate is held constant, the first period threshold changes in γ according to

the change in the option value and the change in θ∗2. Taking the derivative of V2 (θi) with
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respect to γ and substituting s∗1 (θi) = − θir
γ(1+r)−γ2 we get

∂

∂γ

∫ s∗1(θi)

−∞

[
θi + γ2s1

(1 + r)2
− θi + γs1

1 + r

]
f (s1) ds1

=

∫ s∗1(θi)

−∞

∂

∂γ

[
θi + γ2s1

(1 + r)2
− θi + γs1

1 + r

]
f (s1) ds1 +

∂s∗1 (θi)

∂γ

[
θi + γ2s∗1 (θi)

(1 + r)2
− θi + γs∗1 (θi)

1 + r

]

=

∫ s∗1(θi)

−∞

∂

∂γ

[
θi + γ2s1

(1 + r)2
− θi + γs1

1 + r

]
f (s1) ds1 +

∂s∗1 (θi)

∂γ

θi − θir
1
γ
(1+r)−1

(1 + r)2
−
θi − θir

(1+r)−γ

1 + r


∂

∂γ
V2 (θi) =

∫ s∗1(θi)

−∞

[
2γs1

(1 + r)2
− s1

1 + r

]
f (s1) ds1

+
[
θir
(
γ (1 + r)− γ2

)−2
(1 + r − 2γ)

]θi − θir
1
γ
(1+r)−1

(1 + r)2
−
θi − θir

(1+r)−γ

1 + r


=

∫ s∗1(θi)

−∞

[
2γs1

(1 + r)2
− s1

1 + r

]
f (s1) ds1 +

[
θir
(
γ (1 + r)− γ2

)−2
(1 + r − 2γ)

]
[0]

=

∫ s∗1(θi)

−∞

[
2γs1

(1 + r)2
− s1

1 + r

]
f (s1) ds1

Next we show how the sign of ∂θ
∗
1

∂γ
depends on the value of γ.

First note that for γ = r+1
2
,

∂

∂γ
V2 (θi) =

∫ s∗1(θi)

−∞

[
2 r+1

2
s1

(1 + r)2
− s1

1 + r

]
f (s1) ds1

=

∫ s∗1(θi)

−∞

[
s1

(1 + r)
− s1

1 + r

]
f (s1) ds1 = 0.

For γ > r+1
2
, we have that:

∫ s∗2(θi)

−∞

[
2γs1

(1 + r)2
− s1

(1 + r)

]
f (s1) ds1 < 0.

And finally, for γ < r+1
2
:

∫ s∗2(θi)

−∞

[
2γs1

(1 + r)2
− s1

(1 + r)

]
f (s1) ds1 > 0.

Since θ∗2 follows the same direction as the change in the option value, the behavior of θ
∗
1 can
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be characterized by the above. For example, for γ < r+1
2
, since ∂θ∗2

∂γ
> 0 and ∂

∂γ
V2 (θi) > 0,

then ∂θ∗1
∂γ
. I.e. since the option value increases in γ < r+1

2
, the period 1 threshold will

increase since it waiting becomes more valuable, while the cost of waiting, r, remains the

same. Likewise, since the second period threshold increases in γ < r+1
2
, the likelihood of

taking advantage of the real option is increasing for fixed s1, thus making the real option

more valuable, resulting in an increased period one threshold for fixed r. Both of these effects

work in the same direction and hence the θ∗1 is increasing in γ <
r+1
2
. A similar argument

applies for γ > r+1
2
and γ = r+1

2
.

Proof of Proposition 2. Recall that the disclosure threshold in the second period, θ∗2 (s1),

is independent of σ. In addition, for any θ the manager will disclose for any s1 > µs = 0.

So, the manager will take advantage of the real option only for suffi ciently low realizations

of s1, which are all lower than the mean of s1.

An increase in σ, increases the probability that a manager that does not disclose at t = 1

will take advantage of the real option (and delay disclosure to t = 3). This however, is not

suffi cient to increase the incentive to delay disclosure at t = 1. A suffi cient argument for the

comparative static is to keep the threshold at t = 1 constant and to show that following an

increase in σ the manager is no longer indifferent between disclosing and not disclosing for

θ = θ∗1 but rather strictly prefers not to disclose at t = 1.

A type θ∗1 will disclose at t = 2 either if the other manager did not disclose at t = 1 or

if s1 is lower than a threshold s∗1 (θi) = − θi
((1+r)−γ)( γr )

. So the value from delaying disclosure

comes only from realizations s1 < s∗1 (θi) < 0. First, note that following an increase in σ

the probability of a realization of s1 < s∗1 (θi) increases, i.e.,
∂ Pr(s1<s∗1(θi))

∂σ
> 0. Second, the

expected value from delaying disclosure decreases in s1.

There exists a value s′ such that for all s1 < s′ the probability of such an s1 increases

in σ. If s′ > s∗1 (θi) that completes the proof. For s′ < s∗1 (θi), following an increase in σ

the probability of s1 < s′ increase where Pr (s1 ∈ (s′, s∗1 (θi))) decreases. It can be shown

that we can “shift”mass from realization s1 < s′ to realization (s1 ∈ (s′, s∗1 (θi))) under the

high variance distribution such that pdf for all (s1 ∈ (s′, s∗1 (θi))) will be identical to the

distribution with the low variance. Note that any such shift decreases the expected value

from delaying disclosure at t = 1. Since the cumulative distribution for s1 < s∗1 (θi) is higher

under the high variance distribution, following this “shifting procedure”for any s1 < s′ the

pdf under the new distribution is still higher than under the low variance distribution (since
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the overall mass for s1 < s∗1 (θi) is higher for the high variance distribution). This implies

that the option value under the high variance distribution is strictly higher than under the

low variance distribution.

Proof of Proposition 3. Recall that the equilibrium first period threshold is:

θ∗1 = G (θ∗1)
N−1

(
θ∗1

1 + r

)
(14)

+
(

1−G (θ∗1)
N−1
) Fε

(
θ∗1

((1+r)−γ)( γr )

)
θ∗1
1+r

+ 1
1+r

γσ2fε

(
− θ∗1
((1+r)−γ)( γr )

)
+

(
1− Fε

(
θ∗1

((1+r)−γ)( γr )

))
θ∗1

(1+r)2
− 1

(1+r)2
γ2σ2fε

(
− θ∗1
((1+r)−γ)( γr )

)


= G (θ∗1)
N−1

(
θ1

1 + r

)
+
(

1−G (θ∗1)
N−1
)

[NS (θ∗1) + V2 (θ∗1)] (15)

Let K (θ∗1, N) be defined as:

K (θ∗1, N) = G (θ∗1)
N−1

(
θ1

1 + r

)
+
(

1−G (θ∗1)
N−1
)

[NS (θ∗1) + V2 (θ∗1)]− θ∗1

And hence,

dθ∗1
dN

= −
∂K
∂N
∂K
∂θ∗1

= −
G (θ∗1)

N−1 ln (G (θ∗1))
(

θ∗1
1+r

)
−G (θ∗1)

N−1 ln (G (θ∗1)) [NS (θ∗1) + V2 (θ∗1)] (N − 1)G (θ∗1)
N−2 g (θ∗1)

(
θ∗1
1+r

)
+G (θ∗1)

N−1 ( 1
1+r

)
− (N − 1)G (θ∗1)

N−2 g (θ∗1) [NS (θ∗1) + V2 (θ∗1)] +
(

1−G (θ∗1)
N−1
)
· ∂[NS(θ

∗
1)+V2(θ

∗
1)]

∂θ1
− 1


This becomes

= −
G (θ∗1)

N−1 ln (G (θ∗1))
(

θ∗1
1+r

)
−G (θ∗1)

N−1 ln (G (θ∗1)) [NS (θ∗1) + V2 (θ∗1)]
(N − 1)G (θ∗1)

N−2 g (θ∗1)
(

θ∗1
1+r

)
+G (θ∗1)

N−1 ( 1
1+r

)
− (N − 1)G (θ∗1)

N−2 g (θ∗1) [NS (θ∗1) + V2 (θ∗1)]

+
(

1−G (θ∗1)
N−1
)
·
[

1
1+r

+
∫ s∗1(θi)
−∞

−r
(1+r)2

f (s1) ds1

]
− 1


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which is

= − −G (θ∗1)
N−1 ln (G (θ∗1))V2 (θ∗1) − (N − 1)G (θ∗1)

N−2 g (θ∗1)V2 (θ∗1) +G (θ∗1)
N−1 ( 1

1+r

)
+
(

1−G (θ∗1)
N−1
)
·
[

1
1+r

+ −r
(1+r)2

F (s∗1 (θi))
]
− 1


=

G (θ∗1)
N−1 ln (G (θ∗1))V2 (θ∗1)

− (N − 1)G (θ∗1)
N−2 g (θ∗1)V2 (θ∗1)−

(
1−G (θ∗1)

N−1
)
·
[

r
(1+r)2

F (s∗1 (θi))
]
− r

1+r

> 0

We have that G (θ∗1)
N−1 ln (G (θ∗1))V2 (θ∗1) < 0 since ln (G (θ∗1)) < 0, and we can easily see

that the denominator is negative. Thus dθ∗1
dN

> 0.

Proof of Proposition 4. Assume that in the case of indifference, the firm discloses. Note

that when r = 0, we have no interior solution. The only equilibria are asymmetric equilibria.

It is easy to show that these are equilibria and that no interior equilibrium exists—in any

equilibrium in which firm j discloses with positive probability, type θ̄i is better off waiting

with probability 1, as this gives her strictly higher expected utility over disclosing when

r = 0. Note that there always exists an r > 0 in which we have the asymmetric equilibria.
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Setting G
(
θ∗1,j
)

= 0, we have from Lemma 3 that, as r → 0,

lim
r→0

G
(
θ∗j
)( θ∗i

1 + r

)

+
(
1−G

(
θ∗j
)) F

(
θ∗i

((1+r)−γ)( γr )

)
θ∗1
1+r

+ 1
1+r

γσ2f

(
− θ∗i
((1+r)−γ)( γr )

)
+

(
1− F

(
θ∗i

((1+r)−γ)( γr )

))
θ∗1

(1+r)2
− 1

(1+r)2
γ2σ2f

(
− θ∗i
((1+r)−γ)( γr )

)


= F (0)
θ∗i

1 + r
+

1

1 + r
γσ2f

(
− r
γ
· θ∗i

((1 + r)− γ)

)
+ (1− F (0))

θ∗i
(1 + r)2

− 1

(1 + r)2
γ2σ2f

(
− r
γ
· θ∗i

((1 + r)− γ)

)
.

= F (0) θ∗i + γσ2f (0) + (1− F (0)) θ∗i − γ2σ2f (0)

= θ∗i + γσ2f (0)− γ2σ2f (0)

= θ∗i + σ2f (0)
(
γ − γ2

)
= θ∗i + σ2

1

σ
√

2π
e−

µ

2σ2 γ (1− γ)

= θ∗i +
σ

e
√

2π
γ (1− γ) .

Since γ ∈ (0, 1) and σ > 0, the benefit of waiting in the limit is strictly positive. Hence, for

all σ > 0 and γ ∈ (0, 1), we can find r suffi ciently close to zero such that an asymmetric

equilibrium can be supported when G
(
θ∗1,j
)

= 0. Recall that the upper bound of the

asymmetric equilibria is denoted by rL. Now for any r > rL, type θ̄−j still finds disclosure

profitable even when G
(
θ∗1,j
)

= 0, and hence the asymmetric equilibria do not exist for

r > rL. Finally, as r → ∞, the payoff from waiting to disclose goes to zero. For θ with

bounded support, we can find an r < ∞ such that θ∗i ≤ θ̄ when G
(
θ∗j
)

= 0. Denote the

maximum r that supports this equilibrium as rH :

rH = max
r

 Pr
(
s1 >

r
γ
· −θi
((1+r)−γ)

)
E
[
θi+s2
1+r
|s1 > r

γ
· −θi
((1+r)−γ)

]
+
(

Pr
(
s1 <

r
γ
· −θi
((1+r)−γ)

))
E
[
θi+s3
(1+r)2

|s1 ≤ r
γ
· −θi
((1+r)−γ)

]
< θ̄

 .
Which we know exists by Theorem 1.
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