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I. Introduction

Differences in technology adoption lie at the heart of differences in long- 

term economic performance and standards of living across societies. To-

tal factor productivity (TFP), an indirect measure of technology based 

on the Solow residual, accounts for a vast share of differences in income 

per capita across countries (e.g., Caselli 2005; Hsieh and Klenow 2010). 

Comin, Hobijn, and Rovito (2008) have provided evidence of large lags 

in the usage of specifi c technologies, implying that technology usage 

disparities might account for a large part of  cross- country TFP differ-

entials. Technological innovation has also played a paramount role in 

the study of economic growth and development, both theoretically and 

empirically (e.g., see Aghion and Howitt 2008). In this literature, the 

question of why the adoption of new  productivity- enhancing technol-

ogies takes place so slowly and unequally across different societies re-

mains a central puzzle.

In this paper, our goal is to shed light on the barriers and obstacles that 

prevent or delay the adoption of specifi c technologies across countries. 

We focus in particular on human barriers, holding fi xed geographic 

barriers. We formulate and test the hypothesis that rates of technology 

adoption depend on measures of long- term historical relatedness be-

tween populations; that is, on their degree of kinship. The main idea of 

this paper is twofold: (1) on average, populations that are more closely 

related tend to be more similar with respect to traits (habits, customs, 

beliefs, values, etc.) that are transmitted with variation from one gen-

eration to the next; and (2) similarity in intergenerationally transmitted 

traits tends to reduce the barriers to technology adoption; that is, popu-
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lations that share more similar intergenerationally- transmitted traits 

face lower costs when imitating each other’s innovations.

We argue that long- term genealogical distance works as a barrier 

to the diffusion of innovations across populations. It is important to 

emphasize that we are not assuming that populations would neces-

sarily inherit traits that make them directly more productive. In fact, 

in our theoretical framework, inherited traits have no direct effect on 

a population’s productivity. What matters, in our model, is that ran-

dom historical divergence introduces different customs, habits, and 

norms across populations, and that these differences, on average, tend 

to decrease their ability to learn from each other. Even relatively trivial 

differences in attitudes, appearance, or behavior between groups may 

lead to misunderstanding or discrimination, and may create signifi cant 

barriers to communication and social interactions, reducing opportuni-

ties for learning and imitation.1 In sum, our central hypothesis is that 

differences in technology adoption across societies can be explained by 

barrier effects inversely related to the degree of relatedness between 

human populations.

Building on our previous work on the diffusion of economic develop-

ment (Spolaore and Wacziarg 2009), we capture historical relatedness 

between populations using genetic distance. Genetic distance is calcu-

lated as a summary measure of the difference in allele frequencies across 

a set number of genes, or loci. As human populations split from each 

other over the course of history, they developed distinct genetic mark-

ers from random mutations. Most of these genetic mutations did not 

confer any environmental advantages and diffused as the simple result 

of randomness (they were not selected), so they are called neutral genes 

(Kimura 1968). Genes used to compute common measures of genetic 

distance are chosen from among neutral genes. For such genes, random 

mutations arise and diffuse at a constant rate, so measures of genetic 

distance based on a large enough number of neutral genes refl ect the 

time separating two populations from a common ancestor, as in a mo-

lecular clock. We argue that human traits that create barriers between 

populations on average diverge to an extent proportional to the separa-

tion time between two populations.

Thus, genetic distance is an ideal measure of the degree of historical 

relatedness between populations. An intuitive analogue is the concept 

of relatedness between individuals: two siblings are more closely re-

lated than two cousins because they share more recent common ances-

tors—their parents rather than their grandparents. Our key hypothesis 
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is that technological innovations are more likely to be adopted across 

siblings than across more distant cousins: separation times between 

populations are associated with similarity in a wide range of traits, 

transmitted either genetically or culturally from parents to children, 

that matter for the ease of adoption of productive innovations.

Figure 1 (from  Cavalli- Sforza, Menozzi, and Piazza 1994, 78) is a phy-

logenetic tree illustrating how different human populations have split 

apart over time. Such phylogenetic trees, constructed from genetic dis-

tance data, are the population analogs of family trees for individuals.

It must be emphasized that genetic distance is based on neutral 

change, and therefore is not meant to capture differences in specifi c 

Fig. 1. Genetic distance among 42 populations. Source:  Cavalli- Sforza et al. (1994)
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traits that may directly matter for fi tness and survival. Genetic distance 

is a general measure of long- term relatedness, and is associated with 

the whole set of traits that are transmitted “vertically” from parents to 

children, biologically and culturally. It is therefore a general metric for 

the average difference in traits passed on across generations over the 

very long run—that is, over the time horizon along which populations 

have split apart. In this paper we call “vertical traits” all characteristics 

that are passed on intergenerationally with variation within a popula-

tion over the very long run.

This paper is the fi rst to empirically document the effects of genea-

logical relatedness on the adoption of specifi c technologies across coun-

tries. To do so, we use historical and contemporary data on usage rates 

of a wide range of technologies, dating back to the year 1500. We use 

two recently developed databases of technology adoption: the Cross- 

Country Historical Adoption of Technology (CHAT) data set, which 

covers a wide range of detailed technologies going back to the year 1800 

(Comin and Hobijn 2009), and the database of historical technology 

adoption used in Comin, Easterly, and Gong (2010) to study techno-

logical persistence since antiquity (this database goes back to 1000 BC, 

but we only make use of data since 1500 AD). We compare the empiri-

cal effects of the bilateral genetic distance between populations to that 

of genetic distance relative to the technological frontier, fi nding that 

the latter trumps the former as a determinant of bilateral differences 

in technological adoption rates. This empirical test is consistent with a 

barrier effect of long- term historical distance, whereby societies that are 

more distant from the technological frontier tend to face higher imita-

tion costs. We fi nd large and statistically signifi cant effects of relative 

frontier distance on technology use differences. These large effects at 

the level of individual technologies can help explain current differences 

in total factor productivity and income per capita across countries.

This paper is organized as follows. Section II presents a stylized 

model of the diffusion of technologies as a function of differences in 

vertically transmitted traits across human populations, and ultimately 

as a function of the degree of genealogical relatedness between them. 

Section III presents our data and empirical methodology. Section IV de-

scribes the empirical results, and Section V concludes.

II. A Theory of Relatedness and Technology Adoption

In this section we present a simple framework linking long- term relat-

edness (measured by genetic distance), intergenerationally- transmitted 
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traits, and the adoption of technologies across populations. The main 

ideas are that (1) genetic distance measures the degree of long- term 

genealogical relatedness of different populations over time, (2) on av-

erage, populations that are more closely related tend to be more simi-

lar with respect to traits that are transmitted with variation from one 

generation to the next, (3) similarity in intergenerationally- transmitted 

traits tends to reduce the barriers to technology adoption: populations 

that share more similar intergenerationally- transmitted traits face lower 

costs when imitating each other’s innovations. These hypotheses have 

testable empirical predictions: intensive and extensive margins of tech-

nology adoption should be a function of different populations’ genetic 

distance relative to the technological frontier, rather than the bilateral 

distance between them. The empirical section then tests this prediction.

A. Genetic Distance and Vertically Transmitted Traits

As discussed earlier, genetic distance measures the difference in allele 

distributions between two populations, where the chromosomal loci 

under consideration are neutral—that is, they change randomly and 

independently of selection pressure. When two populations split apart, 

random genetic mutations result in genetic differentiation over time. 

The longer the separation time, the greater the genetic distance com-

puted from a set of neutral genes. Therefore, genetic distance captures 

the time since two populations have shared common ancestors—that 

is, the time since they have been the same population. Overall, genetic 

distance is a general metric for average differences in traits passed on 

across generations over the very long run (i.e., over the time horizon 

along which populations have split apart). We call “vertical traits” all 

those traits that are passed from one generation to the next within a 

population, with variation, over the very long run.

These concepts can be illustrated with a simple analytical example. 

For simplicity, let all vertical traits of a population be summarized as a 

point on the real line. At time 0 (“the present”) population i has vertical 

traits   vi(0), where   vi(0) is a real number. In general, populations inherit 

their vertical traits from their ancestor populations with variation. Spe-

cifi cally, population i living at time 0, and descending from ancestral 

population 
 
ai living at time  −T , will have traits given by:

   vi(0) = va(i)(−T) + εi(−T, 0), (1)

where   va(i)(−T) are ancestral population   a(i)’s vertical traits at time  −T , 

and   εi(−T, 0) measures random variation between time  −T  and time 0.
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Consider the simplest possible mechanism for variation: vertical 

change as a random walk, whereas   εi(−T, 0) = ε > 0 with probability  1/2 

and   εi(−T, 0) = −ε  < 0 with probability  1/2. In addition, consistently with 

a “neutral” view of intergenerational change, we assume that such 

shocks are independent across different populations—that is, shock 

  εi(−T, 0) is independent of shock 
  
ε j(−T, 0) for  j ≠ i. By the same token, at 

time  −T  population   a(i)’s vertical traits are inherited from its ancestor 

population   a(a(i)), living at time   −T' < −T , according to the following 

equation:

   va(i)(−T) = va(a(i))(− ′T ) + εa(i)(− ′T , −T) (2)

where   εa(i)(− ′T , −T) = ′ε > 0 with probability  1/2 and   εa(i)(− ′T , −T) = − ′ε   < 0 

with probability  1/2. Again, shocks are independent across populations.

Now, consider three populations (  i = 1, 2, 3). Population 1 and popu-

lation 2 descend from the same last common ancestor population 

  a(1) = a(2)   ≡ a(1 & 2) living at time  −T . In contrast, population 3 only 

shares common ancestors with populations 1 and 2 going back to time 

 −T' :   a(3) ≠ a(1 & 2), and   a(a(3)) = a(a(1 & 2)) ≡ a(1 & 2 & 3). The phyloge-

netic tree of the three populations is illustrated in fi gure 2.

By construction, genetic distance   g(1, 2) between population 1 and 

population 2 is smaller than genetic distance between population 1 and 

population 3 (and smaller than genetic distance between population 2 

and population 3). Formally: 

   g(1, 2) = F < g(1, 3) = g(2, 3) = F'. (3)

Vertical traits in each population are given by the following equations:

   v1(0) = va(1&2)(−T) + ε1(−T, 0) (4)

Fig. 2. Population tree
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   v2(0) = va(1&2)(−T) + ε2(−T, 0) (5)

   v3(0) = va(3)(−T) + ε3(−T, 0) (6)

   va(1&2)(−T) = va(1&2&3)(− ′T ) + εa(1&2)(− ′T , −T) (7)

   va(3)(−T) = va(1&2&3)(− ′T ) + εa(3)(− ′T , −T). (8)

Let   dv(i, j) ≡  
  
|vj − vi| denote the distance in vertical traits between popu-

lation i and population j. The expected vertical distance between popu-

lation 1 and population 2, which share their last common ancestors at 

time  −T , is:2 

   E[dv(1, 2)] = ε. (9)

Clearly, all variation between populations 1 and 2 is given by change 

that took place between time  −T  and 0. In contrast, expected distance 

between population 1 and population 3 (and between population 2 and 

population 3) will refl ect shocks that took place both between time  −T' 

and  −T  and between time  −T  and time 0. On average, such shocks bring 

about a larger expected distance:3

 
  
E[dv(1, 3)] = E[dv(2, 3)] = max ′ε

2
+ ε, ′ε + ε

2
⎧
⎨
⎩

⎫
⎬
⎭

> ε = E[dv(1, 2)]. (10)

Thus, larger genetic distance, on average, is associated with larger dis-

tance in vertical traits. Of course, this relation is not deterministic. Some 

pairs of populations that are genealogically more distant may end up 

with more similar vertical traits than two more closely related popula-

tions, but that outcome is less likely to be observed than the opposite 

outcome. On average, genetic distance and vertical distance go hand 

in hand.

B. Relative Vertical Distance from the Frontier and Technology Adoption

Over the millennia, populations have diverged in a series of traits trans-

mitted vertically from parents to children. These vertical traits include 

physical and cultural characteristics. Most of these traits have diverged 

randomly, and do not need to have a direct effect on survival and fi t-

ness. However, this divergence has led to differences across popula-

tions. Our key hypothesis is that such differences may act as barriers to 

the diffusion of technological innovations across populations in mod-

ern times. It is reasonable to expect that, on average, populations that 

share a more recent common history and are therefore closer in terms 

of intergenerationally- transmitted traits face lower costs and obstacles 
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to adopting each other’s innovations. The literature on the diffusion 

of innovations (Rogers 1995) is consistent with a major role for subjec-

tive barriers between groups and populations. As Rogers points out, 

summarizing the lessons from decades of research, most people depend 

upon a subjective evaluation of an innovation that is conveyed to them 

from other individuals like themselves who have previously adopted 

the innovation. Overall, historical relatedness and similarity is likely 

to reduce imitation costs, while a higher vertical distance should be 

associated with higher imitation and adoption costs. In sum, our main 

hypothesis is that long- term divergence in vertically transmitted traits 

act as a barrier to more recent “horizontal” diffusion of innovations 

across societies.

1. Extensive Margin

These ideas can be formalized very simply in a one- period model. At 

time 0, one of our three populations—say, population 1—introduces a 

continuum of innovations of mass N.4 An innovation k   ∈ 0, N] will be 

adopted by population i  = 2, 3 if and only if the innovation’s benefi ts 
 
bk 

are higher than its costs 
 
cki .

5 Our key hypothesis is that adoption costs for 
each population are a function of vertical distance from the frontier (popula-

tion 1):

    cki = �k + �dv(i, f ) (11)

where    �k > 0 and   � > 0. Different innovations come with different costs 

and benefi ts. To fi x idea, assume that the ratio    (bk − �k)/� is distributed 

uniformly between 0 and   � > 0, with innovation 0 having the highest 

ratio    (b0 − �0)/� = � and innovation N having the lowest ratio 

   (bN − �N)/� = 0. In general, the ratio for innovation   k ∈ 0, N] is:

 
   

bk − �k

�
= � 1 − k

N
⎡
⎣⎢

⎤
⎦⎥

. (12)

Population i will adopt 
 
Ni

∗ innovations, where, for each adopted inno-

vations   k ∈ 0, Ni
∗], 

 
bk ≥ cki. Hence, the marginal 

 
Ni

∗ is defi ned by:

 
   
bNi

∗ = �Ni
∗ + �dNv(i, f ), (13)

which, by using equation (12), can be rewritten as:

 

   

b
Ni

∗ − �
Ni

∗

�
= dv(i, f ) = � 1 −

Ni
∗

N

⎡

⎣
⎢

⎤

⎦
⎥ , (14)
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which implies:6 

 

   
Ni

∗ = N 1 −
dv(i, f )

�

⎡
⎣⎢

⎤
⎦⎥
. (15)

This equation shows that the number of innovations adopted by each 

population is decreasing in its vertical distance from the frontier. If 

vertical traits change according to the simple  random- walk process 

illustrated in the previous subsection, the expected rate of adoption 

for population 2 (which is genetically closer to the frontier population 

1:   g(1, 2) = F) will be larger than the expected rate of adoption for pop-

ulation 3 (which is genetically more distant from the frontier 

  g(1, 3) = ′F > F):7 

   

E{N2
∗} = N 1 −

E[dv(1, 2)]
�

⎡
⎣⎢

⎤
⎦⎥

= N 1 − ε
�

⎡
⎣⎢

⎤
⎦⎥

> E{N3
∗} = N 1 −

E[dv(1, 3)]
�

⎡
⎣⎢

⎤
⎦⎥

= N 1 − ε
�

− ′ε
2�

⎡
⎣⎢

⎤
⎦⎥

.

 (16)

Let   dN(i, j) ≡  
  
|N j

∗ − Ni
∗| denote the difference in rates of technology 

adoption (extensive margins) between population i and population j. 
Our basic framework implies that such difference will depend on rela-

tive vertical distance from the frontier, and hence, on average, on rela-

tive genetic distance from the frontier population:

 
   
dN(i, j) ≡  |N j

∗ − Ni
∗|= 1

�
|dv(j, f ) − dv(i, f )|. (17)

Therefore, we predict a positive correlation between differences in rates 

of technology adoption   dN(i, j) between two populations i and j, and 

their relative frontier distance, defi ned as   |g(i, f ) − g(j, f )|.
This framework can also account for a positive correlation between 

differences in rates of technology adoption   dN(i, j) and bilateral genetic 

distance   g(i, j), as long as   |g(i, f ) − g(j, f )| and   g(i, j) are positively cor-

related (as they indeed are in the data). However, our theory also im-

plies that relative frontier distance is a better predictor of technology 

adoption, because it is a more accurate measure of relative distance 

from the frontier in terms of vertical traits. For example, if one were to 

use bilateral genetic distance as a proxy for expected vertical differ-

ences, on average one should expect that differences in rates of technol-

ogy adoption between population 2 and population 3 ought to be iden-

tical to differences in technology adoption between population 1 and 
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population 3, because   g(1, 3) = g(2, 3). This would be possible if 

and only if    E|N3
∗ − N2

∗|= E|N3
∗ − N1

∗|= E|N3
∗ − N|= N[(ε/� ) + ( ′ε /2�)], 

which would hold if and only if   E{N2
∗} = N. But, as we have seen ear-

lier, on average population 2 does not adopt all innovations, because it 

faces barriers associated with its own vertical distance from the fron-

tier:    E|N2
∗ − N|= N(ε/�) > 0. Hence, using bilateral genetic distance 

  g(2, 3) as a measure of barriers to technology adoption between popula-

tion 2 and population 3 would lead us to overestimate the adoption 

gap between population 2 and population 3 (or, equivalently, to under-

estimate the adoption gap between population 1 and population 3). In 

general, our theory predicts that bilateral genetic distance is a biased 

proxy for the fundamental determinant of comparative adoption of in-

novations across societies. This fundamental determinant is the relative 
distance in vertical traits, which can be measured more accurately by 

relative frontier distance, as defi ned earlier.8 For further discussion of the 

relation between relative frontier distance and bilateral genetic disa-

tance, see Spolaore and Wacziarg (2009, 477). We test the prediction 

that relative frontier distance should trump bilateral genetic distance as 

a determinant of technology adoption in the empirical section.

2. Intensive Margin

An analogous illustration of the main idea can be provided with respect 

to intensive margins of adoption. This is important because much of 

our technology data focuses on the intensive margin. Let 
 
Zki denote the 

level at which a given innovation k is used by population i. Assume that 

benefi ts and costs of adoption are now given as follows:

    Bk = �kZk (18)

 

   
Ck =

�k

2[�0 − �1dv(i, f )]
Zk

2. (19)

Hence, net benefi ts for population i are maximized at:

 

   
Zki

∗ =
�k[�0 − �1dv(i, f )]

�k

. (20)

Again, the difference in adoption rates (this time at the intensive mar-

gin) will be a function of relative vertical distance from the frontier and 

hence, on average, relative genetic distance from the frontier population:
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dZk

(i, j) ≡|Zkj
∗ − Zki

∗|=
�k�1

�k

|dv(j, f ) − dv(i, f )|. (21)

The above results illustrate our hypothesis that technology adoption is 

a function of relative distance in intergenerationally- transmitted traits. 

As we have already discussed, such relative distance between popula-

tions can be captured empirically by their relative genetic distance from 

the frontier.

C. A Dynamic Example

In the rest of this section we illustrate our general ideas in a dynamic 

framework that will allow us to establish a more explicit and micro-

founded link between the adoption of innovations, imitation costs, dis-

tance in vertical traits, and total factor productivity. Changes in vertical 

traits tend to take place much more slowly and at a longer horizon than 

the spread of technological innovations, especially if we focus on mod-

ern technological progress and growth in a post- Malthusian world. 

Therefore, in this simple dynamic example we assume for simplicity 

that populations do not change over time (their size is fi xed and nor-

malized to one), and that their inherited vertical traits do not change 

over the relevant time horizon (additional small random shocks to ver-

tical traits would not affect the basic results, while they would greatly 

complicate the algebra). Hence, consider our three populations 

  i = 1, 2, 3, with vertical traits   v1,   v2, and   v3, inherited from their ancestral 

populations as described earlier, and unchanged in modern times (i.e., 

for   t ≥ 0). Time is continuous. At each time t  ≥ 0 consumers in each 

economy i maximize:

 
   
Ui(t) =

s

∞
∫ ln Ci(s)e

−�(t− s)ds (22)

under a standard budget constraint, where   Ci(t) is consumption, and 

  � > 0 is the subjective discount rate. The Euler equation for the optimal 

growth rate of consumption holds:

 

   

dCi

dt
1

Ci(t)
= ri(t) − �, (23)

where   ri(t) is the real interest rate in society i (we assume that the three 

societies are not fi nancially integrated). At time t, in each society i, there 

is a continuum of intermediate goods, measured on the interval   [0, Ai(t)]. 
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Each intermediate good is produced by a local monopolist. In each so-

ciety i fi nal output   Yi(t) is produced according to:

    Yi(t) =0
Ai(t) [Xki(t)]

�dk, 0 < � < 1, (24)

where   Xki(t) is the quantity of intermediate good of type k employed at 

time t in economy i. We assume that society f is at the technological 

frontier, which means that 
  
Af(t0) > Ai(t0) for all i   ≠ f. Innovation at the 

frontier economy takes place endogenously, as in Romer (1990) and re-

lated literature. In particular, as in Barro and Sala- i- Martin (1997 and 

2003, chapters 6 and 8), we assume that the inventor of intermediate 

good k retains perpetual monopoly power over the production of that 

input in society f, and henceforth sells it at price    Pk = 1/�, earning the 

profi t fl ow   	 = (1 − �)�(1+ �)/(1−�) at each time t.9 For a detailed derivation 

see Barro and Sala- i- Martin (1997 and 2003). The cost of inventing a 

new intermediate good at the frontier is  
 units of fi nal output. Free 

entry into the innovation sector implies that the real interest rate 
  
rf(t) 

must be equal to   	/
. We assume   	/
 > �, which implies that consump-

tion grows at the constant rate:

 
   
g ≡ 	



− � > 0. (25)

Consequently, output 
  
Yf (t) and the frontier level of intermediate goods 

  
Af(t) will also grow at the rate g.

The other societies cannot use the intermediate goods invented in 

economy f directly, but, as in Barro and Sala- i- Martin (1997), must pay 

an imitation cost 
  
�i in order to adapt the intermediate goods to local 

conditions. Our key assumption is that such imitation costs are increas-
ing in the distance in vertical traits between the imitator and the frontier. 

Specifi cally, we assume that economy i’s imitation cost is:

 

   
�i(t) = 
e�dv(i, f) Ai(t)

Af(t)

⎛

⎝
⎜

⎞

⎠
⎟




. (26)

The above specifi cation is consistent with our main hypothesis: differ-

ences in vertical traits act as barriers to adoption and imitation. The 

parameter  � captures the extent to which dissimilarity in vertical char-

acteristics increases imitation costs. For a given distance in vertical 

characteristics, an imitator in society i faces lower imitation costs when 

there is a larger set of intermediate goods available for imitation (that is, 

when 
  
Ai(t)/Af(t) is low). The rationale for this assumption is that the 
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intermediate goods that are easier to imitate are copied fi rst. The pa-

rameter   
 > 0 captures this advantage from technological backward-

ness. Whether imitators whose technology is farther from the techno-

logical frontier face lower or higher imitation costs is debated in the 

empirical literature (for a recent survey, see Fagerberg 2004). Our per-

spective suggests that, when assessing the relationship between imita-

tion costs and technological backwardness empirically, one should con-

trol for distance in long- term vertical traits. As we will see, steady state 

societies that are farther technologically (and hence should face lower 

imitation costs for this reason) are also farther in terms of vertical dis-

tance from the frontier (and hence should face higher imitation costs 

through this channel). Failure to account for this vertical distance from 

the frontier may lead to overestimate the imitation costs directly associ-

ated with a given technology gap—that is, to underestimate the advan-

tages directly associated with technological backwardness (a lower 

  
Ai(t)/Af(t) in our framework).

Again, we assume that an imitator who pays cost    �i(t) to imitate good 

k has perpetual monopoly power over the production of that input in 

economy i, and hence can charge    Pk = 1/�, earning the profi t fl ow 

  	 = (1 − �)�(1+ �)/(1−�), while output is proportional to available intermedi-

ate goods   Ai(t) in equilibrium:

    Yi(t) = �2�/(1−�)Ai(t). (27)

As shown in Barro and Sala- i- Martin (1997, 2003), with free entry into 

the “imitation” sector, economy i’s real interest rate in equilibrium is:

 

   
ri(t) = 	

�i(t)
+

d�i

dt
1

�i(t)
. (28)

In steady state, the level of imitation costs 
  
�i

∗ is constant, while the 

number of intermediate goods in economy i, as well as output and con-

sumption, all grow at the same rate as in economy f—that is, at rate 

   g = (	/
) − �. Hence, in steady state the real interest rates in all econo-

mies are identical and equal to   	/
. Consequently, we have:

 
   
�i

∗ = � j
∗ (29)

for all i and j, which implies the following relationship in steady state:

 
   
|ln Ai

∗(t) − ln Aj
∗(t)|=|lnYi

∗(t) − lnYj
∗(t)|= �



|dv(i, f ) − dv(j, f )|. (30)



24 Spolaore and Wacziarg

The intuition of equation (30) is straightforward: long- term differences 

in total factor productivity and output between societies are an increas-

ing function of their relative cost to imitate, which depends on their 

relative vertical distance from the frontier.10 Therefore, this dynamic 

model confi rms the key implications of the simplifi ed static setup pre-

sented earlier.

In sum, our framework predicts a positive correlation between differ-

ent adoption rates of innovations (at both the extensive and intensive 

margins, and as measured by total factor productivity) between society 

i and society j, and their relative vertical distance from the frontier 

  |dv(i, f ) − dv(j, f )|. Since vertical distance is on average higher among 

societies that are genetically more distant, the framework predicts that, 

on average, differences in the rates of adoption of innovations and total 

factor productivity will be correlated with relative frontier distance.

D. Possible Extensions and Discussion

We have illustrated our main hypotheses in a highly simplifi ed setting. 

Our approach is consistent with modeling barriers to technology adop-

tion (in the sense of Parente and Prescott 1994 and 2002) as a function 

of vertical distance from the frontier. This general idea could be formal-

ized in more complex frameworks. For example, a possible extension 

would be to embed these effects in models of technology diffusion and 

growth, such as Comin and Hobijn (2010), where, in order to become 

the sole supplier of a particular capital vintage, the capital good pro-

ducer must bear an upfront fi xed cost (an adoption cost). Our hypoth-

esis is that such costs are affected by barriers that vary across societies 

as a function of their relative vertical distance from the technological 

frontier. Specifi cally, our hypothesis is consistent with an extension of 

Comin and Hobjin (2010)’s model, where the parameter b in their equa-

tion (17) varies across economies as a function of their relative vertical 

distance from the technological frontier. Our theoretical approach could 

also be extended to consider not only the effects of long- term barriers 

on outcomes in steady state, but also transitional effects, which may 

play an important role in the onset and diffusion of modern economic 

growth.11 For example, an analysis of the relation between barrier ef-

fects and transitional income differences is provided by Ngai (2004).

Our model involves assumptions that could be relaxed in future 

work. We assume, for instance, a monotonic relationship between 

technology and TFP, ruling out the possibility of “appropriate technol-
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ogies.” Instead it may well be that certain technologies raise TFP more 

in some countries than others, depending on various country charac-

teristics such as  capital- labor ratios, climate, literacy, and so forth. This 

could be relevant in the empirical section when we consider technol-

ogies that are partial substitutes for each other, such as tractors and 

harvest machinery. The adoption of each of these may be more or less 

benefi cial to a country’s overall TFP depending on, for instance, cli-

matic conditions. Our model also does not allow for technological leap-

frogging. For instance, the adoption of cell phones might be more rapid 

in a country that lacks existing landline infrastructure. In our empirical 

work, such a leapfrogging effect would serve to reduce the magnitude 

of the estimated effect of genetic distance on differences in technology 

adoption.12 In the same vein, countries could learn, not from the innova-

tor, but from an already advanced imitator. For instance, China might 

have more to learn from Korea or Japan than directly from the United 

States. In our empirical work, this would again serve to weaken the 

relationship between technological differences and genetic distance, so 

a richer model that would incorporate such learning patterns would 

not invalidate the basic fi ndings of this paper. Such extensions are left 

for further research. The bottom line of this section, more simply, is to 

illustrate the basic idea that relative frontier distance acts as a barrier to 

the adoption of technological innovations across societies—a hypoth-

esis that we test empirically in the rest of this paper.

III. Data and Methodology

A. Genetic Distance

To measure long- term relatedness between human populations, we 

use genetic distance. In doing so, we follow a recent strand of research 

documenting strong correlations between genetic distance and a vari-

ety of political and economic outcomes, such as per capita income and 

bilateral confl ict between nations (Spolaore and Wacziarg 2009).

The original data on genetic distance is from  Cavalli- Sforza et al. 

(1994), who gathered a comprehensive data set of allele frequencies for 

a large number of world populations. In this paper, we focus on their 

world matrix, providing allele frequency data for 120 gene loci covering 

42 world populations. As a measure of heterozygosity, we focus on 
 
FST 

genetic distance, a functional form to map differences in allele frequen-

cies into a single distance metric that has been shown to have desirable 
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properties (in particular, if populations are of a suffi cient size, 
 
FST ge-

netic distance has been shown to be perfectly correlated with the time 

separating two populations’ common ancestors). Figure 1 (from 

 Cavalli- Sforza et al. 1994, 78) is a phylogenetic tree illustrating how dif-

ferent human populations have split apart over time. As we already 

discussed, phylogenetic trees, which are built from genetic distance 

data, are the population analogs of family trees for individuals. In our 

data, the largest observed genetic distance is between Mbuti Pygmies 

and Papua New Guineans (  FST = 0.4573), while the smallest distance is 

between the Danish and the English (  FST = 0.0021).

Genetic groups were matched to current ethnic groups using data on 

the ethnic composition of countries from Alesina et al. (2003). Genetic 

groups were further matched to countries. We did so for two points in 

time: We fi rst created a match for 1500, using the ethnic composition of 

countries as they were in the period preceding the discovery of the New 

World (in this match, for instance, the United States is matched to the 

North Amerindian genetic group). In the 1500 match, each country is 

matched to a single genetic group. Next, we matched ethnic groups to 

the current populations of countries on the basis of the frequency data 

of ethnic groups by country also provided in Alesina et al. (2003). Ethni-

cally diverse countries were matched to several of the 42 genetic groups, 

allowing the computation of different measures of genetic distance be-

tween countries (for instance, in this contemporary match, the United 

States is matched to a combination of English, Asian, West African, and 

North Amerindian). Further details on these matches of genetic groups 

to ethnic groups and on to countries can be found in Spolaore and Wac-

ziarg (2009). For the contemporary period, we focus on a weighted mea-

sure, capturing the expected genetic distance between two randomly 

selected individuals, one from each country.13 Formally, assume that 

country 1 is made up of populations i = 1 . . . I and country 2 is made up 

of populations j = 1 . . . J. Denote by   s1i the share of population i in coun-

try 1 (similarly for country 2) and 
 
dij the 

 
FST genetic distance between 

populations i and j. The weighted 
 
FST genetic distance between coun-

tries 1 and 2 is defi ned as:

 

  
FST12

W =
i=1

I

∑ 
j=1

J

∑ (s1i × s2 j × dij), (31)

where 
 
ski is the share of group i in country k, and 

 
dij is the 

 
FST genetic 

distance between groups i and j. Using this method, the average 

weighted bilateral genetic distance between two countries in our 
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sample, across 10,585 country pairs, is 0.113, with a standard deviation 

of 0.082 (table 1).

While   FST12
W  is the bilateral genetic distance between countries 1 and 

2, we can denote by   FST12
R the genetic distance between 1 and 2 relative 

to the technological frontier. We refer to the latter throughout this pa-

per  as bilateral frontier distance. Then, for instance, if the frontier is 

the  United  States (as is usually the case for recent technologies), 

  FST12
R =|FST1,US

W − FST2,US
W |. Here, bilateral genetic distance and relative 

frontier distance are the direct empirical counterparts of the theoretical 

concepts defi ned in Section II.

B. Technological Adoption

We employ two data sets to capture historical and current technologi-

cal adoption levels. The fi rst data set, from Comin, Easterly, and Gong 

(2010) (henceforth Comin et al.) describes the level of technology adop-

tion for a wide panel of countries at years 1000 BC, 1 AD, 1000 AD, 

1500 AD, and 2000 AD. In our empirical work, we only make use of 

data for the latter two dates, since we only observe genetic distance 

data for 1500 and the contemporary period. For 1500, the Comin et al. 

data captures exclusively the extensive margin of technology adoption. 

They characterize whether each of 113 contemporary countries were 

using any of 24 technologies as of 1500. These technologies, listed in 

the appendix, are grouped into fi ve categories: military technologies, 

agricultural technologies, transportation, communication, and industry. 

For each of the underlying technologies in each category, a country is 

given a score of 1 if the underlying technology was used in 1500, and 

zero otherwise.14 The scores are then summed within each category and 

divided by the maximum obtainable score, resulting in a value between 

0 and 1. Additionally, an overall index of technological sophistication 

is obtained by averaging the scores over all fi ve categories (thus, each 

technological category is given equal weight in the overall technologi-

cal sophistication score). In our empirical work we make use of both the 

categorical scores and the overall index.

For the contemporary period (1970–2000), the Comin et al. data set 

is constructed using a different approach. Since the extensive margin 

diffuses very fast in the current period (for instance, it is very easy for a 

country, however technologically unsophisticated, to import and use a 

single computer), the measures include the intensive margin. Using the 

per capita usage intensity of nine underlying technologies at various 
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recent dates, Comin et al. compute an overall index of technological 

adoption based on Comin, Hobijn, and Rovito (2008). The functional 

form for the current technological adoption index captures the usage 

lag from the technological frontier (i.e., the United States): it is based on 

where a country stands in terms of technology usage for the number of 

years since the United States had the same usage intensity. The index is 

normalized to vary between 0 and 1. Again, the index is broken down 

into underlying sectoral components that mirror four of those for 1500 

(all but the military technology category). Table 1 provides summary 

statistics for the contemporary technology us e index, as well as its sec-

toral subcomponents.

The second data set we use is the CHAT data set, from Comin and 

Hobijn (2009). This allows a much more detailed investigation into the 

adoption of specifi c technologies without aggregating them into any 

sort of index. We focus on the 1990–1999 time period, and among the 

over 100 technologies we retain those for which at least fi fty countries 

are available, to ensure suffi cient sample size and variability. We av-

erage the the usage data over the 1990–1999 period, and divide each 

measure by the country’s population, following Comin, Easterly, and 

Gong (2010).15 The resulting set of 33 technologies we explored from the 

CHAT data set are listed in the appendix—they cover a wide range of 

technological categories such as agricultural technologies, transporta-

tion technologies, communications technologies, medical technologies, 

and industrial technologies.

In addition to specifi c technologies, we also use data on per capita 

income from the Penn World Tables (version 6.3 for the year 2005) to 

both replicate the baseline results in Spolaore and Wacziarg (2009) and 

to explore, as a fi rst step, the determinants of differences in aggregate 

TFP (for which per capita income is a good proxy). Our model delivers 

predictions not only concerning the intensive and extensive margins of 

specifi c technologies, but also the resulting determinants of differences 

in aggregate TFP, and we briefl y examine those at the beginning of our 

empirical investigation.

C. Methodology

To test the predictions of our model, we adopt a bilateral approach that 

consists of calculating a measure of the difference in technology usage 

intensity across all available pairs of countries in our sample, and re-

gressing it on characteristics of the pair—chiefl y genetic distance. While 
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in principle we could simply regress a country’s technological use level 

on its genetic distance to the frontier country, the bilateral approach 

has the advantage of allowing for a horserace between bilateral and 

relative frontier distance.16 Such a horserace is a central test of our bar-

riers model, since under such a model, relative frontier distance should 

come out stronger than bilateral distance. Moreover, we can make more 

effi cient use of a wealth of bilateral distance data as control variables—

chiefl y geographic data.

Denoting   (i, j) the countries in a pair, our baseline specifi cation is:

 
   
|Ti − Tj|= �0 + �1FSTij

R + ′�2Xij + εij (32)

and (to conduct a horserace):

 
   
|Ti − Tj|= �0 + �1FSTij

R + �2FSTij
W + ′�3Xij + �ij, (33)

where 
 
Ti is a measure of technology use by country i, 

 
Xij is a set of mea-

sures of geographic distance, and 
 
εij and 

  
�ij  are disturbance terms. In all 

the regressions we present following, we control for a wide range of 

metrics of geographic barriers captured by 
 
Xij. It is essential to do so, as 

geographic barriers compete with genealogical barriers as a candidate 

explanation for technological diffusion. Moreover, geographic distance 

is correlated with genetic distance, since human populations that live 

further apart are likely to have split up from each other earlier in hu-

man (pre)history. The geographic barriers we introduce as controls in-

clude geodesic distance, latitudinal and longitudinal distance, and a set 

of dummy variables for contiguity, whether one of the countries in a 

pair is an island, whether one of the countries in the pair is landlocked, 

and whether the pair shares a common sea or ocean.17 

The specifi cations in equations (32) and (33) are reduced forms. Dif-

ferences in technology usage are presumably the result of differences 

in institutions, technologies, human capital, savings rates, and so forth, 

all of which are possibly endogenous with respect to technology dif-

ferences, and themselves a function of geographic and human barri-

ers. Our regressions are really an attempt to describe the human and 

geographic barriers to the diffusion of innovations, without (for now) 

asking how the effects of these human and geographic barriers might 

be mediated by specifi c mechanisms—through human capital, institu-

tions, or otherwise.

Before turning to the results, we must address a technical point re-

garding the disturbances 
 
εij and 

  
�ij . In principle, if one is willing to as-

sume that the measures of barriers are exogenous (as we do), equations 
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(32) and (33) can be estimated using least squares. However, in this case 

usual methods of inference will be problematic due to spatial correla-

tion resulting from the construction of the dependent variable, as an 

absolute difference of two countries’ technology levels. To address the 

problem of spatial correlation, we rely on two- way clustering of the 

standard errors, following the approach in Cameron, Gelbach, and 

Miller (2006). In our application, clustering arises at the level of country 

i and at the level of country j, and is nonnested: each individual obser-

vation on income differences, say 
  
|Ti − Tj|, belongs to the group that 

includes country i and the group that includes country j. The estimator 

in Cameron, Gelbach, and Miller (2006) allows for an arbitrary correla-

tion between errors that belong to “the same group (along either di-

mension)” (7). Their method is therefore directly applicable to the spe-

cifi c econometric issue we face (on page 3 of their manuscript the 

authors specifi cally mention spatial correlation as a possible application 

of their estimator). See also Spolaore and Wacziarg (2009) for a previous 

application of this methodology and its advantages.

IV. Empirical Results

A. Simple Correlations

Table 1 presents summary statistics for the main variables in our 

analysis;that is, major technology usage lags from the Comin et al. data 

set, per capita income, and our two main measures of genetic distance, 

bilateral and relative to the United States. For the sake of space we do 

not present summary statistics for the historical Comin et al. data and 

for the disaggregated series from the CHAT data set, but these are avail-

able upon request and tell a similar substantive story.

Panel A presents means and measures of spread to aid in the interpre-

tation of the magnitudes of our estimated effects. More substantively, 

Panel B presents simple correlations. Several observations are in order. 

First, the various technology usage lag differences as well as bilateral 

differences in per capita income bear moderate correlations with each 

other, generally in the range of 0.4 to 0.6. This is instructive, as it indi-

cates that our technology usage measures do not all capture the same 

concept of differences in technological advancement, and actually mea-

sure different (albeit correlated) degrees of technological sophistication 

depending on the sector.18 Second, these measures of pairwise differ-

ences in technology adoption (plus per capita income, our proxy for ag-
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gregate TFP) bear sizable positive correlations with relative frontier dis-

tance—in the range of 0.1 to 0.3—consistent with the main hypothesis 

derived from our model. Third, the correlations between pairwise dif-

ferences in technology adoption levels and bilateral genetic distance is 

much closer to zero, and even sometimes negative. Thus, the evidence 

from simple correlations is consistent with our barriers story: relative 

frontier distance seems to matter more than bilateral genetic distance.

B. Aggregate TFP

Table 2 displays empirical results from regressions as specifi ed in equa-

tions (32) and (33), where 
 
Ti is defi ned variously as purchasing power 

parity (PPP) per capita income as of 2005, PPP per capita income in 

1870, or population density as of 1500. The goal of these regressions is 

to capture the effect of long- term barriers on aggregate TFP. The regres-

sions build on those in Spolaore and Wacziarg (2009), but here we ex-

plicitly include a horserace between bilateral and relative frontier dis-

tance. The fi rst three columns enter relative frontier distance, bilateral 

genetic distance and both variables together in a regression where the 

absolute difference in per capita income for 2005 is the dependent vari-

able. We see exactly the pattern implied by the model of Section II: En-

tered separately, the magnitude of the effect of relative frontier distance, 

as measured by the standardized beta coeffi cient, is three times as large 

as the magnitude of the effect of bilateral genetic distance (both esti-

mates being signifi cantly positive). A standard deviation difference in 

relative frontier distance can account for 30% of a standard deviation in 

absolute income differences, a substantial portion of the variation, com-

pared to only 10% for bilateral genetic distance. When both metrics of 

genetic distance are entered together, relative frontier distance is large 

and signifi cant, while the coeffi cient on bilateral genetic distance is in-

distinguishable from zero.

Genetic distance, this time relative to the English population rather 

than the United States, is also a strong predictor of technology differ-

ences in 1870, right after the onset of the Industrial Revolution, and in 

1500 as well (we follow the literature in using population density as 

a proxy for technology in the preindustrial Malthusian era). For 1500, 

we use historical genetic distance as of 1500 as a regressor, so the re-

gression captures the effect of initial genetic distance on technological 

differences prior to the discovery of the New World and the (possibly) 

endogenous population movements that resulted from it. Northwest-
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ern Europe was then the technological leader, and technology differ-

ences in 1500 are an increasing function of genetic distance relative to 

the English.19 For both 1500 and 1870, the standardized beta on genetic 

distance is around 15 to 17%, smaller than in 2005 but still a substantial 

portion of the variation, particularly considering the likely prevalence 

Table 2 
Regressions for Overall TFP Differences, Contemporaneous and Historical

  

2005 Income

(1)  

2005 Income

(2)  

2005 Income

(3)  

1870 Income

(4)  

1500 Density

(5)

Fst genetic distance 

relative to the US, 

weighted

6.290 6.029

(1.175)*** (1.239)***

Bilateral Fst genetic 

distance

2.164 .275

(.596)*** (.541)

Relative Fst genetic 

distance to the UK, 

weighted

1.691

(.836)**

Relative Fst genetic 

distance to the UK, 

1500 match

29.751

(7.168)***

Absolute difference in 

latitudes

.232 .559 .255 1.184 3.297

(.245) (.279)** (.248) (.273)*** (2.684)

Absolute difference in 

longitudes

–.025 –.196 –.007 .710 5.365

(.220) (.240) (.213) (.264)*** (2.033)***

Geodesic distance –.012 –.008 –.016 –.092 –.781

(.026) (.027) (.025) (.034)*** (.248)***

= 1 for contiguity –.418 –.495 –.414 –.259 –3.562

(.060)*** (.060)*** (.061)*** (.048)*** (.719)***

= 1 if either country is 

an island

.174 .143 .174 .064 4.820

(.083)** (.083)* (.083)** (.099) (2.673)*

= 1 if either country is 

landlocked

.008 .024 .005 .170 .346

(.085) (.090) (.087) (.078)** (.956)

= 1 if pair shares at 

least one sea or 

ocean

–.001 .028 –.0001 .071 –1.632

(.067) (.077) (.067) (.050) (.727)**

Constant 1.022 1.143 1.017 .365 6.693

(.089)*** (.086)*** (.090)*** (.076)*** (.981)***

Observations 10,440 10,440 10,440 1,485 10,153

 (countries) (144) (144) (144) (54) (142)

Standardized beta (%) 3.18 1.39 28.93 15.02 17.77

R-squared  .11  .07  .11  .16  .07

Note: TFP proxied with log per capita income in 1870 and 2005 period, and with population density 

for 1500. Standard errors in parentheses.

* Signifi cant at 10%. 

** Signifi cant at 5%. 

*** Signifi cant at 1%.
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of error in the measurement of the dependent variable, which raises the 

standard error of the regression.

C. Contemporary Technological Differences

While aggregate TFP is interesting to fi x ideas, this paper is mainly 

about the spread of specifi c technologies, so for the remainder of this pa-

per we focus on data at the level of disaggregated technologies. We start 

with the Comin et al. data. Tables 3 and 4 present estimates of equations 

(32) and (33), respectively, for all Comin et al. sectoral measures of tech-

nology usage lags for the year 2000. Entered alone (table 3), genetic dis-

tance relative to the United States is positively related to technological 

differences for all measures, and statistically signifi cant at the 5% level 

for three of the four sectoral measures, as well as the absolute difference 

in the overall technology usage lag index. The only sectoral category 

for which genetic distance is not signifi cant is agricultural technology, 

which is perhaps more mature in 2000 and has diffused more broadly 

(since the 1960s, many developing countries with strong comparative 

advantages in agriculture have widely adopted modern agricultural 

technologies). For communications, transportation, and industrial 

technologies, the standardized effect of relative frontier distance ranges 

anywhere from 12.73% to 25.97%, and for the overall technology index 

it equals 19.81%, roughly in line with the results for aggregate TFP.

Turning to table 4, which conducts a horserace between bilateral 

and relative frontier distance, we fi nd that the latter trumps the for-

mer: when entered together in the regressions, relative frontier distance 

comes out signifi cantly positive, while bilateral distance comes in either 

insignifi cant or even negative. The standardized magnitude of the ef-

fect of relative frontier distance across technological categories remains 

in line with those in table 3, and the inclusion of bilateral genetic dis-

tance barely affects the regression R- squared. In sum, relative frontier 

distance carries virtually all of the explanatory power. This is perhaps 

the strongest evidence in favor of the main testable hypothesis in our 

model—namely, the hypothesis that genealogical distance introduces 

signifi cant barriers to the spread of innovations.

D. 1500 Technological Differences

While the results for 2000 capture the intensive margin of technological 

adoption, the data for 1500 capture exclusively the extensive margin, 
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and as such provide an alternative test of the hypothesis that genetic 

distance hinders the diffusion of innovations. Tables 5 and 6 show re-

sults using the Comin et al. data for 1500 to construct the dependent 

variables—the difference in technology adoption indices at the sec-

toral and overall levels. The results here are even stronger than for the 

contemporary period in terms of the magnitude of the estimated bar-

rier effects of genealogical relatedness. For every measure of bilateral 

Table 3 
Bilateral Regressions of Technological Distance on Genetic and Geographic Distance Metrics 

Agricultural 

Technology

(1)

Communications 

Technology

(2)

Transportation 

Technology

(3)

Industrial 

Technology

(4)

Overall 

Technology

(5)      

Fst genetic distance 

relative to the US, 

weighted

.402 .500 .608 1.149 .745

(.268) (.212)** (.185)*** (.288)*** (.216)***

Absolute difference 

in latitudes

.687 .274 .306 .329 .361

(.121)*** (.066)*** (.057)*** (.081)*** (.082)***

Absolute difference 

in longitudes

.405 .089 .305 .174 .243

(.129)*** (.055) (.072)*** (.069)** (.088)***

Geodesic distance –.050 –.016 –.036 –.024 –.032

(.014)*** (.006)** (.008)*** (.007)*** (.010)***

= 1 for contiguity –.050 –.077 –.053 –.090 –.071

(.014)*** (.012)*** (.013)*** (.018)*** (.012)***

= 1 if either 

country is an 

island

.118 .057 .093 .062 .116

(.077) (.027)** (.047)** (.023)*** (.048)**

= 1 if either 

country is 

landlocked

–.007 .018 –.008 .013 –.016

(.028) (.017) (.011) (.023) (.014)

= 1 if pair shares 

at least one sea 

or ocean

.036 –.010 .014 .000 .009

(.027) (.015) (.015) (.020) (.019)

Constant .089 .199 .148 .198 .147

(.029)*** (.018)*** (.018)*** (.023)*** (.018)***

Observations 6,105 7,381 6,441 5,565 7,503

 (countries) (111) (122) (114) (106) (122)

Standardized beta 

(%)

8.38 12.73 18.68 25.97 19.81

R-squared  .25  .10  .14  .16  .17

Note: Two-way clustered standard errors in parentheses. CEG data set for 2000, dependent variable 

as in fi rst row.

* Signifi cant at 10%. 

** Signifi cant at 5%. 

*** Signifi cant at 1%.
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technology difference, genetic distance relative to the United Kingdom 

enters with a positive sign, is statistically signifi cant at the 10% level 

in all cases, and at the 1% level in fi ve of the six cases. The weakest re-

sults, again, are for agriculture, and the strongest for transportation and 

military technologies. The magnitude of the effects, in terms of stan-

Table 4 
Bilateral Regressions of Technological Distance on Genetic and Geographic Distance Metrics, 

Horserace with Absolute Genetic Distance 

  

Agricultural 

Technology

(1)  

Communications 

Technology

(2)  

Transportation 

Technology

(3)  

Industrial 

Technology

(4)  

Overall 

Technology

(5)

Fst genetic distance 

relative to the US, 

weighted

.689 .504 .901 1.119 1.015

(.415)* (.276)* (.236)*** (.341)*** (.299)***

Bilateral Fst genetic 

distance

–.289 –.004 –.302 .030 –.278

(.194) (.137) (.095)*** (.150) (.128)**

Absolute difference 

in latitudes

.655 .274 .272 .332 .334

(.129)*** (.068)*** (.058)*** (.083)*** (.083)***

Absolute difference 

in longitudes

.387 .089 .279 .175 .224

(.125)*** (.052)* (.068)*** (.067)*** (.083)***

Geodesic distance –.046 –.015 –.032 –.025 –.028

(.014)*** (.006)*** (.007)*** (.007)*** (.009)***

= 1 for contiguity –.055 –.077 –.057 –.089 –.076

(.014)*** (.012)*** (.013)*** (.018)*** (.012)***

= 1 if either 

country is an 

island

.118 .057 .092 .062 .114

(.073) (.027)** (.042)** (.024)*** (.045)**

= 1 if either 

country is 

landlocked

–.003 .018 –.006 .013 –.014

(.029) (.017) (.012) (.023) (.014)

= 1 if pair shares 

at least one sea 

or ocean

.036 –.010 .012 .001 .008

(.027) (.015) (.015) (.020) (.019)

Constant .093 .199 .153 .198 .152

(.028)*** (.018)*** (.017)*** (.023)*** (.017)***

Observations 6,105 7,381 6,441 5,565 7,503

 (countries) (111) (122) (114) (106) (122)

Standardized beta 

(%)

14.37 12.83 27.68 25.31 26.97

R-squared  .26  .10  .15  .16  .18

Note: Comin et al. data set for 2000, dependent variable as in fi rst row. Two-way clustered standard 

errors in parentheses. 

* Signifi cant at 10%. 

** Signifi cant at 5%. 

*** Signifi cant at 1%.
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dardized betas, range from 10.41% (agricultural technologies) to 41.81% 

(transportation technologies), while the effect on the overall technologi-

cal difference index is 31.63%. Thus, a standard deviation in genetic dis-

tance relative to the United Kingdom can account for about one- third of 

a typical difference in technology adoption between countries.

Turning to the more direct test of our theory, namely the horserace 

with bilateral genetic distance, we fi nd again in table 6 that in all cases 

(save agricultural technologies) relative frontier distance trumps bi-

lateral genetic distance in terms of magnitude, sign, and/or statistical 

signifi cance. Moreover, the magnitude of the effect of relative frontier 

distance barely changes compared to table 5, so that the inclusion of 

bilateral genetic distance in the regression has benign effect. To con-

clude, the strong evidence we uncovered in the contemporary period 

holds also for the pre- Industrial era. This was also the era prior to the 

vast migrations that followed the discovery of the New World, so one 

cannot argue that they refl ect the endogeneity of genetic distance with 

respect to technological attractiveness.20 

E. Results for Disaggregated Technologies

Our fi nal test is to turn to even more disaggregated technologies, from 

the CHAT data set. While the data from Comin et al. provides useful 

sectoral characterizations of the technological achievements of nations 

throughout history, the sectoral indices are aggregated and do not allow 

us to determine which of the underlying technologies drive the results. 

The CHAT data set allows us to address this shortcoming because it 

provides data on technology use for a wide range of specifi c technol-

ogies. As already mentioned, we use data on 33 technologies for which 

we observe data for more than 50 countries, and defi ne our dependent 

variables for each technology as the absolute difference in the per cap-

ita use of the technology. For instance, for cell phone technology, our 

dependent variable is the absolute difference, between country i and 

country j, in the number of cell phones per capita. To maintain consis-

tency, we assume that the technological leader for all these technologies 

was the United States (this turns out to be the case in actuality in the 

vast share of the cases, and in the instances when it is not the case the 

leader is usually a country that is genetically very close to the United 

States, such as a Northwestern European country).

The results are presented in table 7. In every single case, the effect of 

relative frontier distance is positive. Additionally, in 22 of the 33 cases, 



Table 7 
Bilateral Regressions of Technological Distance on Relative Genetic Distance

    

Fst Genetic 

Distance Relative to 

the US, Weighted  

Observations

(Countries)  

Standardized 

Beta (%)  R-squared

Agricultural Technologies
(1) Harvest machines 2.044 3,486 5.91 .17

(1.134)* (84)

(2) Tractors used in 

agriculture

19.615 5,778 9.05 .25

(8.245)** (108)

(3) Metric tons of fertilizer 

consumed

73.393 5,778 11.68 .23

(23.062)*** (108)

(4) Area of irrigated crops .453 5,565 7.21 .03

(.276)* (106)

(5) Share of cropland area 

planted with modern 

varieties (% cropland)

.182 3,321 7.20 .02

(.080)** (82)

(6) Metric tons of pesticides .738 4,465 2.62 .12

(.893) (95)

Transportation Technologies
(7) Civil aviation passenger 

km

.484 3,828 11.29 .21

(.254)* (88)

(8) Lengths of rail line .397 4,656 5.26 .28

(.275) (97)

(9) Tons of freight carried on 

railways

2.330 4,005 1.63 .16

(1.421) (90)

(10) Passenger cars in use .245 5,886 15.88 .26

(.082)*** (109)

(11) Commercial vehicles in 

use

.066 5,050 23.50 .29

(.025)*** (101)

Medical Technologies
(12) Hospital beds 1.481 5,565 1.31 .17

(4.319) (106)

(13) DPT immunization before 

age 1

.137 5,778 3.54 .01

(.156) (108)

(14) Measles immunization 

before age 1

.141 5,778 3.71 .01

(.162) (108)

Communications Technologies
(15) Cable TV 74.485 4,753 4.23 .16

(56.305) (98)

(16) Cell phones .109 5,778 8.21 .12

(.044)** (108)

(17) Personal computers .247 4,950 12.53 .21

(.099)** (100)

(18) Access to the Internet .192 5,778 14.25 .28

(.072)**** (108)

(19) Items mailed/received .097 2,346 11.00 .21

(.074) (69)
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Table 7 
Continued

    

Fst Genetic 

Distance Relative to 

the US, Weighted  

Observations

(Countries)  

Standardized 

Beta (%)  R-squared

(20) Newspaper circulation .245 5,886 1.43 .25

(.101)** (109)

(21) Radios .064 5,886 1.87 .12

(.139) (109)

(22) Telegrams sent .312 2,211 5.74 .07

(.260) (67)

(23) Mainline telephone lines .185 5,886 11.54 .28

(.067)*** (109)

(24) Television sets in use .492 5,886 18.78 .31

(.141)*** (109)

Industrial Technologies and Other
(25) Output of electricity, 

KwHr

34.477 5,565 8.16 .23

(13.849)** (106)

(26) Automatic looms .828 3,570 11.19 .06

(.304)*** (85)

(27) Total looms 1.200 3,570 8.95 .08

(.361)*** (85)

(28) Crude steel production in 

electric arc furnaces

.091 2,278 8.10 .08

(.031)*** (68)

(29) Weight of artifi cial 

(cellulosic) fi bers used 

in spindles

.425 2,145 3.89 .10

(.354) (66)

(30) Weight of synthetic 

(noncellulosic) fi bers 

used in spindles

2.045 2,145 9.89 .20

(.819)** (66)

(31) Weight of all types of 

fi bers used in spindles

7.832 2,850 12.10 .07

(2.759)*** (76)

(32) Visitor beds available in 

hotels and elsewhere

24.245 5,565 9.31 .10

(7.518)*** (106)

(33) Visitor rooms available in 

hotels and elsewhere

13.518 5,778 1.50 .10

  (3.884)***  (108)     

Note: CHAT data set averaged over 1990–1999. Two-way clustered standard errors in parentheses. 

Unless specifi ed in parentheses, the dependent variable is the absolute difference in per capita 

prevalence of the technology between country i and country j. All regressions include controls for 

absolute difference in latitudes, absolute difference in longitudes, geodesic distance, dummy = 1 

for contiguity, dummy = 1 if either country is an island, dummy = 1 if either country is landlocked, 

dummy = 1 if pair shares at least one sea or ocean.

* Signifi cant at 10%. 

** Signifi cant at 5%. 

*** Signifi cant at 1%. 
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the effect is statistically signifi cantly different from zero, at least at the 

10% level (in 19 of these the signifi cance obtains at the 5% level). Here 

the results are particularly strong for some agricultural technologies, 

for most communications technologies, and for all but one of the indus-

trial technologies. The results are weakest for medical technologies and 

transportation. Turning to the magnitude of the effects, for the technol-

ogies where relative frontier distance is statistically signifi cant, the stan-

dardized betas vary between about 8% and 24%—slightly smaller than 

for the Comin et al. data but in the same rough order of magnitude.

For the sake of space we do not report the results of the horserace 

regressions, which add bilateral genetic distance to the specifi cation of 

table 7 in order to test which of relative frontier distance or bilateral 

genetic distance are better predictors of technology differences. The 

overall lesson from these horseraces is that relative frontier distance 

comes out more signifi cant in 17 of the 22 cases where relative distance 

was previously signifi cant, and in most of these cases bilateral genetic 

distance either is insignifi cant or even bears a negative sign. Thus, the 

preponderance of the evidence at the level of disaggregated technol-

ogies is consistent with our barriers model.

V. Conclusion

The history of human populations is characterized by successive splits 

that led populations to stray apart and develop specifi c cultural and 

biological traits over the course of time. The longer the two popula-

tions have been separated, the more their vertically transmitted traits 

can be expected to differ. The central hypothesis in this paper is that 

differences in vertically transmitted traits between populations hinders 

the exchange of ideas, and hence the diffusion of innovations. Using ge-

netic distance as a summary measure of differences in vertically trans-

mitted human traits, we showed that populations that are genetically 

far from the innovator display lower aggregate TFP, higher technology 

usage lags, lower uptake on the extensive margin of technology adop-

tion, and overall lower rates of technology usage at the level of disag-

gregated technologies. These results are quantitatively strong and sta-

tistically signifi cant in the vast majority of cases, and hold both in the 

contemporary period and historically, going as far back as 1500.

While this paper has provided clear evidence of a barrier effect of 

genetic distance, much work remains to be done to elucidate the precise 

mechanisms whereby differences in human traits hinder the diffusion 
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of innovations. We have presented reduced form, descriptive patterns 

linking genetic distance and technology use, as well as a formal test of 

our barriers model based on comparing the effect of bilateral genetic dis-

tance versus relative frontier distance. However, we have not answered 

the question of why populations that are genetically distant from the 

innovator tend not to adopt frontier technologies. Is it for lack of trust 

or understanding across different populations? Is it because communi-

cation is diffi cult? Is it because adapting innovations developed for a 

different cultural context is hindered by differences in norms, habits, or 

customs? We leave these important questions for future research.

Appendix 

Technologies Used in the Various Data Sets 

24 Technologies in the CEG 1500 AD Data Set

1. Military: Standing army, cavalry, fi rearms, muskets, fi eld artillery, 

 warfare- capable ships, heavy naval guns, ships (+180 guns).

2. Agriculture: Hunting and gathering, pastoralism, hand cultivation, 

plough cultivation.

3. Transportation: Ships capable of crossing the Atlantic Ocean, ships ca-

pable of crossing the Pacifi c Ocean, ships capable of reaching the Indian 

Ocean, wheel, magnetic compass,  horse- powered vehicles.

4. Communications: Movable block printing, woodblock or block print-

ing, books, paper.

5. Industry: Steel, iron.

10 Technologies in the Comin et al. 2000 AD Data Set

Electricity (in 1990), Internet (in 1996), PCs (in 2002), cell phones (in 

2002), telephones (in 1970), cargo and passenger aviation (in 1990), 

trucks (in 1990), cars (in 1990), tractors (in 1970).

33 Technologies in the CHAT Data Set for 1990–1999

1. Agriculture: Harvest machines, tractors used in agriculture, metric 

tons of fertilizer consumed, area of irrigated crops, share of cropland 
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area planted with modern varieties (% cropland), metric tons of pesti-

cides.

2. Transportation: civil aviation passenger km, lengths of rail line, tons 

of freight carried on railways, passenger cars in use, and commercial 

vehicles in use.

3. Medical: Hospital beds, DPT immunization before age 1, measles im-

munization before age 1.

4. Communications: Cable TV, cell phones, personal computers, access 

to the Internet, items mailed/received, newspaper circulation, radios, 

telegrams sent, mainline telephone lines, television sets in use.

5. Industry and other: Output of electricity, KwHr, automatic looms, total 

looms, crude steel production in electric arc furnaces, weight of artifi cial 

(cellulosic) fi bers used in spindles, weight of synthetic (noncellulosic) 

fi bers used in spindles, weight of all types of fi bers used in spindles, 

visitor beds available in hotels and elsewhere, visitor rooms available 

in hotels and elsewhere.
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1. Indeed, the microeconomic literature on the diffusion of innovations (Rogers 1995) 
is consistent with a central role for subjective barriers between groups and populations.

2. The derivation is straightforward. With probability 1/4 both populations experience 
a positive shock ε, and with probability 1/4 both populations experience a negative shock 
–ε. Hence, with probability 1/2, their vertical distance is zero. With probability 1/2 one 
population experiences a positive shock ε and the other a negative shock –ε, implying a 
vertical distance equal to |ε – (–ε)| = 2ε. On average, the expected vertical distance is 
E[dv(1,2)] = 1/2(0) + 1/2(2ε) = ε. 

3. The derivation is as follows. With probability 1/4, population 1’s ancestor popula-
tions and population 2’s ancestor populations experienced identical shocks both between 
time –T′ and time –T and between time –T and time 0. That is, with probability 1/4 we 
have εa(1&2)(–T, –T′) = εa(3)(–T, –T′) and ε1(0, –T), implying dv(1, 3) = 0. By the same token, 
with probability 1/4 the two populations experienced identical shocks between time –T′ 
and –T but different shocks between time –T and time 0, implying dv(1, 3) = 2ε, and with 
probability 1/4 identical shocks between –T and 0 but different between –T′ and –T, 
implying dv(1, 3) = 2ε′. With probability 1/8, one population lineage has experienced two 
positive shocks (ε′ + ε), while the other has experienced two negative shocks (–ε′, –ε), 
therefore leading to a vertical distance equal to 2ε′ + 2ε. Finally, with probability 1/8 one 
population lineage has experienced a positive shock ε′ and a negative shock –ε, while the 
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other population lineage has experienced –ε′ and ε. In this latest case, the vertical distance 
dv(1, 3) = |2ε – 2ε′|. In sum, expected vertical distance is given by 

  
E[d(1, 3)] = 1

4
2 ′ε + 1

4
2ε + 1

8
(2 ′ε + 2ε) + 1

8
|2ε − 2 ′ε |,

which is equal to ε + ε′/2 if ε ≥ ε′ and equal to ε′ + ε/2 if ε ≤ ε′, or, equivalently, E[dv(1, 3)] 
= max{ε′/2 + ε, ε′ + ε/2}. The same expected vertical distance holds between populations 
2 and 3.

4. We assume here, for simplicity, that the probability of coming up with an innovation 
is independent of vertical traits. If vertical traits also explain the onset of innovations, the 
effects under consideration would be larger. These direct effects are not necessary for our 
results.

5. We abstract from an effect of vertical traits on the benefi ts from adoption. Again, 
such effect would strengthen the relationship, but is not necessary for the results.

6. The equation holds for dv(i, f ) ≤ ω. For dv(i, f ) > ω,   Ni
∗ = 0 (no innovation has posi-

tive net benefi ts).
7. In what follows we assume, without loss of generality, that ε ≥ ε′.
8. For further discussion of the relation between relative frontier distance and bilateral 

genetic distance, see Spolaore and Wacziarg (2009, 477).
9. For a detailed derivation see Barro and Sala- i- Martin (1997 and 2003).
10. Interestingly, the effect of relative frontier distance is decreasing in parameter ψ, 

which measures the benefi ts (lower imitation costs) associated with technological back-
wardness. 

11. For example, an analysis of the relation between barrier effects and transitional 
income differences is provided by Ngai (2004).

12. In fact, when it comes to cell phones, we fi nd little evidence of systematic leapfrog-
ging—see Section IV, part E. Genetic closeness to the United States strongly predicts the 
extent of cell phone adoption despite the possibility of leapfrogging.

13. Using instead the genetic distance between genetic groups constituting a plurality 
of the populations of each country did not materially affect the results. The two measures 
only differ for pairs involving countries made up of more than one genetic group, so in 
practice the two measures are highly correlated.

14. For agricultural technologies, the scoring is a bit different, with a score of zero 
assigned to  hunter- gatherer countries, 1 for pastoralist countries, 2 for hand cultivation, 
and 3 for plough cultivation.

15. We prefer to use a consistent approach to determine the denominator of our tech-
nology usage intensity measures rather than varying the denominator from measure to 
measure. In only one case (the share of cropland area planted with modern variety) do we 
depart, since it would make little sense to divide this share by population.

16. We have also completed a set of simple  cross- sectional regressions, and these are 
available upon request. The results were very consistent with those obtained under our 
more involved bilateral approach.

17. We also included a wider set of controls, including freight costs, with similar re-
sults. In our data set, freight costs were so highly correlated with geodesic distance that 
it makes litle sense to include them both. See Spolaore and Wacziarg (2009) for further 
details on this point and on the broader issue of geographic controls.

18. The correlations of the sectoral indices with the overall index of technological dif-
ferences of which they are part are greater—around 0.7 to 0.8—this is not surprising as 
the overall index is constructed as the average of the sectoral indices.

19. While we use distance from the English to defi ne relative frontier distance in these 
regressions, picking instead any of the Western European populations in our sample—
Italian, German, or Danish—would yield similar results. Genetic distances among these 
populations are very small relative to the world variation.

20. We believe this argument is hard to make for the contemporary era as well as it 
is diffi cult to argue that the reason, say, that Europeans migrated to North America was 
because of superior technological potential there ex ante.
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