
A Decomposition-Based Pricing Procedure
for Large-Scale Linear Programs:

An Application to the Linear
Multicommodity Flow Problem

John W. Mamer • Richard D. McBride
Anderson Graduate School of Management, University of California, Los Angeles, Box 951481, 110 Westwood Plaza,

Los Angeles, California 90095-1481
Marshall School of Business, University of Southern California, Los Angeles, California 90089-0809

john.mamer@anderson.ucla.edu • mcbride@rcf.usc.edu

We propose and test a new pricing procedure for solving large-scale structured linear
programs. The procedure interactively solves a relaxed subproblem to identify

potential entering basic columns. The subproblem is chosen to exploit special structure,
rendering it easy to solve. The effect of the procedure is the reduction of the number of pivots
needed to solve the problem. Our approach is motivated by the column-generation approach
of Dantzig-Wolfe decomposition. We test our procedure on two sets of multicommodity flow
problems. One group of test problems arises in routing telecommunications traffic and the
second group is a set of logistics problem which have been widely used to test multicom-
modity flow algorithms.
(Linear Programming; Multicommodity Flows; Optimization)

1. Introduction
In this paper we propose an iterative partial pricing
scheme for solving large-scale linear programs using
the simplex method. The approach solves a relaxed
subproblem to identify the columns to be considered
during the pricing step of the simplex method. The
goal of the procedure is to find an efficient set of
candidate columns to enter the basis without incur-
ring the cost of pricing all of the nonbasic columns in
the problem at each iteration. Our scheme is moti-
vated by the column-generation approach of Dantzig-
Wolfe decomposition. We test our procedure on a set
of publicly available multicommodity flow problems.

Our subproblem is identical to the usual decompo-
sition subproblem; however, we replace the usual
(partial) master problem with a “column restricted”

version of the original problem. By “column re-
stricted” we mean a version of the original problem
with all of the original rows and a subset of the
original columns. The dual solution from this re-
stricted problem is used to construct the subproblem
in which a subset of constraints (usually “complicat-
ing” constraints) are relaxed and the objective function
modified so that violations of these constraints are
penalized according to the values of the dual vari-
ables. Given an optimal solution to the subproblem, a
new restricted problem is created from the columns
corresponding to the nonzero components of this
solution to the subproblem (in the case of an extreme
point optimal solution, the basic columns) together
with the basic columns of the current restricted prob-
lem. The restricted problem is resolved, yielding a

0025-1909/00/4605/0693$05.00
1526-5501 electronic ISSN

Management Science © 2000 INFORMS
Vol. 46, No. 5, May 2000 pp. 693–709

new dual solution. Constructing the restricted prob-
lem in this fashion assures on the one hand that a basic
feasible solution to the original problem is maintained
at each iteration (since the current basic columns are
maintained), and on the other hand that the size of the
problem to which we must apply the simplex method
is quite small. One can think of the columns added to
the restricted problem in each iteration as candidate
entering basic variables. The procedure terminates
when none of the columns obtained from the subprob-
lem price out in the restricted problem. We assume
that the problem is structured in such a way that a
very easily solved subproblem can be identified. In
many instances, the subproblem decomposes further
into a set of smaller problems.

In its broadest outline our procedure owes much to
Dantzig-Wolfe decomposition. In the usual approach
to Dantzig-Wolfe decomposition (also called “price-
directed” decomposition (see Nazareth 1987), struc-
ture in the constraints of the problem is used to
identify an easily solved subproblem by dualizing a
subset of the constraints. Our procedure is similar to
Dantzig-Wolfe decomposition in this respect. How-
ever, instead of using the subproblem to produce an
extreme point of the relaxed polytope for inclusion in
a master problem (as in Dantzig-Wolfe decomposi-
tion), we use the optimal basic columns of the sub-
problem to identify columns to be included in a
restricted version of the original problem. The re-
stricted version of the original problem is solved to
obtain an improved primal feasible basic solution to
the original problem, and new dual prices to use in the
next subproblem.

This work was motivated by our experience solving
a very specialized multicommodity flow formulation
of the message routing problem; in particular, the
path-flow algorithm for solving this formulation. The
path-flow approach to the multicommodity flow prob-
lem reformulates the problem so that the variables
represent flows along paths from source to sink, not
flows along individual arcs. Since the number of path
flows is very large, column generation is used to
reduce the computational effort. Ahuja et al. (1993, p.
665) give an interpretation of this approach within the
framework of Dantzig-Wolfe decomposition. Under

this scheme, the algorithm iterates between a subprob-
lem that identifies potentially improving paths and a
restricted (path-flow) master problem. Because of the
simple structure of the original problem, the subprob-
lems are readily solved by the shortest path algorithm.
In McBride and Mamer (1997b), the subproblem solu-
tions are used to guide pivot selection for a specialized
version of EMNET (a partitioned basis embedded
network simplex algorithm (McBride 1985)) applied to
the arc-flow formulation of the message routing prob-
lem. Our experience showed a dramatic reduction in
the number of pivots needed to solve the multicom-
modity flow problem, and a concomitant reduction in
solution time (when compared to EMNET solving the
multicommodity formulation directly). It was rather
surprising to us that this column selection procedure
afforded such large improvements in the solution
time, especially in light of the extent to which EMNET
has already been specialized to solve multicommodity
flow problems. It was this experience that encouraged
us to attempt to generalize the technique to other
structured linear programming problems.

Our procedure is also similar to the “dynamic
simplex algorithm” described by Padberg (1995). In
this variant of the simplex method, a sequence of
smaller problems are solved which lead to a solution
to the original problem. The smaller problems are
obtained from the original problem by dropping non-
basic variables and nonbinding constraints. Periodi-
cally, all rows and columns are scanned for possible
inclusion into the master problem. In contrast, our
procedure uses all rows and solves a surrogate prob-
lem to determine which columns to include in the
restricted problem at each iteration.

Additionally, Valerio de Carvalho (1997) has used
surrogate problems to determine which columns to
include in a branch and bound solution to the bin-
packing problem. In this work a subproblem is solved
to identify columns to be included in a cutting stock
formulation of the bin-packing problem.

In §2 of this paper we specify the procedure in detail
and develop the relationship between our proposed
procedure and the classical Dantzig-Wolfe decompo-
sition algorithm, and the common partial pricing
heuristics for the simplex method. In §3 of this paper

MAMER AND MCBRIDE
A Decomposition-Based Pricing Procedure for Large-Scale Linear Programs

694 Management Science/Vol. 46, No. 5, May 2000

we give some indication of the salient issues faced
during the implementation of our procedure.

An initial set of numerical results are contained in
§4 of this paper. We test our ideas on two sets of
problems. The first are the message routing problems
described above. The second are a set of publicly
available multicommodity flow problems. These mul-
ticommodity flow problems offer a more stringent test
of our ideas since the resulting subproblems corre-
spond to network flow problems instead of shortest
path problems (the simplifying assumptions of the
message routing problem are not met for these prob-
lems), and thus require more time to solve. The results
we report for this latter set of problems improve upon
our best solution times (reported in McBride and
Mamer 1997a).

This paper, together with McBride and Mamer
(1997a) and (1997b) are part of an ongoing interest of
ours in using techniques pioneered in the context of
decomposition algorithms to improve the perfor-
mance of very large scale implementations of the
simplex method.

2. Decomposition-Based Pricing
Consider a linear program of the following form:

V � min cx,

Nx � b,

Ax � r,

x � 0, (1)

where the constraint matrix N possesses some special
structure that makes the relaxed problem, obtained by
dropping the constraints A, especially easy to solve
(network flow, maximum flow, assignment, shortest
path, etc.). We assume that N has m rows and A has h
rows, each matrix possesses n columns where, in
practice, n � m. We also assume that the combined
constraint array has full rank.

The dual of Problem (1) is given by:

max ub � vr,

uN � vA � c,

v � 0. (2)

Suppose that (1) is bounded and a feasible basis has
been identified. Denote by � the set of column indices
of (1) and by � � � a subset of the columns of (1).
Consider the restricted problem

V� � min c�x,

N�x � b,

A�x � r,

x � 0, (3)

where N� and A� are the submatrices of N and A
obtained by dropping all columns not in � (the row
dimension of (3) is the same as the original problem
(1), the column dimension is ���) and listing the
columns in order of their original indices. Let c�
denote the cost vector consisting of the costs corre-
sponding to columns in �. We will denote the jth
columns of A and N by A j and N j, respectively.
Suppose that the restricted Problem (3) has a basic
feasible solution. It will be convenient, and cause no
confusion, to speak of sets of columns and sets of
column indices interchangeably. Let x� denote the
optimal primal solution and u� and v� the (row vector)
of dual variables corresponding to the constraints N�
and A�, respectively. Any basis for (3) will consist of

columns of �N�
A�� and columns corresponding to the

slack variables for the constraints Ax � r. In this paper
we will use the term “basic columns” of (3) to mean
the columns of (3) in the basis, excluding the columns
added in the solution of (3) to represent slack vari-
ables. We will denote by �� the set columns of (3) in
the optimal basis. To avoid proliferation of notation,
here and for the remainder of this paper, we make the
implicit assumption that the dimension of the generic
variable x specified in the statement of an optimization
problem is of appropriate dimension.

Consider the partial dual of Problem (1), given by:

VSP�v�� � min�c � v�A�x,

Nx � b,

x � 0. (4)

MAMER AND MCBRIDE
A Decomposition-Based Pricing Procedure for Large-Scale Linear Programs

Management Science/Vol. 46, No. 5, May 2000 695

It follows from the theory of Lagrangian relaxation
(see Ahuja et al. 1993) that (V SP(v) � vr) � V for any
v � 0. Since (3) results from (1) by dropping columns,
we are assured that V � V�. Problems (4) and (3)
provide convenient upper and lower bounds on the
optimal value. Let x̂ denote an optimal primal solution
to (4). Let �̂ denote the set of columns in � corre-
sponding to nonzero entries in x̂.

The Decomposition Pricing Procedure (DPP)
0. Initialization. Find a feasible basis for (1). Let � be

the set of basic columns of (1) corresponding to the
initial basis. Formulate the restricted problem and
solve it. Let x�, u�, v� denote optimal primal and dual
basic solutions to this restricted problem; let �� denote
the set of indices of columns in the of the restricted
problem in the optimal basis.

1. Solve the relaxed subproblem (4). Denote the
indices of the columns corresponding to nonzero
components of the optimal solution to (4) by �̂. If u�N j

� v�A j � c j for all j � �̂, then an optimal solution to
(1) can be obtained from �x� �j � x�j for j � ��, �x� �j � 0 j
� � � ��. Otherwise, go to Step 2.

2. Construct a new restricted problem consisting of
the columns � � �� � �̂ (the basic columns from the
restricted problem together with the columns in �̂).
Solve this new restricted problem. Replace x�, u�, v�
with the primal and dual solutions to the new re-
stricted problem and replace �� with the optimal basic
columns of the new restricted problem. Go to Step 1.

We maintain at each iteration a feasible basic solu-
tion to the restricted Problem (3). In Step 2, the optimal
basic solution to the current restricted problem can be
used as an advanced starting basis for the next re-
stricted problem. On the other hand, we do not
assume that the subproblem is solved via the simplex
method, or that a basic optimal solution to the sub-
problem is available. This allows the latitude to solve
the subproblem by whatever algorithm is convenient.
If Subproblem (4) is to be solved via the simplex
method, the procedure can be modified to use the
optimal basis of the restricted problem as an advanced
starting solution to the subproblem. To see how this
can be done, consider the restricted problem, as it is
solved with the simplex method, augmented with
slack variables.

V� � min c�x,

N�x � b,

A�x � Is � r,

x � 0. (5)

In the above formulation, I is an h � h identity
matrix. Let B denote the optimal basis to (5). It follows
from the nonsingularity of B that by a suitable permu-
tation of the columns of B we can obtain a partition of
B as follows:

B � � N�1 N�2 0
A�1 A�2 E � ,

where N�1 is an m � m matrix, and E is a matrix with
h rows with a single 1 in each column corresponding
to the slack variables in the basis. The nonsingularity
of B guarantees the nonsingularity of N�1. The matrix
N�1 will be used as an advanced starting basis for the
subproblem in Step 1 of DPP. The vectors of dual
variables u�, and v� corresponding to B necessarily
satisfy the relation,

u�N�1 � v�A�1 � c�1

or

u�N�1 � c�1 � v�A�1

where c�1 is partitioned consistently with A�1. Thus N�1
is a dual basis and u� the corresponding dual solution
to (4). We can construct an initial primal feasible
starting solution by taking the primal variables asso-

ciated with �N�2
A�2

� , and treating them as nonbasic

variables standing above 0. This amounts to the
“pegged variable” technique described by Nazareth
(1987). We use a variant of the convex cost simplex
algorithm to implement this feature (in §3 of this
paper). With this adjustment, the subproblem can be
started from the optimal basis of the restricted
problem in each iteration.

When starting with an advanced basis derived from
the restricted problem, the first iteration of the simplex
method in the subproblem will look for columns such

MAMER AND MCBRIDE
A Decomposition-Based Pricing Procedure for Large-Scale Linear Programs

696 Management Science/Vol. 46, No. 5, May 2000

that u�Nj � cj � v�Aj, which is exactly what would
happen if we were to allow the restricted problem to
scan all of the columns of the original problem. The
first column found in this way, when added to the
restricted problem will bring about a gain (absent
degeneracy). After the first pivot of the subproblem,
this may no longer be true, since with each iteration
the subproblems dual variables u will change. Hence,
we have no immediate guarantee that columns en-
countered in later iterations of the simplex method
applied to the subproblem will “price out” according
to optimal dual solution of the restricted problem.

The purpose of this digression into the mechanics of
the revised simplex method is to illuminate a refine-
ment to the DPP procedure that we have found to be
very effective in practice.

The Decomposition Pricing Procedure with
Advanced Start (DPP-AS)

0. Initialization. Same as DPP
1.1. Identify a starting basis for Subproblem (4). If

this basis is optimal in the subproblem, stop, then the
solution to (3) is optimal for (1), otherwise go to Step
1.2.

1.2. Solve the relaxed Subproblem (4). Denote the
indices of the columns corresponding to nonzero
components of the optimal solution of (4) by �̂. Let i*
denote the column number of the first column to enter
the basis in the solution of (4). If u�N j � v�A j � c j for
all j � �̂, then an optimal solution to (1) can be
obtained from �x� �j � x�j for j � ��, �x� �j � 0, j � � � ��.
Otherwise, go to Step 2.

2. Construct a new restricted problem consisting
of the columns � � �� � �̂ � {i*} (the basic columns
from the restricted problem plus the columns in �̂,
plus the first column to enter the basis in the subprob-
lem). Solve this new restricted problem. Replace x�, u�,
v� with the primal and dual solutions to the new
restricted problem and replace �� with the optimal
basic columns of the new restricted problem. Go to
Step 1.

Convergence
For procedure DPP-AS convergence follows from the
standard proof of convergence for the simplex
method. The first step of the simplex method applied
to the advanced basis obtained from the restricted

problem is to find a column j such that u�N j � c j

� v�A j, which is exactly the requirement for an
improving column in the restricted problem. If this
column is added to the restricted problem, then (ab-
sent degeneracy) an improvement will be obtained in
the next restricted problem, leading to an improved
basic solution, and hence a new basis. Finite conver-
gence follows as in the simplex algorithm.

Procedure DPP does not use an advanced basis to
solve the subproblem, indeed it does not even require
an optimal basic solution to the subproblem. Unless
we explicitly add a pricing scan to Step 1 of the
algorithm, and add at least one “priced out” (a column
for which u�N j � c j � v�A j) column from Step 1 to the
restricted problem in Step 2, we cannot guarantee that
every column will be inspected using the current
duals from the restricted problem at Step 1. As it is
specified, the procedure only looks at the columns
corresponding to nonzero variables in an optimal
solution to the subproblem. This makes establishing
finite convergence slightly more complicated than for
DPP-AS.

At each iteration of DPP, we add to the restricted
problem the columns corresponding to the nonzero
variables in an optimal solution to the subproblem. If
one of these columns is found to “price out” in the
restricted problem, then there will be an improvement
and a change of basis in the restricted problem. If this
does not happen, then all of the columns correspond-
ing to nonzero variables in the optimal solution to the
subproblem have positive reduced costs, and the
current solution to the restricted problem is an optimal
basic solution. This last fact is established in Proposi-
tion 1.

Proposition 1. If for some basic optimal solution to
the restricted Problem (3) none of the columns associated
with nonzero variables in an optimal solution to the relaxed
Subproblem (4) have negative reduced costs, then the
optimum has been achieved: The current solution to the
restricted problem, embedded in a 0-vector of appropriate
dimension (as in Step 1 of the procedure), is optimal for the
original primal problem.

The general approach of proof is to establish that if
all of the columns corresponding to positive variables

MAMER AND MCBRIDE
A Decomposition-Based Pricing Procedure for Large-Scale Linear Programs

Management Science/Vol. 46, No. 5, May 2000 697

in the optimal solution to the subproblem have posi-
tive reduced costs, then the current solution to the
restricted problem, embedded in a 0-vector of appro-
priate dimension, is an optimal solution to the sub-
problem, and then to use the properties of the La-
grangian dual to show that it must also be an optimal
solution to the original problem. A detailed proof is
given in the appendix to this paper. With this result in
hand, convergence follows as in the usual simplex
method from the fact that there are only a finite
number of basic solutions to the original Problem (1).

In Step 2 of both the DPP and DPP-AS, we may
decide to add more than just those columns that
correspond to the nonzero components of the optimal
solution to the subproblem. For example, if the sub-
problem is solved via the simplex method we could
decide to add a collection of columns taken from the
set of all columns that “priced out” during the solution
of the subproblem. If we do not have access to a basic
solution to the subproblem, or are not using the
simplex method to solve the subproblem, then we
might use other heuristics to choose which columns to
add to the restricted problem. For example, one could
add a complete or partial scan of the original columns
using the current dual variables from the restricted
problem to find a set of “promising” columns in
addition to the columns revealed by the subproblem.
The tradeoff is between the good that these columns
might do in finding the optimal solution, versus the
increases in computational cost brought about by a
larger restricted Problem (3). The minimal require-
ment for convergence is that we add those columns
corresponding to the positive variables in the optimal
solution to the subproblem. In practice we have found
that for the multicommodity flow problem it is helpful
to include the first few pivot columns from the solu-
tion to the subproblem in addition to the strictly
positive variables from the optimal solution to the
subproblem.

The premise upon which our procedure is based is
that the restricted problem is considerably smaller
than the original multicommodity flow problem, and
therefore may be solved much more quickly. The
subproblem, on the other hand, possesses the same
number of columns as the original problem but fewer

(and well structured) constraints, rendering it easy to
solve. We attempt to solve the original problem by
iterating between a pair of easier problems.

Initial Basic Solution and Degeneracy
Our procedure requires an initial basic solution to the
original linear programming problem. There are a
variety of ways to do this. We discuss the specific
choices we made in our implementation in §3.

Cycling can only happen when no strictly positive
improvement is made in the restricted Problem (3). If
we apply any of the standard anticycling rules (Bland
1977) to the restricted problem, and do not drop any
column from the reformulation of the restricted prob-
lem in Step 2 until a strictly positive improvement has
been encountered in the restricted problem, then the
algorithm cannot cycle. Of course, this approach may
cause the restricted problem to grow quite large.

Comparisons with Dantzig-Wolfe Decomposition
It is instructive to contrast our procedure with classi-
cal Dantzig-Wolfe decomposition. Let � 1, . . . , � M

denote the extreme points of the polytope

� � 	x: Nx � b, Ax � r, x � 0
.

Let � 1, . . . , � M� denote the extreme points of the
polytope

� � 	x: Nx � b, x � 0
.

Let us assume for simplicity that the polytope � is
bounded hence any point in � can be written as a
convex combination of the extreme points � i. The
Dantzig-Wolfe decomposition algorithm hinges on the
fact that since � � � any point in � can be written as
a convex combination of the extreme points of �.

At any given iteration we have available a subset of
the extreme points of �, � 1, . . . , � M� � where M� � � M� .
The partial master problem,

min �
i�1

M�

c� izi,

�
i�1

M�

A� izi � r,

MAMER AND MCBRIDE
A Decomposition-Based Pricing Procedure for Large-Scale Linear Programs

698 Management Science/Vol. 46, No. 5, May 2000

�
i�1

M�

zi � 1,

z � 0 (6)

yields a multiplier vector v for the constraints ¥ i�1
M� �

A� iz i � r. In each iteration of the decomposition
algorithm, an extreme point is generated by solving a
subproblem,

VSP�v� � min�c � vA�x,

Nx � b,

x � 0. (7)

Linear programming duality assures us that when the
extreme point identified by the subproblem does not
improve the master problem, then the optimum has
been obtained.

Note that the Dantzig-Wolfe Subproblem (7) is
identical to the subproblem used in Step 2 of our
pricing procedure (which is why we call our proce-
dure “decomposition-based pricing”). However, in-
stead of solving the partial master Problem (6), we
solve a restricted version of the original Problem (3).
We can put our restricted problem in the same terms
as the corresponding Dantzig-Wolfe master problem.
Let �0 denote the set of currently active columns (the
columns of the most recently solved restricted prob-
lem). Let 	�1, . . . , 	�M� denote the extreme points of the
polyhedron defined by the restricted problem,

�� � 	x: Nx � b, Ax � r, xj � 0, j � �0, x � 0
.

Clearly �� � � and any extreme point of the restricted
problem is an extreme point of the original problem.
The restricted problem chooses an extreme point from
��. Step 2 of DPP assures that the optimal extreme
point for the current restricted problem will remain in
the set of extreme points of the next restricted prob-
lem. The optimal objective value of the restricted
problem decreases on each iteration (ignoring degen-
eracy, of course). At each iteration the DPP adds to the
restricted problem a set of extreme points of the original
problem defined by the new columns and the current
basis. In contrast, the Dantzig-Wolfe algorithm, as it is
usually described, maintains a set of extreme points to

the relaxed subproblem and adds only one new extreme
point at each iteration (the algorithm can be modified
to add several such extreme points as they become
available during the solution to the subproblem).

The decomposition-based pricing procedure is
likely to work well in the same situations in which the
decomposition algorithm would work well; specifi-
cally, those problems whose constraint matrices can be
partitioned into an “easy” subproblem and “compli-
cating” side constraints. In principle, there is no rea-
son why the partition of the problem could not be
done on a completely ad hoc basis, thereby capitaliz-
ing on what ever structure is available in each problem
instance. The efficacy of the method will depend on
the extent to which the subproblems that are identified
can be solved more rapidly than the complete prob-
lem.

3. Implementation
There are many aspects of our algorithm that will
depend on the type of problem being solved. The
choice of how to solve the subproblem, how to find an
initial basic feasible solution, and how to solve the
restricted problem will depend to some extent on the
problem structure.

At a minimum, our scheme requires two solvers, a
solver for the restricted problem and a solver for the
subproblem. We used as our implementation platform
the EMNET embedded network simplex solver to
solve the restricted problem. The EMNET code uses a
primal simplex algorithm with a partitioned basis
factorization and maintains the problem representa-
tion as well as the working matrices in memory. The
program has been specialized to solve networks with
side constraints and side variables. Our experience
with this code has been quite good; McBride and
Mamer (1997a) give comparisons between EMNET,
interior point methods, standard simplex method, and
decomposition algorithms, as well as a description of
some of the enhancements contained in EMNET. The
subproblems, on the other hand, were solved with
special purpose algorithms. In the case of the message
routing problem, a standard shortest path algorithm
was used and for the multicommodity flow problem a
version of the GENNET algorithm of Brown and

MAMER AND MCBRIDE
A Decomposition-Based Pricing Procedure for Large-Scale Linear Programs

Management Science/Vol. 46, No. 5, May 2000 699

McBride (1984), implemented within EMNET, was
employed.

Since the apparent efficacy of our procedure im-
proves as the time taken to solve the restricted prob-
lem increases relative to the subproblem (this is so
since our procedure trades off additional pivots in the
subproblem against pivots on the restricted problem),
we felt that using EMNET as the implementation
platform offered a conservative measure of the impact
of our proposed procedure. Since EMNET, applied
directly, can solve the multicommodity flow problem
quickly (with considerably better performance than
either general purpose simplex and interior point
codes, and certainly on a par with most specialized
codes), comparing the solution time using our proce-
dure with the solution time using EMNET alone
would give a fair indication of the efficacy of our
proposal. Our intent is to compare our procedure to
what amounts to the “state of the art” in multicom-
modity flow algorithms. Having said this, we hasten
to remind the reader that the specification of our
procedure is quite general and it could easily be
implemented using any linear programming solver.

The default pricing procedure for EMNET is a
“candidate queue” pricing mechanism. Columns that
are to be considered for entry into the basis are placed
in a queue, called the “candidate queue.” On each pass
through the pricing step of the simplex algorithm, the
reduced costs for some of the columns in the candi-
date queue are calculated, columns that no longer
have negative reduced cost are removed from the
queue, and a pivot column is chosen. When the
number of columns in the queue with negative re-
duced costs falls below some critical threshold, then
the queue is refreshed (a pricing scan is done to
identify new columns for the candidate queue), and
the cycle repeats. There are many possible approaches
to deciding which columns should be placed in the
candidate queue list. One heuristic, commonly used in
network simplex implementations, is to compute the
reduced costs for the arcs (columns) entering a collec-
tion of nodes, and to place in the candidate queue
those yielding negative reduced costs. There are many
possible approaches to choosing the entering basic

variable. Nazareth (1987, Ch. 7) offers a lucid over-
view of the most commonly used techniques.

For our implementation of the decomposition-based
pricing procedure, we co-opted the pricing strategy of
EMNET to implement the solution to the restricted
problem. After each solution of the subproblem, we
add to the candidate queue those columns corre-
sponding to basic columns from the solution to the
restricted problem in the previous iteration, and those
columns corresponding to positive variables in the
optimal solution to the subproblem in the current
iteration. EMNET then solves the original problem,
but without refreshing the candidate queue, until a
scan of the candidate queue reveals that there are no
improving columns to be found. We neither add
columns to nor drop columns from the candidate
queue during this solution process. This effectively
restricts EMNET to pivoting on those columns in-
cluded in the current restricted problem. Building the
restricted problem in this fashion, by maintaining the
original problem data structure, but restricting the
columns eligible for pricing, has the disadvantage of
slightly increasing the computational effort required
in the basis update after each pivot (because the entire
problem is maintained in memory), but offers the
advantage of being able to switch from one restricted
problem to the next and from the restricted problem to
the subproblem very quickly.

As mentioned in §2, when constructing the re-
stricted problem we need not limit ourselves to only
those columns corresponding to nonzero variables in
the optimal solution to the subproblem. After experi-
menting with several different heuristics for choosing
columns to include in the restricted problem, we
found that the best performance was obtained by
adding the first few columns to enter the basis during
the solution of the subproblem (under DPP-AS the
very first column to enter the basis of the subproblem
is guaranteed to have a negative reduced cost in the
restricted problem). The first few entering basic col-
umns, whether or not they remained basic in the
subproblem, seemed to help in the restricted problem.
For some of the test problems we added several
hundred additional columns to the restricted problem
in this fashion. We experimented briefly with not

MAMER AND MCBRIDE
A Decomposition-Based Pricing Procedure for Large-Scale Linear Programs

700 Management Science/Vol. 46, No. 5, May 2000

solving the subproblem to optimality on each itera-
tion, but rebuilding the restricted problem once a
significant gain in the subproblem had been made.
This variation on our procedure did not improve our
solution times for our sample of test problems. One
can easily imagine many variations on our basic
procedure, and we have had time enough to explore
only a few of them. We have not had the opportunity
to fine-tune our procedure. Indeed, it was a surprise to
us that the procedure worked so well from our origi-
nal implementation. With some additional time spent
tuning the procedure and testing more sophisticated
heuristics for adding and dropping columns from the
restricted problem, we imagine that it would be pos-
sible to improve on the results reported in §4 of this
paper.

Another important implementation decision for the
DPP-AS procedure is how to create an initial starting
basis for the subproblem from the optimal basis of the
restricted problem. In §2 we showed that it is, in
principle, possible to recover a starting basis to the
subproblem from the restricted problem; however,
that basis will have nonbasic variables that are not at
their bounds (since the subproblem is of smaller row
dimension than the restricted problem). One approach
is to use the “pegged-variable” technique mentioned
in §2. We chose instead to make use of the convex cost
mechanism built into EMNET. The convex cost sim-
plex algorithm allows for piecewise linear convex
costs, each cost is specified by a series of cost rates and
intervals, the rates are nondecreasing and the intervals
are contiguous. In a basic solution, the nonbasic vari-
ables may be either at their lower bounds, their upper
bounds, or at a cost “breakpoint.” We make use of this
feature by creating two segments, with identical costs,
which meet at the initial value of the nonbasic vari-
able. The problem is then solved from the initial basis
using the convex cost simplex method. McBride and
Mamer (1997a) offer a more complete explanation of
this technique.

Starting the problem poses another major imple-
mentation decision. There are many ways to produce
the initial basic solutions; one possibility is the classi-
cal Phase I/Phase II algorithm. We used two ap-
proaches. Starting from the un-side constrained net-

work solution we either used the allocation heuristic
proposed by McBride and Mamer (1997a), or we used
a variant of the “Big M” technique: Artificial variables
for infeasible side constraints constraints were as-
signed large costs so as to drive them out of the basis.

4. Numerical Experiments
We consider two sets of problems. The first set of
problem instances is derived from the message rout-
ing problem. The problem instances solved here were
generated from a program made available to us by
Chris Hane, and problems generated in this fashion
have been used by other authors to test algorithms for
solving the message routing problem (see Barnhart et
al. 1994). Our experience with the specialization of the
EMNET code for this problem are reported in detail in
McBride and Mamer (1997b). We reproduce some of
the results of that analysis here to highlight the effect
of the decomposition-based pricing technique. The
second set of problems were standard directed multi-
commodity flow problems, some of which are avail-
able from the NETLIB archive, and from generators
available on the Internet. Our computing environment
consists of a workstation based on a 500 MHz DEC
Alpha CPU running Microsoft Windows NT 4.0 and a
PC with a 300 MHz Pentium II CPU running Win-
dows 95.

The message routing problem can be stated (see
McBride and Mamer 1997b) as:

min �
k�1

K �
�i,j��E

c ij
k �x ij

k �,

�
	j:�i,j��E

x ij
k � �

	j:�j,i��E

x ji
k � b i

k, i � N, k � 1, . . . , K,

�
k

�x ij
k � � uij,
 �i, j� � E. (8)

In this formulation N denotes a set of nodes, E � N
� N the set of arcs, and k � 1, . . . , K an enumeration
of the messages to be sent. x ij

k denotes the flow of
message k from node i to node j. Positive values
represent flows from i to j and negative values flows
from j to i. Each message is s k units of flow between its
origin and its destination (thus, b i

k � s k if node i is the

MAMER AND MCBRIDE
A Decomposition-Based Pricing Procedure for Large-Scale Linear Programs

Management Science/Vol. 46, No. 5, May 2000 701

origin node for message k, b i
k � �s k if node i is the

destination node for message k, and b i
k � 0 otherwise).

Since arc capacity is used up by flow in either direc-
tion, the joint capacitation (representing the available
bandwidth) is a function of the absolute value of the
flow variables.

As documented in McBride and Mamer (1997b) we
approached this problem by generalizing the “convex
cost” approach of Fourer (1985, 1988) (specialized to
network problems by Murthy and Helgason 1993) to
handle absolute values in the objective function and
absolute values in the constraints. With this modifica-
tion, EMNET was able to solve the problem without
reformulating it as a directed multicommodity flow
problem. We then applied the decomposition-based
pricing heuristic to this modification of EMNET. The
subproblem consisted of the original problem with the
side constraints dualized. Since there were no arc capac-
ities, and each message had a single source and a single
sink (origin and destination), the subproblems were
solved as undirected shortest path problems. The arcs in
the shortest path correspond to the nonzero columns in
the optimal basis to the subproblems. Table 1 gives the
sizes of the problems solved. Table 2 documents the
impact of the decomposition-based pricing algorithm
on solution time and number of simplex pivots.
These problems were solved using the 500 MHz Alpha
processor.

Table 2 shows clearly the decrease in both solution
time and number of pivots (on the restricted problem)
brought about by our procedure. The column labeled
“Pivots: Direct Solution” and “Solution Time: Direct
Solution” give the number of pivots and solution time

for EMNET to solve the problem using only the
modification needed to handle undirected arcs (but a
standard pricing scheme). The columns labeled “Piv-
ots: Decomposition Pricing” and “Solution Time: De-
composition Pricing” give the number of pivots and
solution time for exactly the same algorithm, using the
decomposition pricing procedure. In the case of the
message routing problem, since the subproblems were
solved using a shortest path algorithm, we did not
start them using an advanced basis extracted from the
restricted problem.

Our second set of problems follows the pattern of the
standard directed multicommodity flow formulation:

min �
k�1

K �
�i,j��E

c ij
k x ij

k ,

Table 2 Pivot Counts and Solution Times (in Seconds) Message
Routing Test Problems

Nodes/
Commodity

Pivots:
Direct

Solution

Pivots:
Decomposition

Pricing

Solution Time:
Direct Solution 500

MHz DEC Alpha

Solution Time:
Decomposition

Pricing 500
MHz. DEC

Alpha

30 3,506 304 0.39 0.18
40 9,176 577 1.14 0.29
50 24,611 1,070 3.19 1.00
60 49,720 1,740 9.74 1.91
70 90,706 2,911 26.33 4.13
80 151,824 4,002 69.31 8.20
90 223,250 4,912 205.21 31.31

100 370,932 7,839 563.35 55.42

Table 1 Message Routing Test Problems

Nodes/
Commodity Arcs/Commodity # Comm. Total Nodes Total Arcs

Number of Side
Constraints

30 86 90 2,700 7,740 86
40 121 175 7,000 21,175 121
50 201 302 15,100 60,702 201
60 268 447 26,820 119,796 268
70 368 622 43,540 228,896 368
80 485 784 72,720 380,240 485
90 595 1,006 90,540 598,570 595

100 737 1,227 122,700 904,299 737

MAMER AND MCBRIDE
A Decomposition-Based Pricing Procedure for Large-Scale Linear Programs

702 Management Science/Vol. 46, No. 5, May 2000

�
	j:�i,j��E

x ij
k � �

	j:�j,i��E

x ji
k � b i

k, i � N, k � 1, . . . , K,

(9)

�
k

a ij
k x ij

k � rij,
 �i, j� � S, (10)

l ij
k � x ij

k � u ij
k ,
 �i, j� � Ek � 1, . . . , K. (11)

In (10), S � E represents the set of side-constrained
arcs, and l ij

k and u ij
k represent upper and lower bounds

on the flow of commodity k on arc (i, j).
The general structure of these problems follows that

given in (1), where N represents the network con-
straints (9), and A the complicating side constraints
(often called “joint capacity constraints”) (10). Remov-
ing the joint capacity constraints (10) allows the prob-
lem to be solved as a collection of separate single
commodity flow problems.

For these problems we were able to make use of the
partitioned basis representation maintained by EM-
NET and easily obtained a starting basis for the
subproblem from the optimal basis of the restricted
problem. This allowed us to use the DPP-AS proce-
dure as described in §2.

Table 3 identifies the PDS problems we solved, and
gives their sizes. Table 4 identifies1 the Mnetgen2

(mnet), dimacs2pprn3 (dmx), and JLF (the Chen5 and
15.term.o problems were selected from the JLF family
of problems) problems and gives their sizes. Also
included with each generator are computational re-
sults comparing several solution approaches and al-
gorithms.

Table 5 gives the solution time for each PDS prob-
lem using EMNET without the pricing procedure and
with the pricing procedure. We note that the times
given for EMNET improve significantly on those
reported in McBride and Mamer (1997a); this reflects

major refinements in the code as well as a faster CPU
(these times were obtained using the 300 MHz Pen-
tium II CPU). We record in the column entitled
“restricted problem pivots” the number of pivots of
the restricted problem needed in the solution process.
We did not count the number of pivots used in solving
the subproblems since the network simplex algorithm
pivots many times faster than does EMNET when
working with side constraints. The appropriate com-
parison of the work done by the simplex algorithm is
to compare the restricted problem pivots with the
number of pivots needed to solve the problem using
EMNET without the pricing procedure. It is immedi-
ately apparent from Table 5 that the pricing procedure
dramatically reduces the number of pivots needed to
solve the problem. For the PDS family of problems the
reduction in solution time ranged from �0.13% and
47%, greater decreases in solution time seem to be
associated with increased problem size.

The PDS family of problems has been used by many
authors to test multicommodity flow algorithms.
McBride and Mamer (1997a) review in detail the
results and the algorithms used to solve these prob-
lems. Table 6 helps place our results into perspective
with other published results. In this table, Z1 and Z8
stand for the results reported in Pinar and Zenios
(1992) using a decomposition algorithm (with one and
eight processors respectively), M stands for Marsten et
al. (1990) using an interior point algorithm, S & M
stands for Schultz and Meyer (1991) using a decom-
position algorithm, KBX stands for Carolan et al.
(1990) using an interior point algorithm on the KORBX

1 Generators for these families of problems can be found at the
website maintained by Antonio Frangioni, http://www.di.unipi.it/
di/groups/optimize/Data/MMCF.html.
2 Problems corresponding to lines 205, . . . , 216 in the computational
result files in the “results” subdirectory (this subdirectory is created
when the generator is installed) associated with this generator were
selected.
3 Problems corresponding to lines 41, . . . , 48, in the file “mmcfb” of
the results subdirectory associated with RmfGen generator.

Table 3 PDS Multicommodity Flow Problems Solved
(11 Commodities)

Problem Nodes Side Const. Total Rows Total Columns

PDS-10 15,389 1,169 16,558 49,932
PDS-20 31,427 2,447 33,874 108,175
PDS-30 46,453 3,491 49,944 158,489
PDS-40 62,172 4,672 66,844 217,531
PDS-50 77,341 5,719 83,060 275,814
PDS-60 92,653 6,778 99,431 336,421
PDS-70 107,250 7,694 114,944 390,005
PDS-80 120,879 8,302 129,181 434,580
PDS-85 127,556 8,557 136,113 455,488

MAMER AND MCBRIDE
A Decomposition-Based Pricing Procedure for Large-Scale Linear Programs

Management Science/Vol. 46, No. 5, May 2000 703

system, and L & R stands for Lustig and Rothberg
(1996) who used a parallelized version of the CPLEX
interior point algorithm. The final column, labeled
EMNET, offers our times for these problems. Since the
times recorded in each column of Table 6 were ob-
tained on a different processor, they are not directly

comparable. At best they give some general indication
of the efficiency of the algorithms compared.

Table 7 gives the results for the selected problems
from the Mnetgen, dimacs2pprn, and JLF families of
problems. In Table 7 an asterisk (�) means that the
code was not able to solve the problem, usually due to

Table 4 Mnetgen, JLF, and dimacs2ppprn Multicommodity Flow Problems Solved

Problem Nodes Side Const. Total Rows Total Columns Commodities

mnet205 65,536 315 65,851 185,319 256
mnet206 65,536 316 65,852 185,338 256
mnet207 65,536 314 65,850 185,339 256
mnet208 65,536 673 66,209 185,770 256
mnet209 65,536 685 66,221 185,884 256
mnet210 65,536 682 66,218 185,709 256
mnet211 65,536 831 66,367 361,031 256
mnet212 65,536 880 66,416 361,062 256
mnet213 65,536 825 66,361 360,873 256
mnet214 65,536 1,769 67,305 361,810 256
mnet215 65,536 1,772 67,308 361,824 256
mnet216 65,536 1,802 67,338 361,866 256
dmx41 2,048 2,240 4,288 11,200 4
dmx42 8,192 2,240 10,432 38,080 16
dmx43 32,768 2,240 35,008 145,600 64
dmx44 131,072 2,240 133,312 575,680 256
dmx45 4,096 4,544 8,640 22,720 4
dmx46 16,384 4,544 20,928 77,248 16
dmx47 65,535 4,544 70,080 295,360 64
dmx48 262,144 4,544 266,688 1,167,808 256
chen5 650 242 892 5,932 10
15.term.0 4,275 202 4,477 7,345 15

Table 5 Comparison of Pricing Strategies with PDS Multicommodity Flow Problems

Problem

Normal Pricing Decomposition Pricing

Percent
Improvement

Equivalent Pivots with
Side Constraints

Solution Time
(300 MHz)

Restricted
Problem Pivots

Solution Time
(300 MHz)

PDS-10 2,122 5.17 1,535 5.82 �0.13
PDS-20 13,151 60.64 6,666 46.68 23
PDS-30 26,139 159.50 14,620 146.92 8
PDS-40 53,981 495.10 32,877 416.06 15
PDS-50 77,104 751.11 39,786 590.29 20
PDS-60 126,673 1,567.46 56,568 940.16 40
PDS-70 113,036 1,629.70 54,274 992.83 39
PDS-80 166,030 2,933.90 70,405 1,557.19 47
PDS-85 160,996 2,680.92 69,622 1,442.51 46

MAMER AND MCBRIDE
A Decomposition-Based Pricing Procedure for Large-Scale Linear Programs

704 Management Science/Vol. 46, No. 5, May 2000

insufficient memory. Cplex is the well-known com-
mercial code. PPRN is a pure network primal parti-
tioning simplex implementation (see Castro 1994 and
Castro and Nabona 1996). IPM is a specialized Interior
Point code from Castro and Nabona (1996). The col-
umn EMNET(decom) gives the times for EMNET with
the DPP-AS pricing procedure, and the column EM-
NET(Cand.que) gives the times for EMNET applied
without the pricing procedure using its default candi-
date que pricing strategy. The Cplex, PPRN, and IPM
results were obtained on a HP 9000/712-80 work-
station by Antonio Frangioni.4 Frangioni (1997) also
provides some excellent solution times for MMCFB, a
dual bundle algorithm. For the current set of test
results, the solutions obtained may be slightly primal
infeasible (although typically very nearly feasible so-
lutions are found) and the amount of infeasibility may
vary from problem to problem. In view of this fact, we
decided that it was not appropriate to compare the
MMCFB results directly with the results of EMNET,

CPLEX, PPRN, IPM. The 300 MHz Pentium II CPU is
believed to be about four times faster than the HP
workstation. The results for this second set of test
problem were considerably more variable, ranging
from a low of �126% and a high of �84%. Only on the
rather difficult problems: mnet214, mnet215, and
mnet216, did the DPP-AS procedure make a clear
improvement in solution time. It averaged an im-
provement of eight times for mnet214 and mnet215
and 12 times for the mnet216.

5. Conclusion
We think of our approach as a pricing strategy imple-
mented within the framework of the simplex method,
rather than a decomposition algorithm. We use the
representation of the problem available from the re-
vised simplex method to structure and organize the
problem. The solution to the subproblem is used to
make enhanced pricing choices within the simplex
method. The mathematical description of the proce-
dure is written in terms of a sequence of restricted
problems, but in practice, the restricted problems are

4 See the website http://www.di.unipi.it/di/groups/optimize/Da-
ta/MMCF.html.

Table 6 Comparison Timings in Seconds

Problem Z1 Z8 M S & M KBX L & R EMNET

PDS-10 408 96 1,521 999 11,880 5.82
PDS-20 1,946 740 15,972 3,043 63,720 409 46.68
PDS-30 7,504 2,566 6,480 146.92
PDS-40 10,440 416.06
PDS-50 19,800 590.29
PDS-60 24,900 940.16
PDS-70 33,840 992.83
PDS-80 1,557.19
PDS-85 1,442.51

Z1: Pinar and Zenios (1992), Cray-YMP, one processor. Approx. 5 digits of accuracy.

Z8: (1992), Cray-YMP, eight processors. Approx. 5 digits of accuracy. Time reported is elapsed time.

M: Marsten et al. (1990), Cray-YMP, one processor.

S & M:
Schultz and Meyer (1991), Sequent 11 processors, stopped after 50 iterations. Time reported is elapsed time. Three digits of accuracy for
PDS-30 to PDS-50, two digits of accuracy for PDS-60 and PDS-70.

KBX: Carolan et al. (1990), KORBX, 14 processors. Time reported is elapsed time.

L & R: Lustig and Rothberg (1996), Silicon Graphics Power Challenge with 16 processors.

EMNET Solved with EMNET and the Decomposition Based pricing heuristic on a PC with a 300 MHz Pentium II processor.

MAMER AND MCBRIDE
A Decomposition-Based Pricing Procedure for Large-Scale Linear Programs

Management Science/Vol. 46, No. 5, May 2000 705

implemented via the candidate queue mechanism of
(or, more generally, the pricing mechanism) of the
EMNET algorithm. The basic idea is quite simple and
could, in principle, be implemented with any linear
programming solver (extreme point or interior point).
We chose the EMNET code for our test case for two
reasons. First of all, it has a demonstrated track record
on multicommodity flow problems and therefore of-
fers a stringent test of our ideas. Secondly, it offers a
stable platform with readily available source code.

This work lies within a larger stream of work
(McBride and Mamer 1997a, 1997b) in which we
attempt to use ideas pioneered in the context of
decomposition algorithms to enhance the perfor-
mance of the simplex method. This work flows from
two observations. The first is that with the advent of
cheap memory and very fast inexpensive CPUs it is
possible to execute the revised simplex method on
problems that could previously only have been at-
tempted using a decomposition algorithm. This ability
is further enhanced (in our view) by the use of

partitioned basis factorization techniques, which offer
a very terse representation of the simplex basis. Nat-
urally, our greatest success in this endeavor has oc-
curred in the solution of highly structured problems
(such as the multicommodity flow problem). The
second observation is that for very large problem
instances the simplex method suffers from many of
the same problems as the decomposition algorithms,
but also offers a level of numerical robustness not
available in the decomposition algorithms. Our goal
was to try to blend the best of both types of algo-
rithms. The decomposition pricing scheme uses a
decomposition-style subproblem to offer guidance in
pivot selection so as to overcome the simplex algo-
rithm’s tendency to “bog down” (to make many small,
or nonimproving, pivots) on very large problems.

The decomposition pricing procedure may also
ameliorate the effects of degeneracy. In a typical
multicommodity flow problem, many degenerate piv-
ots are made while trying to identify alternative
improving paths through the flow network. Such

Table 7 Timing Comparisons with Mnetgen, JLF, and dimacs2ppprn Multicommodity Flow Problems

Problem Cplex PPRN IPM EMNET(decom)
EMNET(Cand.

que)

mnet205 5,982.5 22,093.9 3,829.53 109.96 78.44
mnet206 4,704.42 18,069.7 3,007.22 95.19 64.10
mnet207 1,832.34 8,289.06 3,202.78 80.58 50.32
mnet208 16,430.9 35,131.9 7,085.33 205.26 152.04
mnet209 20,976.0 33,614.6 7,200.41 235.63 207.29
mnet210 11,262.0 14,129.7 5,941.38 140.66 102.17
mnet211 * 39,383.2 16,210.7 286.33 299.84
mnet212 * 54,120.0 15,930.3 400.29 451.98
mnet213 * 45,213.7 21,352.7 390.30 460.72
mnet214 �300,000. �600,000. 41,257.1 2,936.10 17,816.24
mnet215 �300,000. �600,000. 37,742.6 2,390.25 14,594.42
mnet216 �300,000. �600,000. 44,608.2 2,760.77 33,381.30
dmx41 6.41 12.08 35.58 1.27 0.94
dmx42 43.3 275.89 166.14 2.63 1.87
dmx43 261.62 4,492.95 754.25 18.89 8.35
dmx44 * 81,419.10 4,236.76 186.15 128.85
dmx45 14.02 34.84 101.49 2.31 1.92
dmx46 74.82 1,286.26 514.74 6.93 5.00
dmx47 978.31 22,511.3 3,411.42 56.14 42.08
dmx48 * �400,000 * 616.82 448.19
chen5 48.74 48.12 5.24 5.87 4.11
15.term.0 2.72 10.23 30.35 0.93 0.55

MAMER AND MCBRIDE
A Decomposition-Based Pricing Procedure for Large-Scale Linear Programs

706 Management Science/Vol. 46, No. 5, May 2000

pivots are time consuming even for a specialized
algorithm like EMNET. Under our decomposition
pricing scheme, the subproblem optimal solution
identifies a complete tentative improving path that is
passed to the restricted problem. The small size of the
restricted problem offers it many fewer pivot choices
and allows it to pivot more quickly in comparison to
trying to solve the original problem directly with the
EMNET solver.

Another, perhaps less apparent, advantage of our
procedure is that it produces a primal basic feasible
solution to the problem. Decomposition techniques
often produce only approximately feasible solutions
and interior point algorithms also produce optimal
but nonextremal solutions. The basic feasible solution
has much to recommend it. It offers a good starting
point for integer optimization to accommodate, for
example, such issues as sole-source requirements or
fixed charges within the flow network.

Appendix
For ease of reference, recall our original problem:

V � min cx,

Nx � b,

Ax � r,

x � 0. (1)

Its dual is given by:

max ub � vr,

uN � vA � c,

v � 0. (2)

The relaxed subproblem is:

VSP�v� � min�c � vA�x,

Nx � b,

x � 0. (4)

We require two lemmas establishing the relationships between the
optimal solutions to (1) and (4). Lemmas 1 and 2 are contained in
Ahuja et al. (1993 pp. 605–607). We reproduce them here for
continuity.

Lemma 1. If x* and (u*, v*) are optimal primal, and dual solutions to
(1), respectively, then x* is an optimal solution to (4) when v � v*.

Proof. By construction, x* is a feasible solution to (4). Since u*
and v* are feasible solutions to (2), we have u*N � c � v*A, hence
u* is a feasible solution to the dual of (4). It remains to show that
their optimal values are equal. Since x* and (u*, v*) are primal and
dual optimal for (1), we must have cx* � u*b � v*r. Moreover, x*
and v* satisfy complementary slackness: v*(Ax* � r) � 0. Thus,

u*b � cx* � v*r � cx* � v*Ax* � �c � v*A�x*,

which establishes that the primal and dual values are equal. �

Lemma 2. If x* is an optimal solution to (4) with v � v*, and is feasible
for (1), and x* and v* satisfy complimentary slackness, i.e. v*(Ax* � r)
� 0, then x* is an optimal solution to (1).

Proof. For any feasible solution x, to (1), and nonnegative v, cx
� v(Ax � r) � cx. Thus V SP(v) � vr � V. Since x is a feasible
solution to (1), cx � V. Complementary slackness ensures that v(Ax
� r) � 0. Putting these facts together yields:

V � cx � cx � v�Ax � r� � �c � vA�x � vr � VSP�v� � vr � V.

This establishes the optimality of x in (1). �

With these results in hand we can now prove the basic optimality
condition for our procedure.

Proposition 1. If for some basic optimal solution to the restricted
problem (3) (x�), (u�, v�), none of the columns associated with nonzero
variables in an optimal solution to the relaxed subproblem (4) have
negative reduced costs, then the optimum has been achieved: the current
solution to the restricted problem, embedded in an 0-vector of appropriate
dimension (as in Step 1 of the procedure) is optimal for the original primal
problem.

Proof. Recall that x̂ denotes the optimal solution to the subprob-
lem (4) (in Step 1 of the algorithm). By assumption, for each j such
that x̂ j � 0, we have c j � u�N j � v�A j � 0. Thus, none of the
columns corresponding to nonzero variables in the optimal solution
to (4) “price out” in (3). Formulate a new restricted problem with
column index set equal to the basic columns from the restricted
problem plus all of the columns from the subproblem correspond-
ing to nonzero variables in the optimal solution �� � �� � �̂:

V� � min c�x,

N�x � b,

A�x � r,

x � 0. (12)

Define a primal solution to (12):

x� �j � � x�j, j � ��,
0, j���, and j � ��,

and define a primal solution to (1):

MAMER AND MCBRIDE
A Decomposition-Based Pricing Procedure for Large-Scale Linear Programs

Management Science/Vol. 46, No. 5, May 2000 707

x�� �j � � x�j, j � ��,
0 j��� and j � �.

The vectors x�, x��, and �x�� agree on their components correspond-
ing to the columns �� (the basic components of x�); their dimensions
have been adjusted to be conformable with problems (3), (12), and
(1), respectively. We will show that �x�� is an optimal solution to (1).
By construction, we have:

c�x� � c�x� � � cx�� �, (13)

A�x� � A�x� � � Ax�� � � r, (14)

and

N�x� � N�x� � � Nx�� � � b. (15)

Note that the the embedding preserves complementary slackness,
i.e., v�(A�x� � r) � v�(A�x�� � r) � v�(A�x�� � r) � 0. It also immediate
that x�� is an optimal solution to (12) and (u�, v�) is an optimal dual
solution to (12). To see this, note that since (u�, v�) is an optimal dual
solution for (3), u�N� � v�A� � c�. By assumption, for any j � �̂,
u�Nj � v�Aj � c j, hence (u�, v�) are dual feasible for (12). By (14)
and (15), x�� is a feasible solution to (12). However, c�x�� � c�x� � u�b
� v�r where the first equality follows from (13) and the second from
the fact that x� and (u�, v�) are an optimal primal-dual pair for (3).
The optimality of x�� for (12) follows from strong duality.

The remainder of the proof entails showing that �x�� is an optimal
solution to (4). Lemma 2 will then imply that it is an optimal
solution to (1). To this end, define the partial dual of (12):

V �SP�v�� � min�c� � v�A��x,

N�x � b,

x � 0. (16)

Since (16) results from (4) by removing only the columns associated
with the zero components of an optimal solution, the optimal values
of the two optimization problems are equal. We establish this
formally. Since (16) results from (4) by removing columns, V SP(v�)
� V �SP(v�).

Define x̂ �i � x̂ ii � ��; since all of the columns corresponding to
nonzero columns of x̂ are in ��, we have N�x̂� � b and (c� � v�A�)x̂�

� (c � v�A)x̂. Thus x̂� is a feasible solution to (16), and yields an
objective function value equal to the optimal value of (4). Thus

V �SP�v�� � �c� � v�A��x̂� � �c � v�A�x̂ � VSP�v��. (17)

Hence V SP(v�) � V �SP(v�).
We established above that x�� and (u�, v�) are optimal primal and

dual solutions to (12). Lemma 1 applied to (12) and (16) implies that
x�� is an optimal solution to (16). By (15) �x�� is a feasible solution to (4).
Coupling this last fact with (13), (15), and (17) yields

�c � v�A�x�� � � �c� � v�A��x� � � V �SP�v�� � VSP�v��.

Hence, �x� � is an optimal solution to (4).

We have now established that �x�� is feasible for (1), optimal for (4),
and satisfies complementary slackness by Lemma 2. It is an optimal
solution to (1). �

We do not assume that the solution to the subproblem (4) is a
basic solution, only that it is an optimal solution. In practice, the
subproblem may be solved by the simplex method, yielding an
optimal basic solution. However, in some instances it may be
convenient to find an optimal solution to the subproblem which is
not basic. In general, any convenient algorithm may be used to solve
the subproblem; however, a basic optimal solution has much to
recommend it, because it has relatively few nonzero components (at
most a number equal to the dimension of the basis), and since each
nonzero component may result in the addition of a column to the
restricted problem, it makes sense to examine extreme point solu-
tions to the subproblem.

Proposition 2. Assuming nondegeneracy, and the availability of an
initial feasible basic solution to (1), the procedure described in Steps 0, 1,
and 2 converges after a finite number of iterations to an optimal basic
solution to (1).

Proof. Starting with an initial basic feasible solution (Step 0), at
each iteration of the algorithm a basic feasible solution to (1) is
obtained. Each time the algorithm enters at Step 2, at least one
potential improving column is identified and added to the columns
of the current restricted problem. This assures (again, ignoring
degeneracy) that a positive improvement will be made on the first
pivot of the new restricted problem, and an improved basic feasible
solution will be identified at the end of Step 2. If no improving
columns are identified at the end of Step 1, then, by Proposition 1,
an optimal solution is at hand. Since there are only a finite number
of basic solutions, the procedure must terminate after a finite
number of iterations. �

References
Ahuja, R., T. Magnanti, J. Orlin. 1993. Network Flows. Prentice Hall,

Englewood Cliffs, NJ.
Barnhart, C., E. Johnson, C. Hane, G. Sigismondi. 1994. An alterna-

tive formulation and solution strategy for multicommodity
network flow problems. Telecommunications Systems 3 239–258.

Bland, R. G. 1977. New finite pivoting rules for the simplex method.
Math. Oper. Res. 2 103–107.

Brown, G. G., R. McBride. 1984. Solving generalized networks.
Management Sci. 30 1497–1523.

Carolan, W., J. Hill, J. Kennington, S. Niemi, S. Wichmann. 1990. An
empirical evaluation of the KORBX algorithms for military
airlift applications. Oper. Res. 38 240–248.

Castro, J. 1994. PPRN 1.0 User’s Guide. DR 94/06, Statistics and
Operations Research Dept., Univeristat Politecnica de Cata-
lunya, Barcelona, Spain.
, N. Nabona. 1996. Primal-dual interior point method for
multicommodity network flow with side constraints and com-
parison with alternative methods. Unpublished manuscript,
Statistics and Operations Research Dept., Universitat Politec-
nica de Catalunya, Barcelona, Spain.

MAMER AND MCBRIDE
A Decomposition-Based Pricing Procedure for Large-Scale Linear Programs

708 Management Science/Vol. 46, No. 5, May 2000

, . 1996. An implementation of linear and nonlinear multi-
commodity network flows. European J. Oper. Res. 92(1) 37–53.

Fourer, R. 1985. A simplex algorithm for piecewise-linear program-
ming I: Derivation and proof. Math. Programming 33 281–315.

Fourer, R. 1988. A simplex algorithm for piecewise-linear program-
ming II: Derivation and proof. Math. Programming 41 204–233.

Frangioni, A. 1997. Dual-ascent methods and multicommodity flow
problems. Ph.D. Thesis TD 5/97, Università di Pisa-Genova-
Udine, Italy.

Hane, C. 1996. Private communication.
Lustig, I., Rothberg, E. 1996. Gigaflops in linear programming. Oper.

Res. Letters 18(4) 157–165.
Marsten, R., R. Subramanian, I. Lustig, D. Shanno. 1990. Interior

point methods for linear programming: Just call Newton,
Lagrange, and Fiacco and McCormick! Interfaces 20 105–116.

McBride, R. 1985. Solving embedded generalized network prob-
lems. European J. Oper. Res. 21 82–92.
, J. Mamer. 1997a. Solving multicommodity flow problems with
a primal embedded network simplex algorithm. INFORMS J.
Comput. 9 (Spring) 154–163.
, . 1997b. Solving the undirected multicommodity flow

problem using a shortest path based pricing algorithm. Work-
ing paper, USC, Los Angeles, CA.

Murthy, R., R. Helgason. 1993. A direct simplex algorithm for
network flow problems with piecewise linear costs. Depart-
ment of Computer Science and Engineering, Southern Method-
ist University, Dallas, TX.

Nazareth, J. 1987. Computer Solutions of Linear Programs. Oxford
University Press, Oxford, UK.

Padberg, Manfried. 1995. Linear Optimization and Extensions. Spring-
er-Verlag, New York.

Pinar, M., S. Zenios. 1992. Parallel decomposition of multicommod-
ity network flows using a linear-quadratic penalty algorithm.
ORSA J. Comput. 4 235–248.

Premoli, A. 1986. Piecewise-linear programming: The compact
(CPLP) algorithm, Math. Programming 36 210–227.

Schultz, G., R. Meyer. 1991. An interior point method for block
angular optimization. SIAM J. Optim. 1 583–602.

Valerio De Carvalho, J. M. 1997. Exact solution of bin-packing
problems using column generation and branch-and-bound.
Working Paper, Dept. Producoa e Sistemas, Univerxidade do
Minho, 4719 Broga, Portugal.

Accepted by Thomas M. Liebling; received April, 1998. This paper was with the authors 11 months for 2 revisions.

MAMER AND MCBRIDE
A Decomposition-Based Pricing Procedure for Large-Scale Linear Programs

Management Science/Vol. 46, No. 5, May 2000 709

